
Frontiers in Microbiology 01 frontiersin.org

Predicting environmental stressor 
levels with machine learning: a 
comparison between amplicon 
sequencing, metagenomics, and 
total RNA sequencing based on 
taxonomically assigned data
Christopher A. Hempel 1,2*, Dominik Buchner 3, Leoni Mack 4, 
Marie V. Brasseur 5, Dan Tulpan 6,7, Florian Leese 3,8 and 
Dirk Steinke 1,2*
1 Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, 2 Centre for Biodiversity 
Genomics, University of Guelph, Guelph, ON, Canada, 3 Aquatic Ecosystem Research, University of 
Duisburg-Essen, Essen, Germany, 4 Faculty of Aquatic Ecology, University of Duisburg-Essen, Essen, 
Germany, 5 Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum A. 
Koenig, Bonn, Germany, 6 School of Computer Science, University of Guelph, Guelph, ON, Canada, 
7 Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, 8 Centre for Water and 
Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany

Introduction: Microbes are increasingly (re)considered for environmental 
assessments because they are powerful indicators for the health of ecosystems. 
The complexity of microbial communities necessitates powerful novel tools to 
derive conclusions for environmental decision-makers, and machine learning is a 
promising option in that context. While amplicon sequencing is typically applied 
to assess microbial communities, metagenomics and total RNA sequencing 
(herein summarized as omics-based methods) can provide a more holistic picture 
of microbial biodiversity at sufficient sequencing depths. Despite this advantage, 
amplicon sequencing and omics-based methods have not yet been compared 
for taxonomy-based environmental assessments with machine learning.

Methods: In this study, we applied 16S and ITS-2 sequencing, metagenomics, 
and total RNA sequencing to samples from a stream mesocosm experiment 
that investigated the impacts of two aquatic stressors, insecticide and increased 
fine sediment deposition, on stream biodiversity. We processed the data using 
similarity clustering and denoising (only applicable to amplicon sequencing) as 
well as multiple taxonomic levels, data types, feature selection, and machine 
learning algorithms and evaluated the stressor prediction performance of each 
generated model for a total of 1,536 evaluated combinations of taxonomic 
datasets and data-processing methods.

Results: Sequencing and data-processing methods had a substantial impact on 
stressor prediction. While omics-based methods detected a higher diversity of taxa 
than amplicon sequencing, 16S sequencing outperformed all other sequencing 
methods in terms of stressor prediction based on the Matthews Correlation 
Coefficient. However, even the highest observed performance for 16S sequencing 
was still only moderate. Omics-based methods performed poorly overall, but 
this was likely due to insufficient sequencing depth. Data types had no impact on 
performance while feature selection significantly improved performance for omics-
based methods but not for amplicon sequencing.
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Discussion: We conclude that amplicon sequencing might be a better candidate 
for machine-learning-based environmental stressor prediction than omics-based 
methods, but the latter require further research at higher sequencing depths 
to confirm this conclusion. More sampling could improve stressor prediction 
performance, and while this was not possible in the context of our study, thousands 
of sampling sites are monitored for routine environmental assessments, providing 
an ideal framework to further refine the approach for possible implementation in 
environmental diagnostics.

KEYWORDS

metabarcoding, metatranscriptomics, freshwater, stressor prediction, bioinformatics, 
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1 Background

Globally, ecosystems are experiencing an unprecedented amount 
of human-induced environmental stress, caused by climate change, 
land use, pollution, habitat fragmentation, and the introduction of 
invasive species. As a consequence, ecosystems are deteriorating and 
biodiversity is declining faster than ever before in human history 
(Díaz et  al., 2019; WWF, 2020; Pettorelli et  al., 2021). The loss of 
biodiversity has extremely negative effects on ecosystem functions 
and, thereby, ecosystem services, which also reduces the economic 
value of ecosystems (Kubiszewski et al., 2017). As a consequence, 
environmental management to protect and restore ecosystems has 
garnered increased attention, also at the political level (Díaz 
et al., 2019).

Environmental management includes the identification of 
prevalent stressors and their impacts on ecosystem health. Microbes 
(prokaryotes and unicellular eukaryotes) are very good indicators of 
ecosystem health because they play a crucial role in ecosystems and 
are extremely sensitive to changes in environmental conditions. 
Consequently, their community composition can reveal important 
information about the health and stress levels of ecosystems, which 
can be utilized for routine biomonitoring to guide measures for the 
protection and restoration of ecosystems (Smith et  al., 2015; 
Pawlowski et al., 2016; Cordier et al., 2019; Sagova-Mareckova et al., 
2021). Microbial community composition is usually determined by 
using amplicon sequencing, which involves target PCR to amplify 
taxonomic barcode genes (amplicons), typically the 16S ribosomal 
RNA (rRNA) gene for prokaryotes, the internal transcribed spacer 2 
(ITS-2) 2 for fungi, and the 18S rRNA gene for other microbial 
eukaryotes. Although this approach can introduce taxonomic and 
abundance bias due to varying binding affinities and amplification 
efficiencies of target primers (Pinto and Raskin, 2012; Lozupone 
et al., 2013; Walker et al., 2015; Meisel et al., 2016; Laursen et al., 
2017; Stat et al., 2017), it is widely used because it is comparably 
cheap and can generate valuable and consistent information on 
community composition.

In contrast, metagenomics and metatranscriptomics are target-
PCR-free methods that are usually applied to analyze the presence and 
expression of functional genes within communities (Wooley et al., 
2010; Bashiardes et al., 2016; Almeida and De Martinis, 2019; Shakya 
et al., 2019); however, both methods also generate valuable data that 

can be used for taxonomic identification of community members as 
an alternative to amplicon sequencing.

Metagenomics targets all DNA in a sample, including 
non-functional genes, repetitive regions, and genes containing little 
taxonomic information due to insufficient variation. A vast number 
of these genes is lacking reference sequences in databases, and 
therefore, metagenomics generates large amounts of sequences that 
cannot be taxonomically annotated. At insufficient sequencing depth, 
this leads to a low biodiversity coverage that is outperformed by that 
of amplicon sequencing (Yilmaz et al., 2011; Stat et al., 2017; Tessler 
et al., 2017). However, this limitation can be overcome by increasing 
the sequencing depth, and if the depth is increased sufficiently, 
biodiversity coverage through metagenomics can outperform that of 
amplicon sequencing (Shah et al., 2010; Shakya et al., 2013; Logares 
et al., 2014; Brumfield et al., 2020).

Total RNA sequencing (total RNA-Seq; Li et  al., 2016; Li and 
Guan, 2017; Bang-Andreasen et al., 2020), also termed double-RNA 
approach (Urich et al., 2008), metatranscriptomics analysis of total 
rRNA (Turner et al., 2013), total RNA metatranscriptomics (Xue et al., 
2020), or total RNA-seq-based metatranscriptomics (Li and Guan, 
2017), refers to metatranscriptomics without an mRNA enrichment 
step. Cellular RNA consists mostly of rRNA, including 16S and 18S 
rRNA, which means that a large portion of total RNA-Seq data can 
be used for taxonomic annotations of microbes. In a previous study, 
we  showed that total RNA-Seq can identify a microbial mock 
community consisting of 10 species more accurately than 
metagenomics at almost one order of magnitude lower sequencing 
depth (Hempel et al., 2022). Therefore, total RNA-Seq combines the 
advantages of both amplicon sequencing and metagenomics, as it 
avoids targeted PCR while producing large amounts of 16S and 18S 
sequences that can be taxonomically annotated.

Both Metagenomics and metatranscriptomics are more costly 
than amplicon sequencing but they can deliver target-PCR-free 
functional and taxonomical information across the tree of life, and as 
a result, there is a growing interest in their application for ecological 
assessments (Uyaguari-Diaz et al., 2016; Leese et al., 2018; Cordier 
et al., 2019, 2021).

Another field of research increasingly considered for use in 
ecological assessments is machine learning. Machine learning 
comprises algorithms to discover structural patterns in data that 
can be used to make predictions. Learning, in that sense, means that 
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the applied algorithms change their behavior through repeated 
training so that they perform better going forward (Witten and 
Frank, 2005). Machine learning is increasingly being used in 
biological sciences, including microbial ecology and environmental 
assessments, due to its capacity to deal with the expanding scale and 
complexity of biological data (Ghannam and Techtmann, 2021; 
Greener et  al., 2022). Cordier et  al. (2019) stated that machine 
learning is the most promising approach for routine biomonitoring 
as it has the potential to be faster, more cost-efficient, and more 
accurate than current morphology-based methods, and some 
researchers believe that ecology represents one of the most relevant 
areas for machine learning because it could solve a wide and diverse 
variety of ecological problems (Crisci et al., 2012). It already has 
been applied successfully to amplicon-sequencing-based 
environmental assessments in freshwater (Smith et al., 2015; Good 
et al., 2018), marine and coastal water (Cordier et al., 2017, 2018; 
Gerhard and Gunsch, 2019; Glasl et al., 2019; Frühe et al., 2020; 
Dully et al., 2021), estuarine sediments (Lanzén et al., 2020), and 
soil (Hermans et al., 2020), overcoming both the complex biological 
challenges associated with environmental data and the statistical 
challenges associated with the interpretation of large datasets. 
However, for the prediction of ecological variables with 
taxonomically assigned metagenomic data, machine learning has 
been applied only once so far (Chang et al., 2017) and not at all 
using total RNA-Seq data. To date, High-Throughput Sequencing 
(HTS) has reached sequencing depths that allow for the application 
of omics-based approaches in environmental studies; however, it is 
unclear what scales are required to allow for machine-learning-
based environmental stressor predictions. There is a clear need for 
a comparative assessment of metagenomics, total RNA-Seq, and 
amplicon sequencing with respect to their ability to provide 
adequate taxonomic datasets for machine learning approaches.

In this study, we  compare the performance of amplicon 
sequencing, metagenomics, and total RNA-Seq to predict 
environmental stressor levels based on taxonomically assigned data 
using machine learning. We used samples obtained from an ExStream 
system (Piggott et al., 2015) consisting of stream mesocosms that were 
exposed to fine sediment and an insecticide to investigate the impact 
of these aquatic key stressors on stream biodiversity and the 
decomposition of organic matter (Mack et al., 2022). For amplicon 
sequencing, we used the two marker genes ITS-2 and 16S, both with 
an operational taxonomic unit (OTU) clustering and an exact 
sequence variant (ESV) denoising method. We evaluated the markers 
individually as well as in combination (multi-marker approach). 
Stressor prediction performance (SPP) for all datasets was based on 
different taxonomic levels (phylum, class, order, family, genus, and 
species), data types (abundance, presence–absence (P–A)), feature 
selection (with feature selection, without feature selection), and 
machine learning algorithms (k-Nearest Neighbors, Linear Support 
Vector Classification, Logistic Ridge Regression, Logistic Lasso 
Regression, Multilayer Perceptron, Random Forest, Support Vector 
Classification, and XGBoost).

2 Materials and methods

The overall study design is shown in Figure 1, and further details 
are given in the balance of this section.

2.1 Experimental setup

2.1.1 ExStream system
A detailed explanation of the ExStream system can be found in 

Mack et al. (2022). In summary, stream mesocosms were connected 
to the adjacent stream Bieber, which provided them with a constant 
water flow. The stream Bieber is part of the Rhine-Main-
Observatory,1 a Long-Term Ecological Research site in Germany 
(Haase et al., 2016; Mirtl et al., 2018). Each mesocosm was set up 
using substrate and organisms from the stream. A random subset 
of the mesocosms was exposed to either the insecticide 
chlorantraniliprole (Coragen, DuPont), increased fine sediment 
concentration, or both. Both insecticides and fine sediment are 
known key stressors of aquatic environments introduced into 
streams by agricultural runoff. The stressors were induced using a 
4×2 factorial design by adding 0.2 μg/L, 2 μg/L, and 20 μg/L (acute 
stressor phase, 4 days) or 0.02 μg/L, 0.2 μg/L, and 2 μg/L (reduced 
stressor phase, 17 days) of the insecticide and 450 mL of fine 
sediment (<2 mm) to the mesocosms. Each possible combination 
of stressor levels was replicated eight times in addition to eight 
control mesocosms that did not receive any stressor, resulting in 
64 mesocosms.

2.1.2 Assessment of microbial community 
compositions

The goal of the ExStream experiment was to evaluate the 
individual and combined effects of the applied stressors on 
biodiversity and organic matter decomposition in streams. To 
investigate organic matter decomposition, cotton strips were 
added to all mesocosms. Cotton strips are mainly made of 
cellulose, which is a major source of carbon in stream ecosystems. 
Therefore, analyzing the biofilm on the cotton strips allowed the 
analysis of the diversity of microbial communities degrading 
organic matter.

The experiment was divided into a colonization phase (days 
−21 to −1) and a stressor phase (days 0 to 21). Two cotton strips 
were added to each of the 64 mesocosms on day −17 (128 in total) 
and recovered after 28 or 35 days, respectively for more 
information on the phases and cotton strip addition and recovery 
see Mack et  al. (2022). Four cotton strips were washed away 
during the experiment, so 124 cotton strips were recovered in 
total. A 2-cm-long piece of each cotton strip was cut off and 
transferred into a ZR BashingBead Lysis Tube (0.1 & 0.5 mm) 
pre-filled with 1 mL of DNA/RNAShield (Zymo Research, 
Freiburg, Germany) using sterile laboratory gloves, forceps, and 
scissors. The samples were transferred to a laboratory, stored  
at −20°C, and then homogenized using a bead mill  
homogenizer (MM 400, Retsch, Haan, Germany) at 1,800 rpm for 
30 min. 300 μL of each lysate were processed for amplicon 
sequencing at the University of Duisburg-Essen, Germany, and 
the remainder of each lysate was shipped to the University of 
Guelph, Canada, on dry ice and processed for metagenomics and 
total RNA-Seq.

1 https://deims.org/9f9ba137-342d-4813-ae58-a60911c3abc1
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2.2 Laboratory processing

2.2.1 Laboratory processing of amplicon 
sequencing

Amplicon sequencing was carried out following the workflow 
described by Buchner et al. (2021). All subsequent processing steps 
were completed on a Biomek FXP liquid handling workstation 
(Beckman Coulter, Brea, CA, United States). Briefly, replication of 
the samples was carried out before DNA extraction by transferring 
60 μL from the bead-beating tubes to deep-well plates pre-filled 
with 133 μL of TNES buffer (50 mM Tris, 400 mM NaCl, 100 mM 
EDTA, 0.5% SDS, pH 7.5) and 6 μL of Proteinase K (10 mg/mL) 
following incubation for 3 h at 55°C for complete lysis of the 
samples. DNA was extracted using a modified version of the 
NucleoMag Tissue kit Macherey Nagel, Düren, Germany; for 
modifications see Buchner et  al. (2021). Extraction success was 
verified using a 1% agarose gel.

The PCR for the amplicon library was performed using a 
two-step PCR protocol following Zizka et al. (2019). Samples were 
amplified in a first-step PCR using the Qiagen Multiplex Plus Kit 
(Qiagen, Hilden, Germany) with a final concentration of 1x 
Multiplex Mastermix, 200 mM of each primer [515F & 806R for 
16S (Caporaso et al., 2011) and ITS3-CS1 & ITS4-CS2 for ITS-2 
(Frey et  al., 2016)], and 1 μL of DNA, and filled up to a total 
volume of 10 μL with PCR-grade water. The amplification protocol 
was: 5 min of initial denaturation, 25 cycles of 30 s denaturation at 
95°C, 90 s of annealing at 50°C for 16S and 55°C for ITS-2, and 
30 s of extension at 72°C, finished by a final elongation step of 
10 min at 68°C. For subsequent demultiplexing, each of the PCR 
plates was tagged with a unique combination of inline tags 
(Supplementary File S1).

The first-step PCR results were cleaned up with magnetic beads. 
The PCR product was mixed with clean-up buffer (2.5 M NaCl, 10 mM 
Tris, 1 mM EDTA, 20% PEG 8000, 0.05% Tween 20, 2% carboxylated 
Sera-Mag SpeedsBeads (Cytiva Life Sciences, Marlborough, MA, 
United States), pH 8) at a 0.8x ratio and incubated for 5 min, washed 
two times with wash buffer (10 mM Tris, 80% EtOH, pH 7.5) for 30 s, 

dried for 5 min at RT and finally eluted in 40 μL of elution buffer 
(10 mM Tris, pH 8.5).

During the second-step PCR, samples were amplified with a final 
concentration of 1x Multiplex Mastermix, 1x Coralload Loading Dye, 
100 mM of each primer, and 2 μL of the first-step product. Cycling 
conditions were the same as in the first-step PCR except for 61°C as 
annealing temperature and a decreased cycle number of 20. In the 
second-step PCR, each of the 96 wells was individually tagged so that 
the combination of the in-line tag from the first-step PCR and the 
index-read of the second-step PCR yielded a unique combination per 
sample. PCR success was verified using a 1% agarose gel.

PCR products were normalized to equal concentrations with 
normalization buffer (same as clean-up buffer, but with only 0.1% beads) 
following the same protocol as the clean-up after the first step but with a 
ratio of 0.7x and an elution volume of 50 μL. All normalized products 
were pooled in the final libraries in equal parts. The libraries were 
concentrated using a silica-membrane spin column (Epoch Life Science, 
Missouri City, TX, United States) by mixing 1 volume of the library with 
2 volumes of binding buffer (3 M Guanidine Hydrochloride, 90 EtOH, 
10 mM Bis-Tris, pH 6) for the binding step (1 min centrifugation, 11,000 
x g), 2 washing steps (30 s centrifugation, 11,000 x g) with wash buffer and 
a final elution (3 min incubation at RT, followed by 1 min centrifugation 
at 11,000 x g) with 100 μL elution buffer. Library concentrations were 
quantified on a Fragment Analyzer (High Sensitivity NGS Fragment 
Analysis Kit; Advanced Analytical, Ankeny, United States). The libraries 
were then sequenced using the Illumina MiSeq platform with 2 lanes for 
each library with a paired-end kit (V2, 2×250 bp for 16S and V3, 2×300 
bp for ITS) at CeGat (Tübingen, Germany).

2.2.2 Laboratory processing of metagenomics 
and total RNA-Seq

DNA and total RNA were separately extracted from samples in 
96-well plates using the NucleoMag DNA/RNA Water kit (D-MARK 
Biosciences, Toronto, Canada) that includes magnetic beads. Instead 
of using a magnetic plate to separate magnetic beads from buffers, 
we used the Magnetic Bead Extraction Replicator (V&P Scientific, San 
Diego, United States), which allows for the transfer of all magnetic 

FIGURE 1

Summary of the study design. ExStream samples were processed using omics-based methods and amplicon sequencing, and HTS data were 
processed using two clustering methods (only applicable to amplicon sequencing), six taxonomic levels, two data types, with or without feature 
selection, and eight machine learning algorithms, for a total of 1,536 evaluated combinations of sequencing and data-processing methods. KNN, 
k-Nearest Neighbors; Lasso, Logistic Lasso Regression; Ridge, Logistic Ridge Regression; LSVC, Linear Support Vector Classification; MLP, Multilayer 
Perceptron; RF, Random Forest; SVC, Support Vector Classification; XGB, XGBoost.
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beads from one lysate/buffer/elution plate to another without the need 
to remove the supernatant from individual wells.2 The RNA extraction 
protocol involved a 25-min-long rDNase incubation step to digest 
DNA. Since the 96-well plates were open during the entire extraction, 
which posed a contamination risk, we added one negative extraction 
control to each row of each plate by replacing lysate with pure water. 
All extractions were performed under a sterile hood. DNA/RNA 
concentrations of all extracts and all negative extraction controls were 
measured using a Qubit fluorometer with the dsDNA HS Assay Kit 
and the RNA HS ASSAY Kit, respectively (Thermo Fisher Scientific, 
Burlington, Canada).

DNA and RNA libraries of all samples and negative extraction 
controls were prepared for metagenomics and total RNA-Seq using 
the NEBNext Ultra II DNA Library Prep Kit for Illumina and the 
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina, 
respectively (New England Biolabs, Whitby, Canada). For RNA 
library preps, we  did not perform mRNA enrichment or rRNA 
removal and instead processed the entire RNA. The RNA library 
prep kit has a default insert size of 200 bp, and we chose an insert 
size of 150–350 bp for the DNA library preps to keep insert sizes 
approximately consistent. After library prep, we randomly selected 
8 DNA sample libraries, 3 negative DNA extraction control 
libraries, 7 RNA sample libraries, and 4 negative RNA extraction 
control libraries and sent 2.5 μL of each to the AAC Genomics 
Facility at the University of Guelph, Canada for analysis on an 
Agilent Bioanalyzer 2,100 system (Agilent Technologies, 
United States) to confirm successful library preps and check for 
contaminations in negative extraction control libraries. After 
consultation with the sequencing facility (Center for Applied 
Genomics, Hospital for Sick Children, Toronto, Canada), 
we cleaned up all DNA and RNA libraries following the DNA/RNA 
library prep kit manual to remove primer dimers and 
unincorporated primers.

We pooled 5 μL of each DNA and RNA library for sequencing, 
respectively, including negative extraction controls. We pooled equal 
volumes instead of equal concentrations because this pooling strategy 
allows for an equal relative sequencing depth per sample as opposed 
to an equal total sequencing depth. That way, the relative number of 
reads per sample mirrored the relative amount of DNA/RNA, avoiding 
an over- or underrepresentation of samples with higher or lower 
DNA/RNA amounts. Size distributions of the DNA and RNA library 
pools were assessed with a bioanalyzer by the sequencing facility, and 
the average fragment size was 386 bp for the DNA library pool and 
436 bp for the RNA library pool. Both pools were paired-end (2×100 
bp) sequenced in a 50:50 ratio on a single lane of a NovaSeq 6,000 
SP flowcell.

2.3 Bioinformatics

2.3.1 Bioinformatics of amplicon sequencing
Raw data of the sequencing runs were delivered demultiplexed by 

index reads. Further demultiplexing by inline tags was done with the 

2 For the modified protocol, see dx.doi.org/10.17504/protocols.

io.bp2l69n2dlqe/v1

Python script “demultiplexer”.3 Sequences were subsequently 
processed with APSCALE v1.4 (Buchner et al., 2022) using default 
parameters. Paired-end reads were merged using vsearch v2.21.1 
(Rognes et al., 2016). Primer sequences were trimmed with cutadapt 
v3.5 (Martin, 2011). For 16S sequencing, only sequences with a length 
of 252 ± 10 bp were retained, and for ITS-2 sequencing, only sequences 
with a length ranging from 240 to 460 bp were retained. Only 
sequences with an expected error of 1 passed quality filtering. Reads 
were dereplicated and singletons were removed. For OTU generation, 
sequence clustering was performed with a similarity threshold of 97%, 
and for ESV generation, denoising was carried out with an alpha value 
of 2 and a minimum size of 8 as implemented in vsearch. Before 
taxonomic assignment, the resulting OTU and ESV tables were 
filtered for potentially biased sequences using the LULU algorithm 
(Frøslev et al., 2017) implemented in APSCALE.

Subsequently, only OTUs and ESVs found in both replicates of the 
same sample were summed up for all samples. After this initial data 
filtering, reads still left in the negative controls were subtracted from 
OTUs or ESVs, respectively, to generate final OTU and ESV tables. 
Taxonomic assignment was performed using DADA2 with default 
parameters in combination with the database SILVA 138.1 designed 
for DADA2 (McLaren and Callahan, 2021) for 16S sequences and the 
database UNITE (Abarenkov et  al., 2021) for ITS-2 sequences, 
respectively.

2.3.2 Bioinformatics of metagenomics and total 
RNA-Seq

In an earlier study, we  investigated 672 combinations of 
bioinformatic tools to identify the best-performing combination to 
process and taxonomically annotate microbial mock community 
datasets (Hempel et al., 2022). Based on these results, we processed 
both metagenomics and total RNA-Seq data as follows: we used 
Trimmomatic v0.39 (Bolger et al., 2014) to trim the leading and 
trailing low-quality nucleotides of each read by cutting reads if the 
average quality of nucleotides in a sliding window of size 4 was 
below a PHRED score of 20. After trimming, we excluded reads 
shorter than 25 nucleotides and error-corrected reads using the 
error-correction module of the assembler SPAdes v3.14.1 
(Bankevich et al., 2012). Then we assembled the reads into scaffolds 
using MEGAHIT v1.2.9 (Li et al., 2015) with the parameter ‘presets’ 
set to ‘meta-large’ to adjust k-mer sizes for the assembly of large and 
complex metagenomes. All other parameters were set to default. 
Subsequently, we mapped reads to assembled scaffolds to determine 
the abundance of each scaffold using BWA v0.7.17 (Li and Durbin, 
2009) with default parameters. We processed mapped reads using 
the function coverage of samtools v1.10 (Li et al., 2009) to obtain 
the mean per-base coverage for each scaffold. For taxonomic 
annotation, we used the SILVA132_NR99 SSU and LSU reference 
databases (Quast et al., 2013) in combination with kraken2 v2.1.1 
(Wood et  al., 2019) using default parameters. The setup of the 
kraken2 database for SILVA required manual adaptations, which are 
described in the Supplementary material. All code utilized is 
available on GitHub.4

3 v1.1.0, https://github.com/DominikBuchner/demultiplexer

4 https://github.com/hempelc/metagenomics-vs-totalRNASeq
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2.4 Pre-processing of taxonomic data

The data were further processed in Python v3.7.9 (Van Rossum 
and Drake, 2009). The full code is available on GitHub5 and involves 
the modules Pandas v1.3.5 (Reback et al., 2021) and NumPy v1.21.3 
(Harris et  al., 2020). We  trained and evaluated machine learning 
models based on phylum, class, order, family, genus, and species to 
assess differences in Stressor prediction performance (SPP) among 
taxonomic levels. Because both metagenomics and total RNA-Seq 
datasets consisted of mean per-base coverage while amplicon 
sequencing datasets consisted of absolute read counts, we employed 
two different approaches to determine taxa abundances for each 
taxonomic level. When aggregating metagenomic and total RNA-Seq 
taxonomic datasets for each level separately, we  adjusted taxa 
abundances for sequencing depth and scaffold length. For that, 
we  selected all scaffolds assigned to each detected taxon and 
determined each taxon’s absolute abundance as follows:
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where perBcovtaxon represents the per-base coverage of a taxon, scaf 
represents the number of scaffolds assigned to a taxon, and perbcovscaf 
and lenscaf represent the per-base coverage and length of each scaffold. 
We then converted absolute abundances into relative abundances. This 
process is similar to that for abundance estimation of binned scaffolds 
(Parks et al., 2015).

When aggregating abundances based on amplicon sequencing 
data for each taxonomic level separately, we determined absolute taxa 
abundances as the cumulative read count of each detected taxon and 
converted absolute abundances into relative abundances.

For metagenomics and total RNA-Seq samples, negative 
extraction controls were subtracted from samples that were 
co-extracted with the controls. We converted relative abundances 
into absolute abundances by multiplying relative abundances by the 
number of reads per sample, summarized the absolute abundances 
of taxa among all negative extraction controls per plate, and 
subtracted the cumulative absolute abundance of each taxon 
detected within controls from the actual samples of the same plate. 
Afterwards, we  reverted absolute abundances back into 
relative abundances.

We then excluded the taxonomic entry NA from all datasets, 
which represented the relative abundance of sequences that could not 
be  taxonomically annotated, likely due to missing references in 
databases or sequencing and data-processing errors. Next, 
we  readjusted the relative abundances of all other taxa. In some 
datasets, some samples consisted only of sequences that could not 
be taxonomically annotated, meaning that they had a cumulative 
relative abundance of zero after excluding the NA entry. These 
samples were considered to have failed, and we excluded them from 

5 https://github.com/hempelc/exstream-metagenomics-totalrnaseq-ml

all datasets to ensure that all datasets contained the same samples, 
which ultimately resulted in 121 samples per dataset.

To assess differences in SPP among data types, we  evaluated 
abundance and P–A data. For P–A data, we set all relative abundances 
above 0 to 1 (0 = absent, 1 = present). For abundance data, we followed 
the appropriate steps for analyzing compositional data, as pointed out 
by Gloor et al. (2017). Therefore, we first applied simple multiplicative 
replacement to replace zeros among all relative abundances using the 
function multiplicative_replacement of the Python module scikit-bio 
v0.5.6 (The Scikit-Bio Development Team, 2020). The function 
replaces zeros with a small positive value δ, which is based on the 
number of taxa while ensuring that the compositions still add up to 1. 
Then, we applied a centered log-ratio (clr) transformation using the 
function clr of scikit-bio, which captures the relationships between 
taxa and makes the data symmetric and linearly related. Since feature 
standardization is required by some machine learning algorithms, 
we  further standardized taxa abundances using the function 
StandardScaler of the Python module scikit-learn v1.1.1 (Pedregosa 
et al., 2011).

To include a multi-marker approach using both the ITS-2 and 16S 
marker genes in the evaluations, we combined the generated 16S and 
ITS-2 datasets by concatenating them using the clustering or denoising 
method (OTUs or ESVs). This resulted in eight taxonomic datasets 
that were evaluated (ITS-2 amplicon sequencing clustered into OTUs 
(ITS-2 OTU) or denoised into ESVs (ITS-2 ESV), 16S amplicon 
sequencing clustered into OTUs (16S OTU) or denoised into ESVs 
(16S ESV), multi-marker approach clustered into OTUs (16S + ITS-2 
OTU) or denoised into ESVs (16S + ITS-2 ESV), metagenomics, and 
total RNA-Seq).

2.5 Biodiversity analysis

To analyze the biodiversity detected per taxonomic dataset, 
we  grouped detected taxa using NCBI GenBank taxonomy. 
We determined the total number of detected taxa per taxonomic 
dataset, the number of unique taxa detected within only one 
taxonomic dataset, and the number of overlapping taxa between 
taxonomic datasets at the phylum, genus, and species level. For that 
we translated all phyla, genus, and species names within 16S and 
ITS-2 datasets into NCBI taxonomy to match names across all 
datasets and utilized reference databases. Specifically, we tested each 
name for matches with names in the scientific or non-scientific NCBI 
taxonomy,6 and if a match was found, the name was translated into 
the scientific NCBI name. If no match was found, we  manually 
checked if the respective name was available on NCBI under a 
different scientific or non-scientific name, and if so, the alternative 
scientific name was used. Otherwise, the name was not available on 
NCBI and was used without translation. After translation, taxa 
containing the terms “candidatus,” “candidate,” or “[candida]” were 
removed. Then, the number of overlapping taxa between taxonomic 
datasets was determined as the number of matches between the 
respective taxa within each taxonomic dataset, and the number of 

6 NCBI taxonomy file names.dmp, available through the NCBI archive as part 

of taxdmp.zip, https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/

https://doi.org/10.3389/fmicb.2023.1217750
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://github.com/hempelc/exstream-metagenomics-totalrnaseq-ml
https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/


Hempel et al. 10.3389/fmicb.2023.1217750

Frontiers in Microbiology 07 frontiersin.org

taxa unique to one taxonomic dataset was determined by subtracting 
the number of overlapping taxa from the total number of 
detected taxa.

2.6 Machine learning

2.6.1 Data preprocessing
Taxon abundances/P–A represented independent features, 

and we defined the dependent feature as the combinations of 
applied insecticide level (none, low, medium, high) and fine 
sediment addition (normal fine sediment concentration, 
increased fine sediment concentration) for each sample, 
resulting in eight classes that were predicted by the machine 
learning algorithms. Since correlated independent features add 
noise, we removed them by applying the SULOV (Searching for 
Uncorrelated List of Variables) algorithm using the function 
FE_remove_variables_using_SULOV_method of the Python 
module featurewiz v0.1.55,7 which identifies all pairs of highly 
correlated independent features (features with a Pearson 
correlation coefficient of >0.7 or < −0.7 by default), determines 
their Mutual Information Score (MIS) to the dependent feature, 
and keeps the independent feature with the highest MIS for each 
highly correlated feature pair.

2.6.2 Test-train splitting and feature selection
Each ExStream mesocosm was sampled at two time points as part 

of the cotton strip assay, which meant that samples consisted of highly 
related paired samples, i.e., two samples of the same mesocosm. When 
splitting the data sets into train and test sets, we ensured that paired 
samples were assigned to the same training and test sets to avoid data 
leakage between the sets.

Initially, we applied a 90:10 train-test split to the datasets (109 
train samples, 12 test samples) and performed training and testing 
without repetition, but due to large discrepancies between train 
and test scores, we changed the train-test split ratio to 80:20 (97 
train samples, 24 test samples) and repeated both training and 
testing splits three times in total. During each repetition, 
we  randomly selected 12 pairs (24 samples) of highly related 
samples for the test dataset and trained and tested all models 
across all datasets with the same randomly selected 12 sample 
pairs per repetition.

For feature selection, we used Recursive Feature Elimination to 
select the 20 most important features using the function RFE from 
scikit-learn with a DecisionTreeClassifier as the estimator.

2.6.3 Model selection, training, and testing
It is generally recommended to test multiple machine learning 

algorithms (Greener et  al., 2022), which is why we  selected eight 
machine learning algorithms to predict stressor classes: k-Nearest 
Neighbors (KNN), Linear Support Vector Classification (LSVC), 
Logistic Ridge Regression (Ridge), Logistic Lasso Regression (Lasso), 
Multilayer Perceptron (MLP), Random Forest (RF), Support Vector 
Classification (SVC), and XGBoost (XGB). For thorough descriptions 

7 https://github.com/AutoViML/featurewiz

of these algorithms in a biological context see Greener et al. (2022) 
and Ghannam and Techtmann (2021).

All algorithms, except XGBoost, are available in scikit-learn. 
To run the XGBoost algorithm, we  used the Python module 
xgboost v1.6.1 (Chen and Guestrin, 2016), which is compatible 
with scikit-learn. To optimize hyperparameters while avoiding 
overfitting, we performed Bayesian hyperparameter optimization 
with 10-fold cross-validation using the function BayesSearchCV 
of the Python module scikit-optimize v0.9.0.8 The function is 
compatible with scikit-learn and builds a performance 
probability model for given hyperparameters, which is used to 
select the most promising hyperparameters through iterative 
performance evaluations. While not every possible 
hyperparameter combination is tested that way, this approach 
provides a good trade-off between optimization results and 
runtime. Model prediction performance was evaluated using the 
Matthews Correlation Coefficient (MCC), which ranges from −1 
to 1, where 1 means perfect predictions/performance, 0 means 
prediction performance as good as random guessing, and − 1 
means all predictions are wrong, and increments between −1 
and 1 can be interpreted in the same way as increments of the 
Pearson correlation coefficient. All hyperparameters tested can 
be found in the publicly available code9 and Supplementary File S2. 
The optimized hyperparameters were then used to train models 
on the entire training dataset, and model performances to 
predict classes of the testing dataset were evaluated using the 
MCC. During training on the entire dataset, learning curves 
were generated using the learning_curve function from scikit-
learn. This process was repeated three times, as described above, 
and the mean average and standard deviation (SD) of the 
training and test MCC scores across the three repetitions 
were determined.

We tested each possible combination of taxonomic datasets 
(ITS-2, 16S, 16S + ITS-2, metagenomics, and total RNA-Seq), 
clustering or denoising methods (OTU, ESV; only applicable to 
amplicon sequencing data), taxonomic levels (phylum, class, order, 
family, genus, and species), data types (abundance, P–A), feature 
selection (with feature selection, without feature selection), and 
classification algorithms (KNN, Lasso, LSVC, Ridge, MLP, RF, SVC, 
and XGB), resulting in a total of 1,536 evaluated combinations.

2.7 Statistical analysis

We quantified the impact of sequencing types, taxonomic levels, 
data types, feature selection, and machine learning algorithms on 
SPP. For that, we  converted all sequencing and data-processing 
methods into binary dummy variables and tested for significant 
correlations (p ≤ 0.05) between each sequencing and data-processing 
method and the test MCC by calculating Spearman’s rank correlation 
coefficient using the spearmanr function of the Python module SciPy 
v1.7.1 (Virtanen et al., 2020). Additionally, we performed the same test 
for each sequencing type separately.

8 https://github.com/scikit-optimize/scikit-optimize

9 https://github.com/hempelc/exstream-metagenomics-totalrnaseq-ml
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3 Results

3.1 High-throughput sequencing results

We obtained 248,707,817 paired-end reads from metagenomics 
[mean average per sample: 2 M reads, standard deviation (SD): 2.4 M 
reads], 206,096,238 from total RNA-Seq (mean average per sample: 
1.7 M reads, SD: 2.6 M reads), 21,719,985 reads from 16S sequencing 
(mean average per sample: 152 k reads, SD: 27 k reads), and 27,033,469 
reads from ITS-2 sequencing (mean average per sample: 214 k reads, 
SD: 41 k reads; Supplementary Figure S1; Bioproject number: 
PRJNA903104, SRA accession numbers: SRR22331748–
SRR22332597). The SD of the mean average number of metagenomics 
and total RNA-Seq reads per sample was very high because 
we normalized metagenomics and total RNA-Seq libraries based on 
volume during library preparation so that the relative number of reads 
per sample mirrored the relative amount of DNA/RNA. This avoided 
an over-or underrepresentation of samples with higher or lower 
amounts of DNA/RNA but also led to substantial variations in the 
number of reads per metagenomics/total RNA-Seq library 
(Supplementary Figure S1).

3.2 Biodiversity analysis

There were no taxa overlaps between ITS-2 and 16S sequencing at 
the phylum, genus, and species level (Figure 2, for exact numbers, see 
Supplementary File S3), while either method had overlapping taxa 
with both metagenomics and total RNA-Seq. Metagenomics and total 
RNA-Seq shared more taxa with each other than with ITS-2 or 16S 
sequencing. Metagenomics detected by far the most phyla (95), 
genera, (2488), and species (3,522), and the number of genera and 
species detected using metagenomics was much higher relative to that 
of other taxonomic datasets than the number of detected phyla. For 
total RNA-Seq, the number of detected phyla (76) was more than 

three times as high as that of ITS-2 (OTU: 23, ESV: 20) and 16S 
sequencing (OTU: 25, ESV: 24), the number of detected genera (903) 
was 1.3–2.9 times as high as that of ITS-2 sequencing (OTU: 678, ESV: 
491) and 16S sequencing (OTU: 315, ESV: 363), and the number of 
detected species (892) was 1.3–1.8 times as high as that of ITS-2 
sequencing (OTU: 673, ESV: 506) and much higher than that of 16S 
sequencing (OTU: 55, ESV: 114). 16S sequencing detected almost the 
same number of phyla as ITS-2 sequencing but by far the lowest 
number of genera and species among all taxonomic datasets. In terms 
of taxa unique to one taxonomic dataset, metagenomics detected by 
far more unique phyla (19), genera (1,399), and species (2660) than 
all other all other taxonomic datasets combined. Within ITS-2 and 
16S sequencing, OTU clustering and ESV denoising resulted in 
different numbers of detected taxa, specifically for ITS-2 sequencing 
at genus level (OTU: 678, ESV: 491) and for 16S sequencing on the 
species level (OTU: 55, ESV: 114). 16S sequencing detected much less 
taxa at species level than at genus level. In terms of the distribution of 
taxonomic groups, 16S sequencing recovered almost exclusively 
bacterial taxa, while ITS-2 sequencing recovered not only taxa in the 
group “plants and fungi” but also invertebrate taxa. Omics-based 
methods recovered taxa across all groups, and they detected more 
bacterial taxa than 16S sequencing at all three taxonomic levels. At 
genus and species level, bacterial taxa represented most detected taxa.

3.3 Impact of taxonomic datasets and 
data-processing methods on SPP

SPP varied substantially across tested combinations of taxonomic 
datasets, clustering or denoising methods, taxonomic levels, machine 
learning algorithms, and feature selection (Figure 3; since data types 
had no significant impact on SPP (see Figures 4, 5), only P–A-based 
SPPs are shown). MCC values ranged from below 0 (prediction SPP 
worse than random guessing) to 0.45 (moderate to good SPP). Feature 
selection overall improved SPP. ITS-2 sequencing and omics-based 

FIGURE 2

Number of total, unique, and overlapping taxa for each taxonomic dataset on the phylum, genus, and species level (chord diagrams), as well as the 
distribution of taxonomic groups within each taxonomic dataset (pie charts). In the chord diagrams, the size of the outer bars represents the total 
number of detected taxa, the size of the connections between taxonomic datasets represents the number of overlapping taxa, and the fraction of 
outer bars with no connection to other taxonomic datasets represents the number of unique taxa detected only in that taxonomic dataset.
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methods performed poorly overall, except for some combinations of 
ITS-2 sequencing with OTU clustering, whereas 16S sequencing and 
the multi-marker approach of combined 16S and ITS-2 markers 
performed better overall. The highest MCC of 0.45 was found for the 
following combination: 16S + ITS-2 sequencing, ESV denoising, genus 
level, P–A data, Lasso algorithm, with feature selection. For this 
combination, the learning curves generated during each training 
repetition indicated that the model was overfitted, meaning that more 
data, i.e., more samples would have likely further increased SPP 
(Supplementary Figure S2).

Overall, ITS-2 sequencing, metagenomics, and total RNA-Seq 
significantly negatively correlated with SPP, and 16S sequencing and 
combined 16S + ITS-2 markers significantly positively correlated with 
SPP (Figure  4). For amplicon sequencing, OTU clustering 
significantly increased SPP while ESV denoising significantly 
decreased SPP. Performance increased with increasing taxonomic 
resolution up to the order level and decreased at higher levels. Data 
types did not significantly correlate with SPP. Feature selection 

significantly increased SPP. SPPs varied between machine learning 
algorithms, with XGB performing by far the worst and Lasso and 
Ridge, which are both based on logistic regression, performing the 
best, followed by MLP.

The impact of data-processing methods on SPP varied between 
individual taxonomic datasets (Figure 5). For ITS-2 ESV, the species 
level was significantly positively correlated with SPP, which contrasted 
with all other taxonomic datasets. For metagenomics, no taxonomic 
level significantly correlated with SPP. Data types did not significantly 
correlate with SPP in any taxonomic dataset. Feature selection had the 
strongest impact on metagenomics and no significant impact on 16S 
OTU/ESV and 16S + ITS-2 OTU. Across all taxonomic datasets, XGB 
performed poorly. Lasso and Ridge performed significantly well for 
all taxonomic datasets except metagenomics, total RNA-Seq, and 
ITS-2 ESV. Overall, the impact of data-processing methods was 
similar between 16S OTU/ESV, 16S + ITS-2 OTU/ESV, and ITS-2 
OTU and differed between metagenomics, total RNA-Seq, and 
ITS-2 ESV.

FIGURE 3

MCC as a proxy for SPP across all combinations of sequencing and data-processing methods tested. Since data types had no significant impact on SPP 
(see Figures 4, 5), only P–A-based SPPs are shown.

FIGURE 4

Correlation between MCC as a proxy for SPP and sequencing and data-processing methods.
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4 Discussion

4.1 Biodiversity analysis

The number of total, unique, and overlapping taxa varied 
substantially between taxonomic datasets. ITS-2 and 16S sequencing 
had no taxa overlap, confirming that both markers were group-
specific; however, while 16S sequencing was almost exclusively specific 
to bacteria, ITS-2 sequencing detected not only taxa belonging to the 
NCBI division “plants and fungi” but also invertebrate taxa, indicating 
that the applied ITS-2 primers were not specific to fungi. 
Metagenomics and total RNA-Seq had overlapping taxa with ITS-2 
and 16S sequencing but also detected a high number of taxa that the 
latter did not detect, and both methods detected bacterial, invertebrate, 
plant and fungal taxa, confirming that omics-based methods can 
recover groups across the tree of life, which is considered a major 
advantage over amplicon sequencing (Shakya et al., 2013; Brumfield 
et al., 2020; Obiol et al., 2020). Many taxa found with total RNA-Seq 
were also found with metagenomics, but the latter also found an 
extremely high number of unique taxa. However, at genus and species 
level, ITS-2 sequencing detected a high number of unique taxa as well. 
These taxa were not recovered by omics-based methods, potentially 
because we  only utilized SSU and LSU references for taxonomic 
annotation of omics-based sequences, or because ITS-2 sequencing 
has a higher taxonomic resolution within fungi than omics-based 
methods at our utilized sequencing depth. In contrast, omics-based 
methods found much more bacterial species, genera, and even phyla 
than 16S sequencing. While metagenomics can identify bacterial taxa 
at the species or even strain level given sufficient sequencing depth, 
16S sequencing is often limited to bacterial genus level identifications 
(Knight et  al., 2018), which could explain why 16S sequencing 
detected fewer bacterial species than genera and fewer bacterial 
species than omics-based methods. However, the fact that omics-
based methods also detected much more bacterial taxa at genus and 
even phylum level shows that either the taxonomic resolution of 
omics-based methods outperformed that of 16S sequencing for 
bacteria or that these methods detected a high number of 

false-positive bacterial taxa. There is no clear consensus in the 
literature as to which of those methods detect more taxa, with some 
studies showing that amplicon sequencing detects more taxa than 
omics-based methods (Stat et al., 2017; Tessler et al., 2017), while 
others show that both methods detect equal amounts of taxa (Chan 
et  al., 2015; Obiol et  al., 2020) or that omics-based methods 
outperform amplicon sequencing in terms of biodiversity coverage 
(Shakya et al., 2013; Laudadio et al., 2018; Yan et al., 2018; Brumfield 
et  al., 2020). Biodiversity coverage also depends on how well an 
environment is represented in reference databases, and for less-
studied environments that are poorly represented in reference 
databases, it is possible that the majority of omics-based sequences 
cannot be taxonomically annotated, resulting in low overall taxonomic 
resolution (Stat et al., 2017). Our results support both hypotheses: (1) 
omics-based methods detect more taxa overall, and (2) amplicon 
sequencing detects more taxa within target groups, at least for fungi, 
which aligns with the advantages and disadvantages of either 
approach. In theory, all taxa detected with amplicon sequencing 
should also have been detected with omics-based methods, but our 
results indicate that sequencing depth for omics-based methods must 
be increased substantially to be able to detect the same taxa. Tools and 
databases that incorporate references from more taxonomic markers 
to identify omics-based sequences should also be further explored. 
However, given continuous technological advancements in HTS 
capacities, sufficient sequencing depths should become more 
affordable, and in combination with the steady growth of reference 
databases, we expect omics-based methods to unilaterally detect more 
taxa than amplicon sequencing at equal or higher taxonomic 
resolution in the future.

4.2 Impact of sequencing methods on SPP

SPP varied substantially among taxonomic datasets. 16S 
sequencing was the only standalone method positively correlated with 
SPP, and combining 16S with ITS-2 sequencing data slightly improved 
SPP. We  expected omics-based methods to outperform amplicon 

FIGURE 5

Correlation between MCC as a proxy for SPP and data-processing methods for individual taxonomic datasets.
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sequencing because the former are not group-specific and can cover 
biodiversity across the tree of life, providing a more complete picture 
of microbial communities; however, the opposite was the case, 
indicating that while omics-based methods did detect more taxa, they 
also missed crucial taxa, detected taxa without correlation to stressors, 
and/or generated more noise, which decreased SPP. This was further 
supported by the fact that the SPP of metagenomics, which detected 
the highest number of taxa, improved substantially under feature 
selection, i.e., the exclusion of all but the 20 most relevant taxa for 
model performance. However, even with feature selection, 
metagenomics still showed poor overall SPP, indicating that the 
feature-selected taxa did not include crucial taxa, did not correlate 
with stressors, or were poorly represented. This could be a result of 
insufficient sequencing depth, possibly causing insufficient recovery 
of taxa, or of the utilized reference database (SILVA), which only 
contains SSU and LSU sequences and no other commonly used 
markers or whole genome sequences, decreasing the likelihood of 
finding a taxonomic match among omics-based sequences.

Typical metagenomics experiments aim to generate between 1 and 
10 Gb of metagenomic data per sample (Quince et al., 2017) while 
we generated on average 0.2 Gb metagenomic data per sample, which 
is one to two magnitudes lower. Increasing the sequencing depth of 
omics-based methods to ensure that taxa with high bioindication 
potential are sufficiently represented might increase SPP but is 
currently also related to substantially higher costs. In previous studies, 
we  showed that total RNA-Seq outperformed metagenomics in 
identifying a microbial community and reconstructing SSU rRNA 
sequences (Hempel et al., 2022, 2023) at lower sequencing depth and, 
therefore, costs, likely due to higher SSU rRNA sequence yield when 
using total RNA-Seq. Therefore, for the present study, we expected 
that total RNA-Seq would have a higher SPP than metagenomics at 
comparably low sequencing depth (on average 0.17 Gb total RNA-Seq 
data per sample). However, total RNA-Seq performed even worse, 
indicating that even the sequencing depth of total RNA-Seq was 
too low.

The poor performance of metagenomics could also be related to 
the fact that only SSU and LSU reference sequences were used for 
taxonomic annotation instead of all available markers or whole 
genome sequences to utilize all available metagenomic information. 
In the present study, we compared metagenomics and total RNA-Seq 
explicitly due to the aforementioned advantages of total RNA-Seq in 
regard to SSU and LSU rRNA coverage. Therefore, testing databases 
and tools that incorporate more markers or whole genome sequences 
for taxonomic annotation, such as MetaPhlAn (Blanco-Míguez et al., 
2023) or the NCBI Genbank database, was out of scope for this study; 
however, due to the poor performance of both omics-based methods, 
these options should be further explored in similar future studies.

Almost all studies that utilize machine learning for taxonomically 
assigned HTS data in an ecological context involve amplicon 
sequencing (Smith et al., 2015; Cordier et al., 2017, 2018; Gerhard and 
Gunsch, 2019; Frühe et al., 2020; Hermans et al., 2020; Dully et al., 
2021), and to our knowledge, there is only one study that involves 
metagenomics in that context (Chang et  al., 2017) and none that 
compare amplicon sequencing with omics-based methods. However, 
in a medical context, Marcos-Zambrano et  al. (2021) provide a 
thorough overview of human microbiome studies that utilize machine 
learning for HTS data. While they list seven studies that applied 
machine learning to both amplicon sequencing and metagenomics 

data, only one of them compared the performance of both sequencing 
methods based on community composition (Douglas et al., 2018), 
showing that amplicon sequencing outperformed metagenomics in 
classifying patients and the state of Crohn’s disease while 
metagenomics outperformed amplicon sequencing in classifying 
treatment response. These results further demonstrate that SPP is 
dependent on the environmental variables investigated. Multiple other 
medical studies utilizing machine learning for disease predictions 
based on metagenomics community compositions show good SPP for 
predicting colorectal cancer, inflammatory bowel disease, diabetes, 
rheumatoid arthritis, and liver cirrhosis (Hacilar et al., 2018; Wu et al., 
2018; Ai et  al., 2019). These studies clearly show the potential of 
omics-based methods for medical applications, and further omics-
based ecological research with sufficient sequencing depth is required 
to show if the methods hold the same potential for environmental 
stressor predictions.

4.3 Impact of data-processing methods on 
SPP

Data-processing methods had a substantial impact on SPP, and 
based on the utilized methods, SPP could range from low to high 
within one taxonomic dataset.

4.3.1 Impact of clustering and denoising methods 
on SPP

For amplicon sequencing data, OTU clustering significantly 
improved SPP while ESV denoising significantly decreased SPP. This 
observation is in contrast to the emerging recommendation to denoise 
amplicon sequences into ESVs (Callahan et al., 2017; Knight et al., 
2018). Studies comparing OTU clustering and ESV denoising 
approaches did not yet reach a consensus, showing that either both 
approaches lead to similar results (Glassman and Martiny, 2018; Vera-
Gargallo et al., 2019; Kang et al., 2021), ESV denoising outperforms 
OTU clustering (Caruso et al., 2019; Tapolczai et al., 2019; Joos et al., 
2020), or vice versa (Roy et al., 2019; Tedersoo et al., 2022). Our results 
support the latter, although more similar studies are required to 
determine if clustering or denoising is more appropriate for machine-
learning-based environmental predictions using 
microbial communities.

4.3.2 Impact of taxonomic levels on SPP
In general, a higher taxonomic resolution provides a better picture 

of microbial communities, but our results show that the species level 
correlated worse with SPP than genus, family, order, and even class 
levels. For ITS-2 sequencing and omics-based methods, the high 
number of detected taxa at the species level might have added more 
noise than value to the data. This is indicated by the significantly 
positive impact of feature selection on SPP, i.e., the limitation of the 
number of included taxa. However, for 16S sequencing, feature 
selection had no impact on SPP while the species level still negatively 
correlated with SPP. This result may be  related to the number of 
sequences that could not be assigned to the species level and were 
consequently dropped. The lower the taxonomic level considered, the 
harder it is to annotate taxonomy due to the lack of reference 
sequences in databases, and the more sequences are dropped from the 
downstream analysis. In microbiome amplicon sequencing studies, 
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the taxonomic resolution is usually limited to the genus level due to 
the difficulty in designing primers that resolve microbial communities 
at the species level (Knight et al., 2018). Metagenomics allows for 
taxonomic resolutions at the species level or even strain level, but this 
requires sufficient sequencing depth (Knight et al., 2018). Dropping 
sequences from the analysis is equivalent to a loss of information, 
which could have decreased SPP at the species level. It is also possible 
that correlations between taxa and environmental variables are higher 
at lower taxonomic levels because lower taxonomic groups can 
be overall ecologically coherent, i.e., share similar physiologies, while 
higher taxonomic groups can be ecologically incoherent and have very 
different physiologies (Philippot et al., 2010; Choe et al., 2021; Auladell 
et al., 2022). Once reference databases have been extensively expanded 
and most sequences can be taxonomically annotated, it will be possible 
to determine if the lack of reference sequences or ecological 
incoherency of species explains lower SPP at the species level.

4.3.3 Impact of data types on SPP
We were surprised that the data types (abundance/P–A) did not 

have an impact on SPP, given that many studies focus on methods to 
improve abundance estimates from HTS data (Dillies et al., 2013; 
Gloor et al., 2017; Weiss et al., 2017; Pereira et al., 2018). The difference 
in abundance and P–A data lies in the weight of the taxa; in P–A data, 
abundant and rare taxa are weighted equally, making the data more 
sensitive to noise but also to subtle differences in community 
composition. Using simulated data, Koh et al. (2019) demonstrated 
that P–A data is more powerful when taxa associated with an 
environmental variable are rare while abundance data is more 
powerful when those taxa are abundant. However, a large-scale 
morphological study on benthic invertebrates showed that ecological 
status classifications based on abundance and P–A data showed only 
minor variations (Buchner et  al., 2019). In a microbial context, 
multiple HTS studies showed similar correlations of both abundance 
and P–A data with environmental variables (Muletz Wolz et al., 2018; 
Knowles et al., 2019; Farinella et al., 2022), while some studies showed 
that correlations differed between data types (Kask et  al., 2020; 
Tavalire et al., 2021). These results indicate that the impact of data 
types might depend on the studied environmental variables, but if 
further research shows that both data types have similar predictive 
power for environmental assessments, as our results suggest, then P–A 
data could be used exclusively in future environmental assessment 
studies. This would avoid the rather complex and partially disagreeing 
statistical methods required when working with compositional data, 
i.e., HTS abundance data (Dillies et al., 2013; Gloor et al., 2017; Weiss 
et al., 2017; Pereira et al., 2018). Furthermore, if abundance and P–A 
data generate similar results, then the often-stated advantage of 
metagenomics to generate abundance data free from target PCR bias 
(Knight et  al., 2018; Khachatryan et  al., 2020) would become 
irrelevant, which would decrease the value of omics-based approaches 
in comparison to amplicon sequencing.

4.3.4 Impact of feature selection on SPP
Feature selection can be applied to microbial data to remove 

noninformative, noisy, or redundant features (Ghannam and 
Techtmann, 2021). This is generally recommended because the high 
number of observed features can increase the risk of overfitting, 
which is described as the “curse of dimensionality” (Oudah and 

Henschel, 2018). However, feature selection goes against the 
proposed idea that a more holistic picture of environmental 
microbial communities is beneficial for predicting environmental 
variables, as it reduces the number of taxa included in prediction 
models. Our results suggest that feature selection improves SPP 
overall and especially for metagenomics, while the SPP of 16S 
sequencing was not impacted by feature selection. This indicates 
that the increased biodiversity coverage of omics-based methods 
might in fact not be beneficial for machine learning predictions and 
that datasets covering a lower number of taxa, as generated by 
amplicon sequencing, might result in more accurate and precise 
predictions. It should be  noted, though, that ITS-2 sequencing 
detected approximately as many species as total RNA-Seq, and 
feature selection did increase the SPP of ITS-2 sequencing, showing 
that amplicon sequencing can also be  significantly impacted by 
feature selection. Furthermore, the sequencing depth of 
metagenomics and total RNA-Seq in our study was very low, which 
could have influenced the impact of feature selection. If similar 
studies with a sufficient sequencing depth come to the same 
conclusion that omics-based methods in fact detect too many taxa 
for accurate and precise environmental assessments and require 
feature selection, then this would strongly tip the balance in favor 
of amplicon sequencing.

4.3.5 Impact of machine learning algorithms on 
SPP

Machine learning algorithms had a substantial impact on SPP, and 
even when applying two different algorithms to the same data set, the 
resulting MCC could range from 0.38 to −0.05. This illustrates the 
importance of testing multiple machine learning algorithms, which is 
recommended in general (Greener et  al., 2022). One of the most 
commonly applied machine learning classification algorithms for HTS 
data is RF (Smith et al., 2015; Frühe et al., 2020; Hermans et al., 2020; 
Lanzén et al., 2020; Dully et al., 2021; Ghannam and Techtmann, 2021; 
Marcos-Zambrano et  al., 2021), which reveals which feature 
contributed most to a prediction. Other popular algorithms are XGB, 
Support Vector Machines (which include SVC and LSVC), Logistic 
Regression, and KNN (Ghannam and Techtmann, 2021; Marcos-
Zambrano et al., 2021; Greener et al., 2022). However, among those 
algorithms, RF and (L)SVC did not significantly correlate with SPP in 
our study, while XGB and KNN significantly negatively correlated with 
SPP and only logistic regression, specifically Lasso and Ridge, 
significantly positively correlated with SPP. Linear algorithms have the 
lowest flexibility among all popular machine learning algorithms, since 
they assume only linear relationships, and while other algorithms can 
assume non-linear relationships, which increases their flexibility and 
is often considered beneficial for the analysis of large and complex data, 
this was not the case for our study. In contrast, MLP, which represents 
a simple neural network (NN) with the highest flexibility among all 
algorithms tested in our study, performed overall the best after Lasso 
and Ridge and specifically the best for omics-based methods that 
generated the largest datasets. NNs are currently among the most 
powerful machine learning algorithms for the analysis of extremely 
large data, and their impact is so significant that an entirely new field 
of research emerged around NNs, called deep learning (Greener et al., 
2022). To unfold their potential, NNs require large amounts of samples 
that usually go beyond the number of samples generated in a single 
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biological study. However, thousands of sampling sites are monitored 
for routine environmental assessments, and once the broad application 
of omics-based methods becomes more affordable, it will be interesting 
to see if NNs are required for good SPP based on omics data or if less 
complex machine learning algorithms will be  sufficient or even 
more appropriate.

Overall, our study shows that data-processing methods should 
be chosen carefully since they can have a high impact on SPP and that 
methods resulting in the single best SPP are not necessarily the most 
appropriate overall. Therefore, we  conclude that it is advisable to 
explore multiple sequencing and, in particular, data-processing 
methods to maximize prediction performance.

4.4 Perspectives for ecological assessments

The highest MCC, i.e., the best SPP observed in our study was 0.45, 
indicating moderate to good performance. This is promising, but 
stressor predictions must be more accurate and precise to reach the 
standard for applied ecological assessments. However, while the 
stressors tested in our study (insecticide and increased fine sediment 
deposition) have direct negative effects on typical indicator organisms 
(e.g., benthic macroinvertebrates), little is known about their effects on 
microbial communities. Since many microbes are a good indicator of 
ecosystem health and respond sensitively to stressors, we expected a 
shift of the microbial communities under exposure to insecticide and 
increased fine sediment deposition, at least due to indirect top-down 
effects caused by the reduced abundance of benthic macroinvertebrates 
that typically graze on cotton strips. But it is also possible that direct or 
indirect effects of the stressors on microbes were too low to cause a 
sufficient shift in microbial communities for taxonomy-based stressor 
predictions or even that increased fine sediment deposition was 
beneficial for microbial communities because it provided additional 
surface habitat for microbes or stimulated organic matter 
decomposition through physical abrasion of the cotton strips. 
Therefore, our observed insufficient SPP could also be a consequence 
of stressor choice rather than limitations of sequencing depth or 
machine learning, especially since other studies show good 
performance of machine learning models for environmental 
assessments based on amplicon sequencing (Cordier et al., 2017, 2018; 
Gerhard and Gunsch, 2019; Frühe et al., 2020; Dully et al., 2021).

Smith et al. (2015) showed that the performance of prediction 
models can highly vary based on the predicted environmental 
variables (including stressor variables). When they attempted to 
predict 38 geochemical groundwater variables based on 16S 
sequencing data, the predicted and actual values of 26 variables 
significantly correlated with each other while those of 12 variables did 
not. This was further supported by Hermans et  al. (2020), who 
predicted seven soil variables based on 16S sequencing data, and the 
correlations between predicted and actual values ranged from weak to 
strong and were further dependent on the land use type of the 
investigated samples. This raises the need for more exploratory 
research using different stressors until machine learning can 
be  broadly applied to ecological assessments that involve 
many stressors.

Nevertheless, the learning curves generated for our best model 
indicate that more samples likely would have increased SPP. This 

result is promising because it shows that further sampling likely 
would have revealed subtle yet distinctive community shifts that 
would have allowed for better predictions without requiring further 
knowledge about the direct or indirect effects of the stressors on 
microbes, which further highlights the potential of machine learning 
for HTS-based environmental assessments given sufficient 
sampling size.

We have only investigated the taxonomic information generated 
by metagenomics and total RNA-Seq, but both methods also generate 
information on functional diversity (metagenomics) and differential 
gene expression (total RNA-Seq). This information can also 
be  integrated, which is why omics-based methods are gaining 
increased attention for environmental assessments (Uyaguari-Diaz 
et al., 2016; Leese et al., 2018; Cordier et al., 2019, 2021), and it remains 
to be  tested to what extent SPP can be  increased by integrating 
taxonomical and functional information.

4.5 Conclusion

We demonstrate that sequencing and data-processing methods 
have a substantial impact on environmental stressor prediction 
when applying machine learning to taxonomically assigned HTS 
data. Omics-based methods detected much more taxa than 
amplicon sequencing, and while this is considered an advantage, 
amplicon sequencing, specifically 16S sequencing, outperformed 
all other sequencing methods in terms of stressor prediction 
performance (SPP). However, the best observed SPP for 16S 
sequencing was only moderate to good, meaning that further 
improvements are necessary to meet the required standard for 
applied ecological assessments. Nevertheless, learning curves 
indicated that more samples would likely have increased SPP, 
demonstrating the potential for further research. Omics-based 
methods performed poorly, possibly due to insufficient 
sequencing depth or a too shallow taxonomic resolution of crucial 
taxa, but given that other studies demonstrated the potential of 
omics-based methods in combination with machine learning, 
further omics-based ecological research is required to show if this 
approach holds potential for environmental stressor predictions. 
Data types had no impact on SPP while feature selection 
significantly improved SPP for omics-based methods but not for 
amplicon sequencing, and if similar studies confirm these results, 
then this would strongly favor the application of amplicon 
sequencing over omics-based methods for environmental 
assessments. However, we  only investigated taxonomic 
information, but omics-based methods also generate functional 
information, and it remains to be tested whether the integration 
of taxonomic and functional information can further improve 
omics-based environmental assessments.
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