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Acinetobacter baumannii

K-antigens and its implication in
the in silico serotyping
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Sruthi Sundaresan† and Thenmalarchelvi Rathinavelan*

Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India

Acinetobacter baumannii is an emerging opportunistic pathogen. It exhibits

multi-, extreme-, and pan-drug resistance against several classes of antibiotics.

Capsular polysaccharide (CPS or K-antigen) is one of the major virulence factors

which aids A. baumannii in evading the host immune system. K-antigens of A.

baumannii exploit the Wzx/Wzy-dependent pathway that involves 13 di�erent

proteins for its assembly and transport onto the outer membrane. A total of

64 (out of 237 K-locus(KL) types) known K-antigen sugar repeating structures

are discussed here and are classified into seven groups based on their initial

sugars, QuiNAc4NAc, GalNAc, GlcNAc, Gal, QuiNAc/FucNAc, FucNAc, andGlcNAc

along with Leg5Ac7Ac/Leg5Ac7R. Thus, the corresponding seven initializing

glycosyltransferases (ItrA1, ItrA2, ItrA3, ItrA4, ItrB1, ItrB3, and ItrA3 along with

ItrB2) exhibit serotype specificity. The modeled 3D-structural repository of the

64 K-antigens can be accessed at https://project.iith.ac.in/ABSD/k_antigen.html.

The topology of K-antigens further reveals the presence of 2-6 and 0-4 sugar

monomers in the main and side chains, respectively. The presence of negatively

(predominant) or neutrally charged K-antigens is observed in A. baumannii. Such

diversity in the K-antigen sugar composition provides the K-typing specificity (viz.,

18–69% in terms of reliability) for Wza, Wzb, Wzc, Wzx, and Wzy proteins involved

in the Wzx/Wzy-dependent pathway. Interestingly, the degree of uniqueness of

these proteins among di�erent K-types is estimated to be 76.79%, considering

the 237 reference sequences. This article summarizes the A. baumannii K-antigen

structural diversity and creation of a K-antigen digital repository and provides a

systematic analysis of the K-antigen assembly and transportation marker proteins.

KEYWORDS

K-antigen structure, capsular polysaccharide, antimicrobial resistance, K-typing,

Wzx/Wzy-dependent pathway, Acinetobacter baumannii

Importance

The World Health Organization (WHO) has listed A. baumannii as one of the

critical pathogens which are in urgent need of new antibiotics. One of the virulence

factors responsible for the pathogenicity of A. baumannii is the capsular polysaccharides

(alternatively, K-antigens). Here, the structural and topological diversity of 64 A. baumannii

K-antigens is analyzed, modeled, and classified. These models have been deposited in a 3D-

structural repository. This structural information will be helpful in therapeutic treatment,

vaccine development, phage therapy, and understanding the host–pathogen interactions.

Effective serotyping using only the K-antigen marker proteins is discussed in view of

outbreak surveillance.
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Introduction

Acinetobacter species are aerobic Gram-negative coccobacilli

(Peleg et al., 2008) whose genus consists of more than 50 species

(Wong et al., 2017), among which Acinetobacter baumannii is

the most important species in causing infections in humans. A.

baumannii is an opportunistic nosocomial pathogen responsible

for major hospital-acquired diseases such as septicemia, meningitis,

and urinary tract and wound infections (Monem et al., 2020).

They mainly target immune-compromised patients (Monem et al.,

2020) or patients undergoing chemotherapy, transplantation, etc.

It is also characterized as the most common cause of ventilator-

associated pneumonia in several hospitals in ICUs across the

world (Ciginskiene et al., 2019). A. baumannii is also responsible

for causing 8.4% of ventilator-associated pneumonia (VAP) and

2.3% of infections caused by central line-associated bloodstream

infections in the USA. In total, 65% of pneumonia cases reported

in the USA and Europe are because of carbapenem-resistant

Acinetobacter baumannii (CRAB) (Kim et al., 2014). Thus, it is

a clinically well-studied and characterized species (Harding et al.,

2018).

Acinetobacter baumannii belongs to a group of pathogens called

ESKAPE (which stands for Enterococcus faecium, Staphylococcus

aureus, Klebsiella pneumoniae, Acinetobacter baumannii,

Pseudomonas aeruginosa, and Enterobacter spp.), as they can

easily evade the antibiotic treatment. A. baumannii recruits

several mechanisms and exhibits various levels of resistance

against several classes of antibiotics. The multidrug-resistant

(MDR) A. baumannii is the most widely spread MDR pathogen

in recent times (Geisinger et al., 2019). Apart from being a

pathogen responsible for MDR, A.baumannii is also associated

with extreme drug resistance (XDR) and pan-drug resistance

(PDR) (Vrancianu et al., 2020). Furthermore, frequent outbreaks

of multidrug-resistant A. baumannii strains are of major concern

(Qu et al., 2016; Cornejo-Juarez et al., 2020; Kurihara et al., 2020;

Brasiliense et al., 2021). Thus, A. baumannii is listed as one of the

critical pathogens in the World Health Organization’s (WHO)

priority pathogens list, for which new antibiotics are urgently

needed (World Health Organization, 2017).

Several virulence factors are responsible for inducing

pathogenicity by A. baumannii. These include capsular

polysaccharides (CPS), lipooligosaccharides (LOS), outer

membrane protein (OMP) (Wong et al., 2017), and type IV pili

(Harding et al., 2018). Among them, membrane polysaccharides,

LOS and CPS, are utilized in the serotyping of A. baumannii.

Serotyping plays a vital role during outbreak surveillance as each

serotype differs by its chemical makeup, and the nature of infection

may also be different. Thus, the effect of antibiotics may vary

between serotypes, and different serotypes may have different

responses to vaccines (Kamuyu et al., 2021). However, the surface

of A. baumannii lacks the conventional O-antigen attached to

lipid A, unlike in many other Gram-negative bacteria (Kinsella

et al., 2015). Indeed, it has been shown that A. baumannii can

exist without LOS (Simpson et al., 2021) but with the support

of other carbohydrate structures (Simpson et al., 2021). Thus,

CPS is emphasized in the current investigation. The CPS, also

known as K-antigen, is the major virulent factor of A. baumannii,

which helps in biofilm formation and evades the host immune

system, thereby protecting the bacteria from harsh environments

(Russo et al., 2010). The CPS follows the Wzx/Wzy-dependent

pathway for its assembly and transport. It typically consists of

four to six sugar units unique to each serotype, which acts as a

scaffold for its multimerization and growth. Several proteins are

involved in the CPS repeating unit assembly, multimerization, and

surface exportation.

Since the CPS (or K-antigen) (Campos et al., 2004; Llobet

et al., 2008; Sachdeva et al., 2017) and LPS (lipopolysaccharide or

O-antigen) (Yethon and Whitfield, 2001; Matsuura, 2013; Zhang

et al., 2013; Maldonado et al., 2016) surface antigens of Gram-

negative bacteria play vital roles in therapeutic treatment, vaccine

development, phage therapy, and understanding host–pathogen

interactions, the knowledge about their three-dimensional

structures is of major importance. Realization of this aspect has

led to several time-to-time reviews on K- and O-antigen structures

of Gram-negative bacteria such as E. coli (Stenutz et al., 2006; Liu

et al., 2020), Salmonella (Liu et al., 2014), and Shigella (Liu et al.,

2008).

Due to the upsurge in the immune evasion and multidrug

resistance strategies exhibited by A. baumannii, there is a need

to explore alternative therapeutic options to antibiotics (Shahid

et al., 2021). To this end, several attempts have been made

to exploit monoclonal antibodies (Russo et al., 2013; Nielsen

et al., 2017), whole-cell vaccines (Lopez-Siles et al., 2021), outer

membrane complex and bacterial ghost vaccines (Lopez-Siles

et al., 2021), polysaccharide-based vaccines (Lopez-Siles et al.,

2021), DNA-based vaccines (Lopez-Siles et al., 2021), and protein-

based vaccines (Lopez-Siles et al., 2021; McConnell and Martin-

Galiano, 2021) toward the prevention of A. baumannii infections.

For polysaccharide-based vaccines, CPS and LPS can readily

be utilized. Indeed, it has been shown that in the preclinical

infection models, K1 CPS is immunogenic upon immunization,

and opsonophagocytosis of A. baumannii is also facilitated in

vitro by the antibodies against this antigen (Russo et al., 2013).

Thus, K1 can be a potential therapeutic target. Interestingly, a

recent study has shown that a vaccine with synthetic pseudaminic

acid-conjugated carrier protein confers effective protection against

A. baumannii infection (Wei et al., 2021). Since many of

the A. baumannii K-antigens (quite heterogenic in their sugar

composition) are seen in the clinical samples of hospitalized

patients (Supplementary Table S1), it is necessary to develop a

polyvalent vaccine that can cover many or all of the K-antigens.

Importantly, the sugar composition of the K-antigen is shown to

play an essential role in dictating the virulence of the A. baumannii,

in such a way that the removal of a glycosyl transferase results

in the removal of the sugar branch, making it virulent (Talyansky

et al., 2021). These necessitate detailed information about the

sugar composition, linkage, and stereoisomeric (enantiomeric and

epimeric) forms of all the A. baumannii K-antigens in one place.

Furthermore, a thorough understanding of A. baumannii CPS

diversity is critical in successfully implementing phage therapy

to treat the infections caused by the pathogen (Tu et al., 2023).

A noteworthy point is that the knowledge about the sugar

composition of K3 antigen has recently been shown to produce A.

baumannii isolate that is susceptible to bacteriophage, as the isolate
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produced a K3 antigen variant that lacks a branch sugar (Timoshina

et al., 2023). In addition, the CPS is suggested to be an obstacle for

passive immunization strategies as K1 CPS inhibits the binding of

monoclonal antibodies against outer membrane proteins (Wang-

Lin et al., 2017). Indeed, the composition (Wei et al., 2021) and 3D

structural information of the K-antigen are found to be important

(Carboni and Adamo, 2020) as they play crucial roles in binding

with antibodies (Ozdilek et al., 2021). These necessitate the details

about the sugar composition and three-dimensional structure of

all the A. baumannii K-antigens to design a vaccine containing

antibodies against different K-antigens or having common sugar(s)

found in different K-antigens. To this end, 64 known K-antigen

structures of A. baumannii are presented and discussed here.

Materials and methods

3D-structure modeling of A. baumannii

K-antigens

Before the modeling of A. baumannii K-antigen 3D structures,

their chemical formula describing the sugar composition, the

linkage between adjacent sugars, and their stereoisomeric forms

were collected from the literature (Table 1). The initial models of

the K-antigens having regular sugars were built using GLYCAM-

Web (Woods, 2005–2023). The K-antigens having unusual sugars

were initially modeled using GLYCAM-Web with the closest

sugar in place of the unusual sugar, and finally, the appropriate

sugar was manually modeled using a PyMOL molecular modeling

tool (Schrodinger, 2015). Subsequently, the modeled K-antigens

were energy minimized using CHARMM 36 forcefield (Huang

and MacKerell, 2013). A negative charge of −1 was considered

(due to the presence of a carboxylic group) if a K-antigen was

found to have any one of the following sugars: glucuronic acid,

galacturonic acid, pyruvic acid, pseudaminic acid, legionaminic

acid, or bacillosamine. If more than one of the above sugars were

found, the total negative charge was equivalent to the total number

of such sugars. This formal charge was then assigned as the charge

of the K-antigen during the minimization. Generalized Born with a

simple SWitching (GBSW) implicit solvation was used during the

minimization. The minimization was performed for 1,500 steps of

steepest descent (SD), further followed by 1,500 steps of the adopted

basis Newton–Raphsonmethod. Notably, the CHARMM force field

is used in the current study to model the K-antigen structures, as it

has been widely used for the modeling of carbohydrates and their

derivatives as well as to capture their conformational dynamics

since 2011 (Guvench et al., 2011).

Testing the diversity of the proteins for
e�cient K-typing

The diversity of the 12 protein sequences (notably ItrB4 was

not considered as it is present only in KL75) corresponding to 237

serotypes of A. baumannii was investigated to effectively utilize

them to distinguish different serotypes, as described earlier (Patro

et al., 2020). For this, multiple sequence alignment (MSA) and

percentage identity matrix (PIM) of all the 12 protein sequences

were constructed using Clustal Omega (Madeira et al., 2022). For

the multiple sequence alignment of Wza, Wzb, Wzc, Wzx, Wzy,

ItrA1, ItrA2, ItrA3, ItrA4, ItrB1, ItrB2, and ItrB3, 259, 244, 256, 246,

248, 35, 91, 82, 5, 13, 20, and 10 sequences were used, respectively.

It is noteworthy that the number of Itr sequences is less compared

to the other proteins as they are specific only for certain serotypes.

Indeed, there was only one sequence available for ItrB4 as it is

found only in KL75. Subsequently, the MSA of all these proteins

was individually given as input to Weblogo3 for the estimation of

each protein’s regional diversity by generating their sequence logo

(Crooks et al., 2004).

Calculating the reliability scores

The reliability score (RS) and average reliability score (ARS) for

each protein were calculated individually for all 237 serotypes based

on the protein’s ability to predict a unique serotype when searched

against the reference dataset, as described previously (Patro et al.,

2020). The reliability score used for the K-typing provides the

uniqueness of proteins in the Wzx/Wzy biosynthesis pathway

across different serotypes. This has been done by comparing each of

theWzx/Wzy biosynthesis pathway proteins’ sequences of different

A. baumannii K-types using the pairwise sequence alignment

method in BLAST (Altschul et al., 1990; McGinnis and Madden,

2004). Notably, the statistical significance value (P) of < 0.01 of

BLAST is considered a cutoff for the alignment. See the section

“Quantifying the reliability of the Wzx/Wzy-dependent pathway

marker proteins in K-typing” under “Results and Discussion”

for an explanation of RS with examples. Finally, the average

reliability score (ARS) of each protein was calculated individually

by averaging the RS values of a protein obtained for all the K-types.

Implementation of Acinetobacter
baumannii K-antigen 3-dimensional
structure database (ABSD)

The implementation was carried out with the help of the

Apache HTTP server (https://httpd.apache.org) and D3.js (https://

d3js.org/). While the client-side user interface was implemented

using HTML, PHP was used for scripting purposes and to retrieve

the K-antigen structures.

Results and discussion

Before going into the details of the K-antigen structures of

A. baumannii, an overview of the K-antigen surface exportation

machinery is briefed here. A. baumannii K-antigen surface

assembly and exportation take place via the Wzx/Wzy-dependent

pathway. The K-antigen repeating unit consists of four to six sugar

units unique to each serotype, which further acts as a scaffold

for the multimerization to form a mature K-antigen. Several

proteins are involved in the K-antigen assembly, multimerization,

and surface exportation (Figure 1). The assembly of the K-antigen

repeating unit is initialized by initiating transferases (Itrs) in the
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TABLE 1 Published chemical representation of 64 K-antigens of A. baumannii.

K-antigen Chemical representation Igt Reference

K1 ItrA1 (Russo et al., 2013)

K2 ItrA2 (Kenyon et al., 2014)

K3 ItrA2 (Singh et al., 2018)

K4 ItrB1 (Kenyon et al., 2016b)

K5 ItrA2 (Kenyon et al., 2019)
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TABLE 1 (Continued)

K-antigen Chemical representation Igt Reference

K6 ItrA2 (Kenyon et al., 2015b)

K7 ItrA2 (Senchenkova et al., 2019)

K8 ItrA3; ItrB2 (Arbatsky et al., 2019)

K11 ItrA3 (Kenyon et al., 2017c)

K12 ItrB3 (Kenyon et al., 2015c)

K13 ItrB3 (Kenyon et al., 2017a)

K14 ItrA2 (Kenyon et al., 2015a)

K15 ItrA1 (Shashkov et al., 2017)
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TABLE 1 (Continued)

K-antigen Chemical representation Igt Reference

K16 ItrA3 (Kenyon et al., 2019)

K17 ItrA1 (Kenyon et al., 2020)

K19 ItrA1 (Kenyon et al., 2016a)

K20 ItrA1 (Kasimova et al., 2018)

K21 ItrA1 (Kasimova et al., 2018)

K22 ItrA2 (Talyansky et al., 2021)

K24 ItrA3 (Kenyon et al., 2017b)

K25 ItrA1 (Senchenkova et al., 2015)

K26 ItrA3 (Kasimova et al., 2021)

K27 ItrA2 (Shashkov et al., 2016b)
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TABLE 1 (Continued)

K-antigen Chemical representation Igt Reference

K30 ItrA2 (Shashkov et al., 2015a)

K32 ItrA2 (Cahill et al., 2020)

K33 ItrA2 (Arbatsky et al., 2016)

K35 ItrA1 (Shashkov et al., 2017)

K37 ItrA2 (Shashkov et al., 2019)

K39 ItrA1 (Kenyon et al., 2016a)

K42 ItrA2 (Senchenkova et al., 2015)
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TABLE 1 (Continued)

K-antigen Chemical representation Igt Reference

K43 ItrA3 (Shashkov et al., 2016a)

K44 ItrA2 (Shashkov et al., 2016b)

K45 ItrA3 (Shashkov et al., 2015a)

K46 ItrA2 (Kenyon et al., 2019)

K47 ItrA3 (Shashkov et al., 2016a)

K48 ItrA3 (Shashkov et al., 2015a)

K49 ItrA3; ItrB2 (Singh et al., 2018)
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TABLE 1 (Continued)

K-antigen Chemical representation Igt Reference

K53 ItrA1 (Shashkov et al., 2018)

K54 ItrA3; ItrB2 (Arbatsky et al., 2019)

K55 ItrA3 (Kenyon et al., 2021a)

K57 ItrA2 (Kenyon et al., 2018)

K73 ItrB3 (Kenyon et al., 2017a)

K74 ItrA3 (Kenyon et al., 2021a)

K82 ItrA2 (Kasimova et al., 2018)
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TABLE 1 (Continued)

K-antigen Chemical representation Igt Reference

K83 ItrA3 (Kenyon et al., 2017c)

K85 ItrA3 (Kenyon et al., 2021a)

K86 ItrA3 (Kenyon et al., 2021b)

K87 ItrA3 (Arbatsky et al., 2021)

K88 ItrA3 (Shashkov et al., 2016a)

K89 ItrA3 (Arbatsky et al., 2022)

K90 ItrA3 (Senchenkova et al., 2019)
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TABLE 1 (Continued)

K-antigen Chemical representation Igt Reference

K91 ItrB1 (Shashkov et al., 2015b)

K92 ItrA4 (Senchenkova et al., 2021)

K93 ItrA2 (Kasimova et al., 2017)

K98 ItrB1 (Kasimova et al., 2022b)

K106 ItrA3 (Kasimova et al., 2021)

K112 ItrA3 (Kasimova et al., 2021)

K116 ItrA2 (Shashkov et al., 2019)

K125 ItrB3 (Arbatsky et al., 2018)
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TABLE 1 (Continued)

K-antigen Chemical representation Igt Reference

K127 ItrA2 (Arbatsky et al., 2022)

K128 ItrA2 (Arbatsky et al., 2019)

K139 ItrA2 (Kasimova et al., 2021)

K144 ItrA3 (Kenyon et al., 2021b)

K218 ItrA2 (Kasimova et al., 2022a)

Note that some K-antigens having 2 different sugar substitutions (3-OH-butyrate and acetyl) are also indicated with an R-group.
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FIGURE 1

Schematic representation of the assembly and export of capsular polysaccharide (CPS) in A. baumannii. The assembly of the repeating unit begins

with the transfer of the lipid carrier attached to the first sugar (Und-PP) to the initializing transferase (Itr) located in the inner membrane.

Subsequently, the other sugar monomers of the repeating unit are added (indicated by an arrow) by K-type specific glycosyltransferases (GTs) on the

cytosolic side of the inner membrane. The CPS repeating unit is, then, transported to the periplasmic region through the Wzx flippase that is located

on the inner membrane. The CPS repeating unit is polymerized by the Wzy protein and exported to the cell surface synergistically by Wzc (tyrosine

autokinase), Wzb (phosphatase), and Wza (translocon). It is noteworthy that the Wzi protein, which plays a crucial role in retaining the integrity of the

CPS layer on the exterior of the outer membrane, is present in a di�erent locus and not in the cps locus of A. baumannii

(doi.org/10.1038/s41598-021-01206-5), unlike in Klebsiella (doi.org/10.3389/fcimb.2019.00367) and E. coli (doi.org/10.3389/fmicb.2017.00070).

FIGURE 2

(A) Itr-based classification of 237 A. baumannii KL-/K-types. (B) Pie chart showing the statistics of each initializing transferase. Note that ItrB4 (KL75)

and ItrB2 along with ItrA2 (KL115 and KL222) are not marked in (B) due to the less frequency of cps loci possessing them. Note that Leg5Ac7Ac (or its

derivatives) are observed in the K-antigen repeating units that are grouped under the initiating glycosyl transferase ItrA3 & ItrB2.
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inner bacterial membrane, followed by the addition of sugar units

with the help of glycosyltransferases (Gtrs). This is then followed

by the translocation of assembled K-antigen repeating unit into

the periplasmic side with the help of Wzx (translocase), and it’s

polymerization is governed by Wzy (polymerase). Finally, the

transport of the growing K-antigen onto the outer membrane takes

place through the Wzb–Wzc–Wza complex (Kinsella et al., 2015).

Classification of A. baumannii K-antigens
based on the initializing transferases

A critical look at the 237 A. baumannii K-antigen gene clusters

(Cahill et al., 2022) indicates the presence of eight initializing

transferases ItrA1, ItrA2, ItrA3, ItrA4, ItrB1, ItrB2, ItrB3, and ItrB4

that are mutually exclusive except ItrA3 and ItrB2 which occur

together. ItrA1, ItrA2, ItrA3, ItrA4, ItrB1, and ItrB3 are associated

with QuiNAc4NAc, GalNAc, GlcNAc, Gal, FucNAc/QuiNAc, and

FucNAc, respectively (Figure 2A). Interestingly, ItrA3 and ItrB2 are

found to occur together, which can be attributed to the presence

of GlcNAc as well as Leg5Ac7Ac (or its derivatives), while the

individual occurrence of ItrA3 is associated with GlcNAc alone.

While ItrB3 is fully responsible for FucNAc, ItrB1 is associated

with FucNAc or QuiNAc. A deeper look at the A. baumannii

K-antigen gene clusters (Cahill et al., 2022) indicates that it can

be classified into seven groups based on the aforementioned

initializing transferases (Itrs), similar to that in Salmonella spp.

(Sundaresan and Rathinavelan, 2023) and Klebsiella spp. (Patro

and Rathinavelan, 2019). Since the presence or absence of an Itr

depends on the first sugar of the K-antigen, these are mutually

exclusive in general. Thus, the initial sugar would act as a valuable

index for the classification of K-antigens. Surprisingly, only one cps

locus (KL75) is found to have a rare initializing transferase, ItrB4,

which is ∼81% identical to ItrB3 sequences (https://project.iith.ac.

in/ABSD/data_abs/pim-all-Itrs-PP.txt). Furthermore, two cps loci

(KL115 and KL222) are found to have ItrB2 along with ItrA2.

Figure 2 shows the classification of K-antigens based on different

Itrs (viz., initial sugars). Notably, GalNAc is the most preferred

initial sugar with a relative percentage of 38% (Figure 2B), followed

by GlcNAc (27%), QuiNAc4NAc (16%), GlcNAc and Leg5Ac7Ac

(or Leg5Ac7Ac derivatives) (8%), QuiNac/FucNAc (5%), FucNAc

(4%), and Gal (2%). Among the 237 K-antigens of A. baumannii,

only 64 K-antigen structures are known. Table 1 presents the

published chemical representations of the 64 K-antigens of A.

baumannii, wherein the sugar monomers of the repeating unit and

their glycosidic linkages are derived using NMR (Russo et al., 2013;

Arbatsky et al., 2022) and Smith degradation (Arbatsky et al., 2022).

Exceptionally, the K19 structure was derived from the structure of

K39 through the addition of an acetyl group to K39 (Kenyon et al.,

2016a).

A detailed analysis of the sugar composition indicates that

there are 25 unique sugars found in the K-antigen main chain

apart from the initial sugars, and 19 unique sugars are seen in the

side chain (Table 2). Notably, A. baumannii K-antigen structures

are found to have derivatives of common sugars. For instance,

pseudaminic acid, legionaminic acid, and bacillosamine are the

derivatives of mannose, neuraminic acid, and glucose, respectively.

Apart from this, many substitutions are also seen, among which,

N-acetylation and O-acetylation of the sugar ring are predominant.

This is followed by acetylation (of the exocyclic atoms of the sugar),

pyruvic acid, and D-alanine substitutions. Realizing the importance

of the charge of K-antigens (alternatively, CPS) in supporting

the bacteria to escape from the host immune response (viz.,

phagocytosis (Moxon and Kroll, 1990)) and providing resistance

to antimicrobial peptides (Band and Weiss, 2015) and antibiotics

(Aska Fang, 2017), the charge of each K-antigen is explored here.

Interestingly, 32.8% of the K-antigens ofA. baumannii are neutrally

charged and others are negatively charged (Table 2). Among the

negatively charged K-antigens, 53.1%, 12.5%, and 1.6% have a

charge of −1, −2, and −3, respectively. While the negative charge

in K1, K3, K4, K15, K17, K19, K20, K21, K22, K25, K32, K35, K37,

K39, K53, K55, K74, K85, K86, K87, K91, K98, K125, and K144

is due to the presence of a carboxyl group at the C6 position, the

negative charge of K4, K20, K21, K82, and K98 is provided by the

pyruvic acid.

Creation of A. baumannii K-antigen
3D-structural repository

The structural information presented in Table 1 was utilized

to model and create the 3D structural repository of A. baumannii

K-antigen, similar to the K- and O-antigen structural repositories

of E. coli (Rojas-Macias et al., 2015; Kunduru et al., 2016) and

Klebsiella spp. (Patro et al., 2020). Here, 64 known K-antigen three-

dimensional structures were modeled, and their repository was

created in a Linux-based server (Figure 3). For the K-antigens

having more than one substitution (refer to Table 1), the model

with one of the substitutions was generated using the protocol

discussed in the Materials and Methods section and was used

as a template to model the second substitution using Pymol

(Schrodinger, 2015). The K-antigens can be accessed through

the K-antigen structure module of Acinetobacter baumannii K-

antigen three-dimensional Structure Database (ABSD): https://

project.iith.ac.in/ABSD/k_antigen.html. The module permits the

user to either visualize the K-antigens interactively using the JSmol

viewer (Robert et al., 2013) or download the coordinates. The

structure of the appropriate K-antigen can be accessed by clicking

the antigen ID, as shown in Figure 3.

Main chain and side chain topology of A.
baumannii K-antigens

There are 21 unique topologies (Figure 4A) for the 64 A.

baumannii K-antigens whose chemical formulae (Table 1) are

known. In the main chain, the sugar monomers are found to be

in the range of 2 to 6. There are 7, 29, 23, 2, and 3 K-antigens

having 2, 3, 4, 5, and 6 sugar monomers in their main chain,

respectively (Figure 4B), among which, the K-antigens having 3

and 4 monomers in the backbone are quite dominant. Most of the

repeating units have only one branch except for K3 and K27, which

have two branches (Table 1). Some K-antigens have 2 (K53), 3 (K1,

K16, K17, K19, K25, K33, K39, K49, and K91), 4 (K6, K15, K20,
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TABLE 2 The main- and side-chain sugar compositions of A. baumannii K-antigens are presented in Table 1.

The initial sugar is indicated by a box. Note that the total charge of each K-antigen is also indicated in the last column.
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FIGURE 3

A snapshot of the A. baumannii K-antigen structure repository, ABSD.

K21, K35, K82, K98, and K106), 5 (K11 and K88), and 6 (K144)

sugars in the backbone but do not have any branches (Figure 4A).

The K-antigens with branches have a maximum of four sugar units

(Figure 4C). The majority of the branches have only one sugar.

Sequence diversity analysis of the 12
proteins involved in the
Wzx/Wzy-dependent pathway

The divergence in the sugar composition and scaffold of

64 known K-antigen structures of A. baumannii (Tables 1, 2,

Figure 4) suggests that the proteins involved in their assembly

and surface transport may be exhibiting divergence as seen in

the Klebsiella spp. (Patro et al., 2020). Thus, the diversity of

the protein sequences involved in the K-antigen assembly and

transport (Figure 1) corresponding to all the 237 K-types of

A. baumannii was investigated to understand their efficacy in

distinguishing different serotypes. For this, multiple sequence

alignment (MSA) and percentage identity matrix (PIM) (https://

project.iith.ac.in/ABSD/PIM.php) of all the 12 protein sequences

were constructed using Clustal Omega (Madeira et al., 2022).

The sequences were collected from either NCBI GenBank or

Kaptive’s A. baumannii K-locus reference dataset (Wyres et al.,

2020; Cahill et al., 2022) (Supplementary Table S2). PIM indicates

that among all the Itrs (https://project.iith.ac.in/ABSD/PIM.

php, Supplementary Table S3), ItrA3 is quite diverse between

different K-types [average percentage identity (API)=87.95%

(standard deviation = 6.27)], whereas the other Itrs share a good

sequence identity among different K-types, resulting in an average

percentage identity >94%. Among different Itrs, ItrB1, ItrB3, and

ItrB4 share a good sequence identity, ItrB1 and ItrB3 have an API

of 70.3%, ItrB3 and ItrB4 have an API of 81.9%, and ItrB1 and

ItrB4 have an API of 71.3%. Following these, ItrA1, ItrA2, and

ItrA3 share a good sequence identity among themselves (API in
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FIGURE 4

(A) Schematic representation of the main (blue circles) and side (yellow circles) chain topologies of the 64 K-antigens of A. baumannii whose

chemical structures are known (Table 1). Note that ‘i’ represents the initial sugar of the respective K-antigen. Bar chart showing the number of sugar

monomers in the 64 K-antigens (B) main and (C) side chains.
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FIGURE 5

Utilization of initial glycosyl transferases (Itrs) and Wza, Wzb, Wzc, Wzx, and Wzy proteins in the K-type prediction of A. baumannii. (A) Input page of

the serotype predictor module. The input sequence can either be directly provided through its NCBI accession ID (here, NCBI ID: KC526894.2 is

taken as an example) or manually pasted in the given box, or uploaded as a FASTA format file. (B–D) are the outcomes displayed on the result page:

(B) The details of the input sequence, predicted serotype, and protein-coding regions considered for serotyping are displayed in the top part of the

result page. (C) The reliability (in percentage) of the serotype prediction from the alignment of individual protein-coding regions is represented

through a graph (see text for details). (D) The top hits corresponding to the serotype predictions from the individual proteins are summarized in

tables. Notably, the tables show the multiplicity in the serotype prediction using the individual proteins, which is overcome by the use of multiple

proteins, thus providing a single serotype.

the range of 60.3% to 74.4%). The polymerase Wzy exhibits the

lowest PIM among different K-types, which is proceeded by Wzx,

Wza, Wzb, and Wzc. The regions of diversity of all these protein

sequences were subsequently determined by generating sequence

logo results (Supplementary Figures S1–S12) obtained from

Weblogo3 (Crooks et al., 2004). The sequence logos corresponding

to 12 proteins involved in the Wzx/Wzy-dependent pathway

indicate that while ItrA1 (Supplementary Figure S1), ItrA2

(Supplementary Figure S2), and ItrA4 (Supplementary Figure S4)

are highly conserved, ItrA3 sequences are divergent at the N-

and C-termini (Supplementary Figure S3). While ItrB1 is a little

divergent at the N-terminal end (Supplementary Figure S5), ItrB2

(Supplementary Figure S6) and ItrB3 (Supplementary Figure S7)

are highly conserved. Compared to the Itrs, Wza

(Supplementary Figure S8), Wzb (Supplementary Figure S9),

and Wzc (Supplementary Figure S10) exhibit a bit more

divergence. However, Wzx (Supplementary Figure S11) and

Wzy (Supplementary Figure S12) sequence logos show that

they are the most divergent among different KL-serotypes of

A. baumannii; thus, they can be more reliable in predicting

the K-serotype. Due to their mutually exclusive nature and

lesser sequence identity (below 75%), the Itrs can readily

be used to distinguish different K-antigen groups, as shown

in Figure 2. Notably, Wzi, which anchors the K-antigen on

the outer membrane, is excluded as it lies outside the CPS

locus. Indeed, it is highly conserved among different K-types
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(Tickner et al., 2021), and thus cannot be used to distinguish

different K-types.

Quantifying the reliability of the
Wzx/Wzy-dependent pathway marker
proteins in K-typing

Since traditional serotyping techniques such as agglutination

(Traub, 1989), Smith degradation (Arbatsky et al., 2022), one-

and two-dimensional NMR (Russo et al., 2013; Arbatsky et al.,

2022), and mass spectrometry (Russo et al., 2013) are time-

consuming and laborious, in silico serotyping has been shown to

be effective in Gram-negative bacteria (Wick et al., 2018; Patro

et al., 2020; Sundaresan and Rathinavelan, 2023). It has been

shown earlier for Klebsiella spp. that the reliability score (RS)

of the individual Wzx/Wzy-dependent pathway proteins provides

quantitative information about the degree of uniqueness of these

proteins to the respective KL types (or K-types) compared to the

PIM. Thus, the individual RS (Supplementary Table S4) values for

the 13 protein sequences (Wzc, Wzy, Wza, Wzx, Wzb, ItrA4, ItrA3,

ItrA2, ItrA1, ItrB4, ItrB3, ItrB2, and ItrB1) were estimated across

237 K-types of A. baumannii, as described elsewhere (Patro et al.,

2020), with the help of an automated bash script that searches

a protein sequence of a K-antigen (for example, Wzc of K3)

against the same protein sequences of the remaining K-antigens.

In brief, when a protein sequence was identical to two different

serotypes, the RS was calculated to be 50%. Nonetheless, the RS

was calculated to be 100% if a protein sequence (for example, Wzc

of K45) was unique to a particular serotype. Finally, an average

reliability score (ARS) (last row of Supplementary Table S4) of each

protein was individually calculated by averaging the RS values of

a protein across all the K-types. Notably, BLAST (Altschul et al.,

1990; McGinnis and Madden, 2004) was employed to compare two

protein sequences, for which a sequence identity cutoff of 60%

was used. ARS was estimated to get information about the highly

reliable protein(s) among the 13 CPS proteins for the accurate K-

type prediction of A. baumannii. The ARS, which is calculated

using the RS of all the sequences belonging to 237 K-types, falls in

the following order:

Wzy>Wzx>ItrB3>Wzc>ItrA4>ItrA1>Wzb>ItrA3>Wza

>ItrB1>ItrB2>ItrA2

Notably, ItrB4 is 100% reliable as it is found only in one

K-type (KL75).

As shown above, the ARS value indicates that the degree of

reliability is the highest for Wzy and the lowest for ItrA2. Thus,

Wzy can be efficiently used in the K-serotyping of A. baumannii.

However, the ARS is only 69.25% including for Wzy, which

indicates that the use of Wzy alone may lead to multiplicity in

K-typing. Thus, as shown earlier in Klebsiella spp., serotyping

involving multiple proteins in the K-type prediction may reduce

the K-type prediction multiplicity (Patro et al., 2020). Overall,

these analyses give a clue that the 13 protein sequences of the

Wzx/Wzy-dependent pathway can be used together in the accurate

K-serotyping of A. baumannii, as in the case of Klebsiella spp.

(Patro et al., 2020). Notably, in the case of A. baumannii reference

sequences, 182 of the 237 KL-types were correctly identified

(without any multiplicity), with the help of Wzx/Wzy-dependent

pathway proteins (last column of Supplementary Table S4).

In short, the presence of initial glycosyl transferases can

be used in the first place to identify the K-antigen having

the concomitant initial sugar (Figure 2). Subsequently, the other

proteins can be used for the serotype prediction based on

their percentage identity between different proteins, as discussed

above. To elucidate this point, the “Serotype predictor” module

is enabled, which uses the initial glycosyl transferases (Itrs)

and Wza, Wzb, Wzc, Wzx, and Wzy proteins for the serotype

prediction (Figure 5). The methodology is the same as the one

described for Klebsiella spp. (Patro et al., 2020), thus not described

in detail (Supplementary Figure S13). By considering the whole

genome sequence corresponding to NCBI ID: KC526894.2 as

a test case, an example illustrating the use of these proteins

in in silico K-typing of A. baumannii is given in Figure 5.

A few more examples are given in Supplementary Figures S14–

S15. In the example shown in Supplementary Figure S14, the

Wzy of K13 is not highly specific, it has an RS value of

33%. Thus, the utilization of other proteins along with Wzy

improves serotyping accuracy. This is demonstrated by considering

NCBI Accession ID: CP050388.1, wherein the combination of

the Wzx/Wzy-dependent pathway proteins accurately predicts the

K-type (Supplementary Figure S14).

Conclusion

Here, we have presented 64 K-antigen structures of A.

baumannii which form 21 different topologies. The K-antigen

structures are diverse in terms of sugar composition and their

charges (neutral as well as negatively charged). The mutually

exclusive nature of the Itrs and their sequence diversity among

themselves facilitate the Itr-based classification of A. baumannii K-

antigens. Similarly, the variations in the K-antigen structures and

the concomitant sequence diversity of 13 K-antigen assembly and

transport proteins involved in the Wzx/Wzy-dependent pathway

indicate their ability in fast and accurate K-typing. Furthermore,

the A. baumannii K-antigen structural information provided here

would not only be useful in the phage therapy and design of

vaccines and antibiotics but also would help in understanding the

interaction of this pathogen with the host.
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