
TYPE Original Research

PUBLISHED 03 February 2023

DOI 10.3389/fmicb.2023.1116592

OPEN ACCESS

EDITED BY

Lihong Peng,

Hunan University of Technology, China

REVIEWED BY

Xiao Wang,

Qingdao University, China

Liu Fuxiang,

China Three Gorges University, China

*CORRESPONDENCE

Hongping Guo

guohongping@hbnu.edu.cn

SPECIALTY SECTION

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

RECEIVED 05 December 2022

ACCEPTED 06 January 2023

PUBLISHED 03 February 2023

CITATION

Guo H, Cao W, Zhu Y, Li T and Hu B (2023) A

genome-wide cross-cancer meta-analysis

highlights the shared genetic links of five solid

cancers. Front. Microbiol. 14:1116592.

doi: 10.3389/fmicb.2023.1116592

COPYRIGHT

© 2023 Guo, Cao, Zhu, Li and Hu. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A genome-wide cross-cancer
meta-analysis highlights the shared
genetic links of five solid cancers
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Breast, ovarian, prostate, lung, and head/neck cancers are five solid cancers with

complex interrelationships. However, the shared genetic factors of the five cancers

were often revealed either by the combination of individual genome-wide association

study (GWAS) approach or by the fixed-e�ect model-based meta-analysis approach

with practically impossible assumptions. Here, we presented a random-e�ect model-

based cross-cancer meta-analysis framework for identifying the genetic variants

jointly influencing the five solid cancers. A comprehensive genetic correlation analysis

(genome-wide, partitioned, and local) approach was performed by using GWAS

summary statistics of the five cancers, and we observed three cancer pairs with

significant genetic correlation: breast–ovarian cancer (rg = 0.221, p = 0.0003),

breast–lung cancer (rg = 0.234, p = 7.6 × 10−6), and lung–head/neck cancer

(rg = 0.652, p = 0.010). Furthermore, a random-e�ect model-based cross-trait

meta-analysis was conducted for each significant cancer pair, and we found 27

shared genetic loci between breast and ovarian cancers, 18 loci between breast

and lung cancers, and three loci between lung and head/neck cancers. Functional

analysis indicates that the shared genes are enriched in human T-cell leukemia virus

1 infection (HTLV-1) and antigen processing and presentation (APP) pathways. Our

study investigates the shared genetic links across five solid cancers and will help to

reveal their potential molecular mechanisms.

KEYWORDS
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1. Introduction

Cancer has become one of the most fatal diseases and it poses a serious threat to human life

and health. There have been ∼18.1 million new cancer cases and 9.6 million cancer deaths each

year (Bray et al., 2018). According to the prediction of the National Cancer Institute, the number

of new cancer cases per year is expected to rise to 29.5 million, and the amount of cancer-related

deaths will go up to 16.4 million by 2040. The high incidence of cancer has not only brought

an enormous health burden to individuals but also caused heavy economic losses to countless

families. Numerous pieces of evidence indicated widespread genetic pleiotropy and shared

genetic basis among different cancers (Rashkin et al., 2020). As a few representative elements

of solid cancer, breast, ovarian, prostate, lung, and head/neck cancers showed substantial

heritability (ranging from 9 to 57%) in previous twin and family studies (Polderman et al.,

2015; Mucci et al., 2016; Yu et al., 2017). Moreover, Jiang et al. (2019) quantified the pairwise

genetic correlations of six solid cancers and found significant correlations between breast and

ovarian cancers, breast and lung cancers, breast and colorectal cancers, and lung and head/neck

cancers. The aforementioned conclusions demonstrate indirectly that these solid cancers may

share inherited genetic mechanisms, which play important roles in cancer etiology. We would

like to understand the shared genetic loci influencing the five solid cancers.

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1116592
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1116592&domain=pdf&date_stamp=2023-02-03
mailto:guohongping@hbnu.edu.cn
https://doi.org/10.3389/fmicb.2023.1116592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1116592/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Guo et al. 10.3389/fmicb.2023.1116592

Genome-wide association studies (GWASs) have identified a

number of susceptibility loci associated with each of the five solid

cancers, ranging from dozens to hundreds (Buniello et al., 2019),

but few of them overlap in at least two of these cancers. This

indicates that rare pleiotropic loci are detected by cancer-specific

GWAS. Identifying the shared genetic loci between diseases can

help to reveal the underlying mechanisms driving disease etiology

(Guo et al., 2020). There are mainly two strategies available to

identify the shared loci in the previous literature. One strategy is

based on the combination of GWASs and other scan analyses. For

example, Ghoussaini et al. found pleiotropic loci located at 8q24,

associated with breast, prostate, and other specific cancers by using

this approach (Ghoussaini et al., 2008). Another strategy is based on

a cross-cancer meta-analysis. For example, Kar et al. identified seven

new loci shared by at least two of the three hormone-related cancers

(breast, ovarian, and prostate); Fehringer et al. (2016) detected a novel

pleiotropic locus 1q22 associated with both breast and lung cancers

by performing a cross-cancer genome-wide analysis of breast, ovary,

prostate, lung, and colorectal cancers. However, the pleiotropic loci

identified by the above studies are still not sufficient, and this may due

to the fact that the cross-cancer meta-analyses in the existing studies

are based on the fix-effect model. The fix-effect model meta-analysis

causes the loss of statistical power because it assumes the same real

effect for each genetic variant in different studies, which is practically

impossible and will inevitably yield inaccurate conclusions.

Random-effect model-based cross-trait meta-analysis methods

can effectively account for the heterogeneous effect of each genetic

variant by adding an additional variance term, addressing the

shortcomings of fix-effect model-based meta-analysis. Here, we

use the summary statistics of five solid cancers (breast, ovarian,

prostate, lung, and head/neck) from the largest-to-date cancer-

specific GWAS consortia, which include a total of 241,479 cases

and 226,810 controls. We then estimate the genetic correlation

between different cancer pairs. Furthermore, we conducted a cross-

cancer meta-analysis to detect shared genetic loci between the cancer

pairs using the current state-of-the-art random-effect model-based

approach PLEIO (Pleiotropic Locus Exploration and Interpretation

using Optimal test) (Lee et al., 2021), which enables us to properly

account for the correlation of traits and the heterogeneity of variants.

Finally, we perform functional analyses of pleiotropic variants to

uncover the underlying biological mechanisms shared across the five

solid cancers.

2. Materials and methods

2.1. Data and contributing consortia

We used the most recent GWAS summary-level data from the

Breast Cancer Association Consortium (BCAC) for breast cancer

(122,977 cases and 105,974 controls) (Michailidou et al., 2017),

the Ovarian Cancer Association Consortium (OCAC) for ovarian

cancer (25,509 cases and 40,941 controls) (Phelan et al., 2017), the

Prostate Cancer Association Group to Investigate Cancer Associated

Alterations in the Genome (PRACTICAL) consortium for prostate

cancer (79,148 cases and 61,106 controls) (Schumacher et al., 2018),

the International Lung Cancer Consortium (ILCCO) for lung cancer

(11,348 cases and 15,861 controls) (Wang et al., 2014), and the

Oncoarray oral cavity and oropharyngeal cancer consortium for

head/neck cancer (2,497 cases and 2,928 controls) (Lesseur et al.,

2016).

2.2. Genome-wide genetic correlations

To measure genome-wide genetic correlations for each cancer

pair, we used the linkage disequilibrium (LD) score regression

(LDSC) method (Schizophrenia Working Group of the Psychiatric

Genomics Consortium et al., 2015). We applied pre-computed LD

scores derived from ∼1.2 million imputed variants from European

populations that did not include the HLA region in the HapMap3

reference panel. LDSC controls for population structure using GWAS

summary statistics without individual-level data.

2.3. Partitioned genetic correlations

We evaluated the partitioned genetic correlation across the

five solid cancers within functional categories by using partitioned

LDSC (ReproGen Consortium et al., 2015). We chose 11 functional

categories as previously recommended (Zhu et al., 2019), including

the DNase I digital genomic footprinting (DGF) region, DNase I

hypersensitivity sites (DHSs), fetal DHS, intron, super-enhancer,

transcription factor-binding sites (TFBS), transcribed region, and

the histone markers H3K9ac, H3K4me1, H3K4me3, and H3K27ac

from the Roadmap Epigenomics Project (Bernstein et al., 2010).

Re-computed LD scores for variants classified in each particular

annotation were used for estimating the cross-cancer genetic

correlation within that functional group.

2.4. Local genetic correlations

We estimated local genetic correlations between each pair of

cancers in 1,703 pre-specified LD-independent regions using ρ-HESS

(Shi et al., 2017). The goal of this method was to detect small

contiguous regions of the genome in which the genetic associations

of two traits are locally concordant, and to measure the local genetic

correlation and p-values (pρ−HESS) between pairs of traits at local

regions. Cancer pairs were considered to have genetic correlation

at the local region if pρ−HESS passed the multiple testing correction

(pρ−HESS < 0.05/1703).

2.5. Cross-cancer meta-analysis

For the cancer pairs with significant genome-wide genetic

correlation, we conducted a pairwise cross-cancer meta-analysis by

using PLEIO (Lee et al., 2021). The approach is based on a random-

effect model, which can not only model genetic correlations across

pairs of traits but can also correct for environmental correlations. It

can seamlessly test multiple traits with various types by standardizing

the effect sizes. Moreover, it maps pleiotropic loci through a variance

component test and calculates statistical significance through an

important sampling method. It overcomes the drawback of fixed-

effect model methods such as ASSET (association analysis based on

subsets) (Bhattacharjee et al., 2012). We conducted the cross-cancer
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FIGURE 1

Schematic overview of the present study.

meta-analysis on an Intel Xeon E5-2695 computer with the CPU

operating at 2.10 GHz. This wastes∼10min for each pair of cancers.

To separate the independent loci from the significant loci (p <

5×10−8), we used the clumping function in PLINK software (Purcell

et al., 2007). SNPs with p < 1 × 10−5, an LD statistic r2 > 0.05, and

a distance from the peak < 1,000 kb were assigned to the clump of

that peak. Moreover, we set the NCBI human genome build 37 as the

reference gene list.

2.6. Transcriptome-wide association studies

We performed TWAS to identify gene–tissue pairs for each of

the five solid cancers and used FUSION software based on the pre-

computed 48 GTEx (version 7) tissue expression reference weights

(Gusev et al., 2016). LD-reference data were derived from European

descendants from the 1,000 Genomes Project. For each cancer,

we conducted 48 TWASs, one tissue-cancer pair at a time. The

false discovery rate (FDR) Benjamin–Hochberg procedure correction

was used, and a result with an FDR < 0.05 was considered to

be significant.

2.7. Replication analysis in the UK Biobank
cohort

To validate our findings, we further conducted genome-wide

genetic correlation analysis and cross-cancer meta-analysis of the five

solid cancer GWAS datasets with the UK Biobank cohort from the

IEU GWAS database project (Matthew et al., 2021): breast cancer

(ID: ieu-b-4810), ovarian cancer (ID: ieu-b-4963), prostate cancer

(ID: ieu-b-4809), lung cancer (ID: ieu-b-4954), and head/neck cancer

(ID: ieu-b-4912). We applied the 1,000 Genomes Project variants

(Phase 3) as the reference panel. The cross-cancer meta-analysis

between each pair of replication datasets was implemented using

the R software RE2C (Lee et al., 2017), which is another classical

random-effect model-based method that tests heterogeneous effect

size between individual summary statistics.

2.8. Pathway enrichment analysis

To gain biology insights from the shared risk genes, we performed

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis using the Enrichr web server (Kuleshov et al., 2016), which

is a comprehensive resource for curated gene sets and a search

engine that accumulates biological knowledge for further biological

discoveries. The significant criterion is that the adjusted p-value

is <0.05.

2.9. Protein–protein interaction network
analysis

We used STRING v10 (Szklarczyk et al., 2015) to analyze

the PPI network. The basic assumption is that if two proteins

are functionally associated, they may contribute to a common

biological purpose. The interaction scores were derived

from different sources, including experimentally determined

interaction, database annotated information, and automated text

mining knowledge.

A schematic overview of the present study is shown in Figure 1,

that is, we estimated genome-wide, partitioned, and local genetic

correlations of the five solid cancers. For the cancer pairs with
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significant genome-wide genetic correlation, we performed a cross-

cancer meta-analysis to identify shared genetic loci. Finally, we

conducted TWAS, pathway enrichment analysis, and PPI network

analysis of the shared risk genes.

3. Results

3.1. Three cancer pairs have significant
genetic correlations

Among pairs of solid cancers, we found three pairs with positive

genetic correlations at a significant threshold of p = 0.05: breast and

ovarian cancers (rg = 0.221, p = 0.0003), breast and lung cancers

(rg = 0.234, p = 7.6 × 10−6), and lung and head/neck cancers

(rg = 0.652, p = 0.010). The remaining pairs do not show significant

genetic correlations (Table 1).

TABLE 1 Genome-wide genetic correlation between five solid cancers.

Cancer
typea

Breast Ovarian Prostate Lung Head/
neck

Breast 1 0.221 0.077 0.234 −0.065

Ovarian 0.0003 1 0.026 0.139 −0.072

Prostate 0.087 0.672 1 0.069 0.160

Lung 7.6× 10−6 0.164 0.272 1 0.652

Head/neck 0.528 0.761 0.070 0.010 1

aThe upper off-diagonal shows the genetic correlation estimates of the LD score regression (rg

ranges from−1 to 1), and the lower off-diagonal shows the corresponding p-values.

3.2. Most of the three cancer pairs have
significant functional partitioned genetic
correlations

In the partitioned genetic correlation analysis, we observed

significant genetic correlation in all 11 functional categories

for the breast–lung cancer pair, with only two exceptions:

Intron and SuperEnhance for the lung–head/neck cancer pair.

As to the breast–ovarian cancer pair, there is no significant

signal in H3K27ac, H3K4me3, H3K9ac, and SuperEnhance. The

partitioned genetic correlations range from 0.033 to 0.546 (Figure 2;

Supplementary Table S1).

3.3. Two cancer pairs have four genomic
regions with significant local genetic
correlations

We conducted ρ-HESS to investigate whether specific regions

had a genetic correlation between each pair of the five solid cancers.

The results show that the breast–ovarian cancer pair has a strong local

genetic correlation in the 2q33 region (chromosome 2: 201576284-

202818637, p = 8.83× 10−6) (Figure 3A). In addition, three regions,

including the 9p21 region (chromosome 9: 20463534-22206559, p =

6.71× 10−6), 10q26 region (chromosome 10: 123231465-123900545,

p = 4.26 × 10−7), and 11q13 region (chromosome 11: 68005825-

69516130, p = 4.90 × 10−6), are found to have strong local genetic

correlations in the breast–prostate cancer pair (Figure 3B). We did

not observe any significant local genetic correlations for the other

cancer pairs.

FIGURE 2

Partitioned genetic correlation between breast and ovarian cancers, breast and lung cancers, and lung and head/neck cancers. The vertical axis

represents the genetic correlation rg, and the horizontal axis represents 11 functional categories. The asterisk represents significance (p < 0.05).
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FIGURE 3

Local genetic correlation and local SNP heritability between cancer pair. (A) Breast and ovarian cancers; (B) Breast and prostate cancers. For each

subfigure, the top part represents local genetic correlation, the middle part represents local genetic covariance, blue or red highlights indicate significant

local genetic correlation and covariance after multiple testing corrections, and the bottom part represents local SNP heritability for each trait.

3.4. Pleiotropic loci were identified for the
three cancer pairs by
cross-cancer meta-analysis

3.4.1. Breast and ovarian cancer
In the cross-cancer meta-analysis, we identified 27 independent

loci with a significant association between breast and ovarian cancers

(pmeta < 5 × 10−8 and single-trait p < 0.05, Table 2). The strongest

pleiotropic signal is mapped to FGFR2 in the region 10q26.13

(rs1219648, pmeta = 4.16 × 10−254), a gene that has been altered

in a number of patients with malignant solid tumors according to

the AACR Project GENIE (The AACR Project GENIE Consortium

et al., 2017). This SNP showed a pleiotropic association between

breast and ovarian cancers according to a previous cross-cancer

analysis (Kar et al., 2016). The second strongest signal is observed

for chromosome 9q31.2 (rs630965, pmeta = 1.01 × 10−63). Patients

with deletions on 9q31.2 may have delayed puberty (Iivonen et al.,

2021). The third strongest signal observed on BNC2 (rs3814113,

pmeta = 2.16 × 10−43) is a putative tumor suppressor gene in high-

grade serous ovarian carcinoma, which impacted cell survival after

oxidative stress (Cesaratto et al., 2016). Notably, four loci (rs7098100,

rs4277389, rs4808616, and rs10069690) are not only significant after

the meta-analysis but also reach a significant level in their original

single-trait GWAS.

3.4.2. Breast and lung cancers
For the breast–lung cancer pair, we detected 18 pleiotropic loci

in the cross-cancer meta-analysis (Table 3). The most significant

pleiotropic association is in the region 5q11.2 (rs16886181, pmeta =

4.57 × 10−122), and the mapped gene MAP3K1 regulates apoptosis,

survival, migration, differentiation, and other functions, which

suggests that it may be a target for cancer treatment (Pham et al.,

2013). Moreover, we also found dense signals in the HIST1H

gene family.

3.4.3. Lung and head/neck cancers
A total of three loci were identified after conducting a

meta-analysis of lung and head/neck cancers (Table 4). The first

(rs380286, pmeta = 2.72 × 10−12) is mapped on CLPTM1L

and MIR4457, genes encoding the catalytic subunit of human

telomerase reverse transcriptase (McKay et al., 2017). The second

(rs3117575, pmeta = 8.06 × 10−12) is in close proximity to

ABHD16A and many other genes. ABHD16A is an emerging enzyme,

mainly involved in lipid metabolism and intracellular signaling,

leading to the metastasis of cancer (Xu et al., 2018). The third

(rs2736100, pmeta = 1.09 × 10−9) is mapped on TERT, a

gene that plays a central role in modulating telomerase activity in

tumors (Colebatch et al., 2019).
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TABLE 2 Cross-trait meta-analysis result between breast and ovarian cancers (pmeta < 5 × 10−8; single-trait p < 0.05).

SNP Genome position Allele Breast cancer Ovarian cancer Meta Genes within
clumping region

Beta p Beta p p

rs1219648 chr10:123274062-123438122 A/G 0.2338 1.00× 10−200
−0.0266 0.0480 4.16× 10−254 FGFR2

rs630965 chr9:110759922-111073103 C/T 0.0992 3.21× 10−54 0.0301 0.0269 1.01× 10−63 CHCHD4P2#

rs3814113 chr9:16846323-16915021 T/C 0.0135 0.0410 −0.1780 9.40× 10−36 2.16× 10−43 BNC2

rs244353 chr17:52975892-53256579 G/A −0.0754 1.14× 10−28
−0.0295 0.0399 1.40× 10−31 COX11, STXBP4, TOM1L1

rs6826366 chr4:175822759-175914966 G/A −0.103 5.20× 10−26
−0.0426 0.0380 2.74× 10−28 ADAM29

rs7098100 chr10:21782842-22288132 G/A 0.0572 1.47× 10−18 0.0852 6.14× 10−10 4.41× 10−27 CASC10, DNAJC1,

MIR1915, MLLT10, SKIDA1

rs4277389 chr17:43513441-44865603 A/G −0.0484 2.01× 10−10 0.1151 1.20× 10−12 1.20× 10−23 ARL17, CRHR1, KANSL1,

LRRC37A,

MAPT,MGC57346,

MIR4315, NSF, PLEKHM1,

SPPL2C, STH, WNT3

rs4808616 chr19:17354825-17403033 C/A 0.0379 1.97× 10−8 0.1194 8.11× 10−17 1.94× 10−23 ABHD8, ANKLE1,

BABAM1, NR2F6, USHBP1

rs10069690 chr5:1279790-1279790 C/T 0 .0599 7.79× 10−17 0.0830 3.42× 10−8 5.28× 10−23 TERT

rs2290202 chr15:91489705-91561182 G/T −0.0728 1.87× 10−15
−0.0985 4.38× 10−7 4.20× 10−20 PRC1, RCCD1, UNC45A,

VPS33B

rs851980 chr6:152008780-152070928 T/C 0.0619 1.13× 10−18 0.0400 0.0083 9.44× 10−20 ESR1

rs3769823 chr2:202119789-202271347 A/G −0.0554 1.43× 10−16
−0.0289 0.0448 1.33× 10−16 ALS2CR12, CASP8, TRAK2

rs1474961 chr22:28324866-29318724 C/T 0.0667 1.74× 10−10
−0.1091 1.80× 10−6 2.02× 10−15 CCDC117, CHEK2, HSCB,

MIR5739, TTC28, XBP1,

ZNRF3

rs7017073 chr8:129143680-129218127 T/C 0.0572 2.32× 10−14 0.0359 0.0227 3.95× 10−14 MIR1208

rs35958868 chr17:29164023-29247715 G/A −0.0426 1.37× 10−9
−0.0747 5.21× 10−7 5.44× 10−13 ATAD5, TEFM

rs10498635 chr14:93086918-93111120 C/T −0.0571 3.46× 10−12
−0.0748 0.0109 9.26× 10−13 RIN3

rs381551 chr6:13638243-13722523 G/A −0.0447 6.45× 10−13
−0.0297 0.0250 2.37× 10−12 RANBP9

rs12233670 chr4:38765720-38894380 C/T 0.0509 2.20× 10−12 0.0370 0.0178 8.05× 10−12 FAM114A1, MIR574, TLR1,

TLR6, TLR10

rs2277509 chr14:91749595-91749595 C/A 0.0473 2.32× 10−12 0.0296 0.0381 1.53× 10−11 CCDC88C

rs2916074 chr19:19358672-19650096 G/A 0.0444 7.15× 10−12 0.0357 0.0097 2.04× 10−11 CILP2, GATAD2A,

HAPLN4, MAU2, NCAN,

NDUFA13, SUGP1,

TM6SF2, TSSK6, YJEFN3

rs495828 chr9:136153875-136326248 G/T 0.0377 5.99× 10−7 0.0860 9.25× 10−8 7.21× 10−11 ADAMTS13, C9orf96,

CACFD1, MED22, REXO4,

RPL7A, SNORD24, SURF

rs720475 chr7:144074929-144074929 G/A −0.0488 1.20× 10−11
−0.0308 0.0409 8.55× 10−11 ARHGEF5

rs2822991 chr21:16343812-16413682 T/C 0.0533 2.44× 10−10 0.0447 0.0094 5.50× 10−10 NRIP1

rs1550623 chr2:174207470-174212894 G/A 0.0531 5.39× 10−10 0.0360 0.0472 2.80× 10−9 CDCA7#

rs4743687 chr9:106856452-106898410 C/T 0.0322 2.29× 10−7 0.0545 4.15× 10−5 4.93× 10−9 SMC2

rs9878602 chr3:71517643-71535338 T/G −0.0337 5.21× 10−8 0.0297 0.0243 3.72× 10−8 FOXP1

rs2941478 chr8:76474058-76476737 A/C −0.0433 3.70× 10−8
−0.0430 0.0101 4.85× 10−8 HNF4G

#The nearest gene to this locus. SNP, single nucleotide polymorphisms; chr, chromosome; Allele, the character before the slash is the effect allele, and the character after the slash is the reference allele.

3.5. Overlapped gene–tissue pairs shared by
cancer pairs in TWAS

To assess the association of gene expression in specific tissue

between each pair of the five solid cancers, we performed

TWAS. A total of 1,669 gene–tissue pairs are significantly

associated with breast cancer after Benjamini–Hochberg correction

(Supplementary Table S2), in addition to 418 gene–tissue pairs with

ovarian cancer (Supplementary Table S3), 1,116 gene–tissue pairs

with prostate cancer (Supplementary Table S4), 155 gene–tissue pairs
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TABLE 3 Cross-trait meta-analysis result between breast and lung cancers (pmeta < 5 × 10−8; single-trait p < 0.05).

SNP Genome position Allele Breast cancer Lung cancer Meta Genes within
clumping region

Beta p Beta p p

rs16886181 chr5:55983856-56306286 T/C 0.1730 8.89× 10−98
−0.0670 0.0078 4.57× 10−122 MAP3K1, MIER3, SETD9

rs2736108 chr5:1287194-1355058 C/T −0.0622 3.88× 10−19 0.0988 6.49× 10−5 4.65× 10−24 CLPTM1L, MIR4457, TERT

rs7097066 chr10:80883083-80891631 G/A 0.0765 6.18× 10−20
−0.0571 0.0228 7.47× 10−22 ZMIZ1

rs3217992 chr9:21953137-22072719 C/T −0.0581 1.18× 10−19
−0.0512 0.0227 1.78× 10−21 C9orf53, CDKN2

rs13214023 chr6:27413924-28366151 G/A −0.0710 1.01× 10−9 0.1398 1.73× 10−5 8.48× 10−13 HIST1H family, LINC01012,

LOC100131289, NKAPL,

OR2B, PGBD1, TOB2P1,

ZKSCAN family

rs10498635 chr14:93086918-93111120 C/T −0.0571 3.46× 10−12 0.0513 0.0292 5.24× 10−12 RIN3

rs4971059 chr1:155148781-155666961 G/A 0.0424 4.83× 10−11 0.0549 0.0041 4.36× 10−11 ASH1L, CLK2, DAP3,

FAM189B, FDPS, GBA,

GBAP1, HCN3, MIR92B,

MIR555, MSTO1, MSTO2P,

MTX1, MUC1, PKLR,

POU5F1P4, RUSC1,

SCAMP3, THBS3, TRIM46,

YY1AP1

rs13207082 chr6:26309908-27251379 A/T −0.0710 2.10× 10−9 0.1225 0.0002 5.13× 10−11 ABT1, BTN1A1, BTN2A,

BTN3A, GUSBP2, HCG11,

HIST1H, HMGN4,

LINC00240, LOC285819,

LOC100270746, MIR3143,

PRSS16, ZNF322

rs3117574 chr6:31081838-32064726 G/A −0.0233 0.0286 0.1839 2.18× 10−10 4.27× 10−10 ABHD16A, AIF1, APOM,

ATP6V1G2, BAG6, C2,

C4A, C4B, C6orf25,

C6orf47, C6orf48, CCHCR1,

CDSN, CFB, CLIC1,

CSNK2B, CYP21A, DDAH2,

DDX39B, DXO, EHMT2,

GPANK1, HCG26, HCG27,

HCP5, HLA-B, HLA-C,

HSPA1 family, LSM2, LST1,

LTA, LTB, LY6G family,

MCCD1, MICA, MICB,

MIR1236, MIR4646,

MIR6832, MIR6891, MSH5,

NCR3, NELFE, NEU1,

NFKBIL1, POU5F1,

PRRC2A, PSORS1C,

SAPCD1, SKIV2L,

SLC44A4, SNORA38,

SNORD family, STK19,

TCF19, TNF, TNXA, TNXB,

VARS, VWA7, ZBTB12

rs1550623 chr2:174207470-174212894 G/A 0.0531 5.39× 10−10 0.0655 0.0090 7.07× 10−10 CDCA7#

rs4930103 chr11:2018168-2024683 G/A 0.0382 6.60× 10−10 0.0389 0.0318 1.95× 10−9 H19

rs4635969 chr5:1308552-1308552 G/A −0.0173 0.0276 −0.1444 5.33× 10−10 2.28× 10−9 MIR4457#

rs13212534 chr6:25874423-25983010 G/A −0.0647 1.72× 10−7 0.1241 0.0005 5.70× 10−9 SLC17A2, SLC17A3,

TRIM38

rs1707302 chr1:46600917-46603348 A/G 0.0364 2.95× 10−8 0.0625 0.0016 7.40× 10−9 PIK3R3#

rs13718 chr5:132384689-132444509 A/G −0.0437 9.38× 10−9
−0.0560 0.0092 9.17× 10−9 HSPA4

rs224121 chr10:64447352-64588680 A/C 0.0396 7.38× 10−8
−0.0614 0.0041 1.72× 10−8 ADO, EGR2

rs2524005 chr6:29899677-29899677 G/A −0.0297 0.0003 0.1080 2.12× 10−6 4.17× 10−8 HLA-K#

rs4808616 chr19:17403033-17403033 C/A 0.0379 1.97× 10−8 0.0414 0.0380 4.43× 10−8 ABHD8

#The nearest gene to the locus, SNP, single nucleotide polymorphisms; chr, chromosome; Allele, the character before the slash is the effect allele, and the character after the slash is the reference allele.
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TABLE 4 Cross-trait meta-analysis result between the lung and head/neck cancers (pmeta < 5 × 10−8; single-trait p < 0.05).

SNP Genome position Allele Lung cancer Head/neck cancer Meta Genes within clumping
region

Beta p Beta p p

rs380286 chr5:1299213-1355058 G/A −0.1286 3.39× 10−12 0.0890 0.0332 2.72× 10−12 CLPTM1L, MIR4457

rs3117575 chr6:31094703-32059867 T/C 0.1839 2.37× 10−10 0.2990 0.0024 8.06× 10−12 ABHD16A, AIF1, APOM,

ATP6V1G2, BAG6, C2, C4A, C4B,

C4B_2, C6orf25, C6orf47, C6orf48,

CCHCR1, CFB, CLIC1, CSNK2B,

CYP21A1P, CYP21A2, DDAH2,

DDX39B, DXO, EHMT2, GPANK1,

HCG26, HCG27, HCP5, HLA-B,

HLA-C, HSPA1A, HSPA1B,

HSPA1L, LOC102060414, LSM2,

LST1, LTA, LTB, LY6G5B, LY6G5C,

LY6G6C, LY6G6D, LY6G6E,

LY6G6F, MCCD1, MICB, MIR1236,

MIR4646, MIR6832, MIR6891,

MSH5, MSH5-SAPCD1, NCR3,

NELFE, NEU1, NFKBIL1, POU5F1,

PRRC2A, PSORS1C1, PSORS1C2,

PSORS1C3, SAPCD1, SKIV2L,

SLC44A4, SNORA38, SNORD48,

SNORD52, SNORD84, SNORD117,

STK19, TNF, TNXA, TNXB, VARS,

VWA7, ZBTB12

rs2736100 chr5:1286516-1286516 C/A −0.1062 3.97× 10−9
−0.0970 0.0210 1.09× 10−9 TERT

SNP, single nucleotide polymorphisms; chr, chromosome; Allele, the character before the slash is the effect allele, and the character after the slash is the reference allele.

with lung cancer (Supplementary Table S5), and 15 gene–tissue pairs

with head/neck (Supplementary Table S6). Among them, 306 gene–

tissue pairs are overlapped for the breast–ovarian cancer pair, and the

tissues involved are scattered; however, a number of genes are almost

concentrated in the clumping region of rs4277389 on chromosome

17, such as CRHR1, LRRC37A, andMAPT (Supplementary Table S7).

Moreover, 23 gene–tissue pairs are overlapped for the breast–lung

cancer pair, and most of the gene signals are observed in the 1q22

region, especially gene GBAP1, which is simultaneously significant

in eight tissues (adipose, artery, breast, fibroblast cell, sigmoid colon,

transverse colon, esophagus, and vagina) (Supplementary Table S7).

In addition, one gene–tissue pair (CFB-pituitary) is overlapped for

the lung–head/neck cancer pair (Supplementary Table S7).

3.6. Results of replication analysis in the UK
Biobank cohort

In the replication analysis, we confirmed the significance of the

genetic correlation between the breast and ovarian cancer pair (rg =

0.175, p = 0.0061), the breast and lung cancer pair (rg = 0.125,

p = 0.0018), and the lung and head/neck cancer pair (rg = 0.506,

p = 0.0005) in the UK Biobank. Then, we used cross-cancer meta-

analysis (RE2C) to identify the shared genes between each of the three

cancer pairs. For the breast–ovarian cancer pair, nine loci showed

genome-wide significance. Of these, genes FGFR2, BNC2, ADAM29,

ESR1, ATAD5, and TEFM were replicated when compared with their

specific consortium results (Supplementary Table S8). Moreover, six

loci demonstrated significance in the breast–lung cancer pair. Some

genes were found to be replicated, such as MAP3K1 (rs12653202,

pmeta = 4.34 × 10−23), HIST1H family (rs13214023, pmeta = 2.83 ×

10−14), ASH1L (rs4971059, pmeta = 5.47 × 10−9), and ZMIZ1

(rs7904249, pmeta = 1.22 × 10−8) (Supplementary Table S9). In

addition, we identified two loci shared in the lung–head/neck cancer

pair, but neither was replicated (Supplementary Table S10).

3.7. Results of biological analysis and
pathway enrichment analysis

We observed shared genes enriched in human T-cell leukemia

virus 1 infection (HTLV-1) and antigen processing and presentation

(APP) pathways. HTLV-1 was the first retrovirus discovered to

cause adult T-cell leukemia (ATL), a highly aggressive blood cancer

(Matsuoka and Jeang, 2011). TheAPP pathway is a key element for an

efficient response to immune checkpoint inhibitor therapy, which can

be exploited to enhance tumor immunogenicity and to increase the

efficacy of immunotherapy. The use of immune checkpoint inhibitors

has already shown significant clinical advances in a wide range of

patients with cancer (D’Amico et al., 2022).

3.8. Results of protein–protein interaction
network analysis

In total, we found 849 pairs of interaction in the PPI network

(Supplementary Table S11). A total of 44 gene pairs have combined

scores >0.95, in which the ESR1-NRIP1 pair has the highest score

of 0.999. HIST1H family genes around the 6p22.1 region show

strong interactions with high scores. We observed 26 genes with

degrees >20, most of which are HIST1H family genes, in addition to

ESR, HSPA4, TNF, and EHMT2 genes. HIST1H gene set expression

was reported to be positively correlated with large tumor size,

high grade, metastasis, and poor survival in patients with breast
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FIGURE 4

Protein–protein interaction network of share genes.

cancer (Liao et al., 2021), which were used as prognostic factors

for survival prediction among patients with cervical cancer (Li

et al., 2017). The PPI network for shared risk genes is shown in

Figure 4.

4. Discussion

In the present study, we conducted a comprehensive analysis

measuring the genetic correlation of five solid cancers, leveraging

summary statistics from the current largest GWAS cancer consortia.

We found significant positive genome-wide genetic correlations in

three cancer pairs: breast–ovarian cancer, breast–lung cancer, and

lung–head/neck cancer. Although the correlation in the prostate–

head/neck cancer pair was up to 0.139, it failed to reach a

significant level.

In partitioned genetic correlation, we detected positive genetic

correlation and statistical significance in most function regions of

the genome for the three cancer pairs, which showed significance

in LDSC. Among them, the transcribed region had the strongest

magnitude and significance. Most of the susceptibility variants

detected by GWAS are located in non-coding regions and affect

most cancers by affecting gene expression (Sud et al., 2017). Histone

markers, including H3K27ac, H3K4me1, H3K4me1, andH3K9ac, are
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important modifications that are associated with the dysregulation

of many genes that play important roles in cancer development

and progression (Kurdistani, 2007). Transcribed regions have diverse

transcripts that impact cancer initiation and progression through

several mechanisms of action (Gibert et al., 2022).

In the analysis of local genetic correlation, we identified

a novel pleiotropic region (11q13) that showed a significant

local genetic correlation between breast and prostate cancers.

Although the 2q33 region was previously reported as a shared

region for breast–ovarian and breast–prostate cancers (Jiang

et al., 2019), we only observed the pleiotropic signal in the

breast–ovarian cancer pair. In addition, the 9p21 and 10q26

regions we identified were indicated to share breast and prostate

cancers (Jiang et al., 2019). However, we did not find any

significant local correlation between the breast–lung cancer pair

and the lung–head/neck cancer pair, which showed genome-wide

statistical significance.

There are some common findings in the aforementioned three

kinds of genetic correlation analyses. The three cancer pairs (breast–

ovarian, breast–lung, and lung–head/neck), which were significant

in genome-wide genetic association analysis, also showed strong

significance in most functional categories in the partitioned genetic

correlation analysis (Figure 2). In addition, the breast–ovarian cancer

pair also showed strong significance in the 2q33 region in the local

genetic correlation analysis (Figure 3A).

In the cross-cancer meta-analysis, we discovered 27 shared

loci between breast and ovarian cancers, 18 shared loci between

breast and lung cancers, and three shared loci between lung

and head/neck cancers. Except for four of the shared loci

that showed a significant association in trait-specific GWAS of

two cancers, the others were newly discovered. In contrast, a

previous study, which used the fixed-effect model-based approach

ASSET, only identified one novel pleiotropic association at 1q22

involved in breast and lung cancers (Kar et al., 2016). This

comparison demonstrated the high statistical power of the cross-

cancer meta-analysis via the PLEIO test, which is based on a

random-effect model.

In the TWAS analysis, we explored the significant gene–tissue

pair in the five solid cancers by integrating GWAS summary statistics

and GTEx tissue expression data. We identified 1,669 gene–tissue

pairs associated with breast cancer at the transcriptome-wide level,

in addition to 418 with ovarian cancer, 1,116 with prostate cancer,

155 with lung cancer, and 15 with head/neck cancer. Furthermore,

we noticed that 306 gene–tissue pairs overlapped in the breast–

ovarian cancer pair, 23 pairs overlapped in the breast–lung cancer

pair, and one pair overlapped in the lung–head/neck cancer pair.

These overlaps may implicate specific common regulations for

biological function.

In the replication analysis, we found some shared genes in two

independent cohorts, such as FGFR2 for the breast–ovarian cancer

pair and MAP3K1 for the breast–lung cancer pair. Since there are

more cases (tens of thousands) in specialized cohorts (such as BCAC

for breast cancer) than those in the UK Biobank cohort (nearly

1,000), the small number of cases could affect the genetic correlation

estimation; this may be the reason only a fraction of pleiotropic genes

were found in UK Biobank replications.

The post-GWAS analyses enabled us to provide biological

insights into the shared genes. We found that the shared genes were

enriched in HTLV-1 and APP pathways via pathway enrichment

analysis. In the PPI network analysis, we observed obvious

aggregations around HIST1H family genes, which were proved to be

used as prognostic factors for survival prediction among patients with

cancer (Li et al., 2017).

There are some advantages of the present study. On the one

hand, we conducted a cross-cancer meta-analysis using two large-

scale cohorts for each cancer separately, which facilitated the

detection of novel associations. On the other hand, we performed

association analyses under two kinds of mainstream random-effect

model-based methods, which confirmed some of the discoveries.

We also point out the limitations of this study. First, the UK

Biobank cohort cancers we used in our replication analysis are

not independent because there may be some shared cases and

substantial shared controls among these five solid cancers. Moreover,

the identified pleiotropic loci can be divided into causal and

non-causal, and further experiments are required to distinguish

the causal loci and to study their biological function. Finally,

our study focuses on identifying shared genetic factors across

five solid cancers, and their shared environmental factors require

further investigation.

5. Conclusion

Identifying the shared genetic loci across five solid cancers

plays an important role in the etiology and pathogenesis

of each cancer. Our study finds several significant genetic

correlations in specific cancer pairs, and their corresponding

pleiotropic variants are detected by a cross-cancer meta-

analysis. We observe shared genes enriched in the human

T-cell leukemia virus 1 infection (HTLV-1) and antigen

processing and presentation (APP) pathways. These shared

genes and pathways may help to provide clues for future

drug development.
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