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Objective: To investigate the relationship between gut microbiota and the fecal

metabolites of hypoxic environments in mice.

Methods: High-fat diet-induced obese mice (n = 20) and normal diet-fed mice

(n = 20) were randomly divided into four groups: high altitude obese group

(HOB), high altitude normal weight group (HN), low altitude obese group LOB

(LOB), and low altitude normal weight group (LN). Fecal samples from each group

were 16S rRNA gene sequenced, and five samples from each of the four groups

above were selected for non-targeted fecal metabolomics analysis using liquid

chromatography-mass spectrometry. The relationship between gut microbiota

and fecal metabolites was analyzed using SIMCA 14.1, MetaboAnalyst 5.0 and

R 4.1.11.

Results: (A) Body weight was significantly lower in the hypoxic obesity group

than in the normoxic obesity group. (B) Di�erences in α-diversity and β-diversity

were found in the fecal gut microbiota of mice of di�erent body weights and

altitude, and the diversity of gut microbiota was higher in the normal group

than in the obese group; the results of the comparison between the two groups

showed that Faecalibaculum, Romboutsia, Lactobacillus, and A2 were associated

with obesity; Romboutsia was associated with hypoxia. (C) The metabolic profiles

of fecal metabolites di�ered between groups: gut microbiota were associated

with nucleotide and amino acid metabolism in the same body groups, while gut

microbiota were associated with lipid and amino acid metabolism in the same

oxygen concentration groups.

Conclusion: (a) Gut microbiota diversity was reduced in obese groups.

Romboutsia was the dominantmicrobiota in the hypoxia group. (b) Gutmicrobiota

were associated with nucleotide and amino acid metabolism in the same body

weight groups, while they were associated with lipid and amino acid metabolism

in the same altitude groups.
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Introduction

Recently, obesity has become a major public health issue of worldwide concern (Nam

et al., 2015). Obesity is associated with several metabolic diseases, such as type 2 diabetes,

cardiovascular diseases, metabolic syndrome, and nonalcoholic fatty liver disease, which

threaten both physical and mental health (Xie et al., 2010; Ding et al., 2015; Pérez-Pérez

et al., 2017). The etiology and mechanisms of obesity are extremely complex, involving

interactions between genetic and environmental factors. Among the nongenetic factors
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associated with obesity, intestinal flora composition has been

recognized as a regulator of obesity, and a correlation between

changes in the intestinal flora composition and body weight has

been observed in a number of studies conducted in animal models

of obesity (Ley et al., 2006; Jumpertz et al., 2011).

The dynamic balance of the gut microbiota is one of the most

important indicators for maintaining human health, and it has

been proposed that the composition and metabolic functions of the

gut microbiota may influence the development of obesity (Torres-

Fuentes et al., 2017; Abenavoli et al., 2019; Aron-Wisnewsky et al.,

2020). The gut microbiota has been recognized as an important

factor in the development of metabolic diseases such as obesity,

and is considered an endocrine organ involved in the maintenance

of energy homeostasis and host immunity (Gomes et al., 2018).

The hypoxic environment is associated with changes in the host

gut microbiota and the production of many metabolites that affect

normal physiological levels in the host (Pral Laís et al., 2021).

A study of gut microbial changes in mice exposed to different

concentrations of oxygen found that the diversity of the gut flora

was altered in mice exposed to hypoxia and that the metabolism

of the mice was altered (Zhang et al., 2018). Zhang et al. (2018)

used mice as an animal model to analyze the fecal microbiota of

mice fed for 30 days at different altitudes with different oxygen

levels, and studied the influence of high altitude and low oxygen

environments on the gut microbiota, the composition and flora of

the gut microbiota of mice fed at different altitudes β Significant

differences in diversity occurred. In a study of dynamic changes

in the gut microbiota of rats exposed to hypoxia (50 KPa, 380

mmHg), metagenomic sequencing was performed on faces from

SD rats entering the hypoxic chamber (8 time points) and exiting

the hypoxic chamber (6 time points) at 14 time points. The results

showed α- diversity changes within the first 5 days of entering

or leaving the hypoxic chamber, while β-diversity analysis showed

that the structure of the gut microbiota was clearly separated at

14 time points. After entering the hyperbaric oxygen chamber, the

relative abundance of bacteria decreased. The most abundant gut

microbiota at the genus level was Prevotella (Han et al., 2022).

Therefore, we believe that there is a strong correlation between

individual location and differences in gut microbiota.

Metabolomics, as an emerging research tool and method

in the post genomic era, is one of the most used phenotypic

research methods and has become an indispensable research tool

in science (Nicholson et al., 1999; Schoeman et al., 2016). It

reflects changes at the most terminal level of various biochemical

processes in the human body, such as various vital activities and

disturbances of metabolic homeostasis caused by disease and drug

stimulation, and is also influenced by factors such as the living

environment and lifestyle, such as differences in dietary habits, air

quality, and frequency and intensity of physical activity (Wishart

et al., 2007, 2018). Fecal metabolites may reflect the status of the

gut microbiota and the relationship between the symbiotic flora

and the host. The combination of fecal metabolomics and 16S

rRNA gene sequencing can help explain the close relationship

between the gut microbiota and the host (Zhou et al., 2020).

Researchers found a comprehensive landscape of gut microbiota

and metabolite profiles in patients with SCI, providing evidence

that their interaction plays a role in the pathogenesis of SCI,

and findings suggest that uridine, hypoxanthine, PC(18:2/0:0) and

kojic acid may be important therapeutic targets for the treatment

of this condition (Kong et al., 2023). In a study of the effects

of semaglutide on skeletal muscle and its metabolomics, it was

found to significantly reduce body weight and intramuscular fat

accumulation in obese mice, possibly by altering the metabolism

of muscle lipids and organic acids (Ren et al., 2022). In this study,

Akkermansia abundance was found to be positively correlated with

levels of secondary bile acids, and secondary bile acids restore and

rebuild a healthy microbiome as a means to intervene in aging

(Bárcena et al., 2019). Untargeted metabolomics and 16S rRNA

gene sequencing revealed that Lachnoclostridium, Fusobacterium,

Coprococcus_2, and Tyzzerela are correlated with arachidonic

acid, taurocholic acid, and DHEA sulfate, which can be used as

characteristic metabolites for obese patients (Zhou et al., 2020).

Metabolic association analysis of gut microbiota could be used to

find therapeutic targets for various diseases.

So, in this study, we used a high-fat diet to construct an obese

mouse model through hypoxia intervention, combined with 16S

rRNA gene sequencing technology and a non-targeted targeted

metabolomics approach to reveal the effect of hypoxia on flora

and metabolic changes, and further reveal its mechanism on the

occurrence of obesity.

Materials and methods

Ethics statement

Animal care and experimental treatments were approved by the

Medical Science Research Ethics Committee of Qinghai University

(No. 2021-06, approved 21 June 2021).

Animals and experimental design

A total of 64 male C57BL/6 mice, aged 5 weeks and weighing

16–17 g, were purchased from Hunan Slake Jingda Experimental

Animal Co., Ltd. Mice were raised in an environment with a

temperature of 18–23◦C, and provided with sufficient food and

water. After 1 week of adaptive feeding, the animals were randomly

divided into a normal control group (NC, n= 24) and high-fat diet

group (HFD, n = 40). HFD groups were fed a high-fat diet, while

the NC group were fed with a normal diet. The feed source came

from D12492, Beijing Keao Xieli Feed Co., Ltd. The feed inclued

Casein, L-cystine, Corn Starch, Maltodextrin 10, Sucrose, Celluse,

Soybean Oil, Lard, Mineral Mix S10026∗, Dicalcium phosphate,

Calcium Carbonate, Potassium Citrate (1 H2O), Vitamin Mix,

V10001, Choline Bitartrate, and FD&CBlue Dye # 1. The NC group

was fed a standard diet (3.18 kcal/g, 4.0 g% fat, 67.3% carbohydrate,

19.1% protein). The HFD was fed a high-fat diet (5.24 kcal/g, 34.9%

fat, 26.3% carbohydrate, 26.2% protein). After 8 weeks (13 weeks

of age), the mice were fasted for 12 h and weighed, and the weight

of the HFD group exceeded the average weight of the NC group by

10% as the criterion for judging the successful modeling of obese

mice. After successful modeling, 20 male C57BL/6J obese mice

and 20 normal feed mice were randomly divided into four groups:

high altitude obese group (HOB), high altitude normal weight

group (HN), low altitude obese group LOB (LOB), and low altitude
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TABLE 1 Changes in body weight of obese mice (g) (x ± s).

Time NC (n = 24) HFD (n = 40) Gain weight t P

Week 0 16.07± 0.64 16.33± 0.64 0.26± 1.24 0.872 0.393

Week 1 18.06± 0.83 19.72± 0.89 1.66± 1.78 4.727 0.000

Week 2 19.68± 1.14 21.42± 0.86 1.75± 1.01 4.250 0.000

Week 3 20.79± 1.37 22.78± 1.07 1.99± 1.05 3.951 0.001

Week 4 21.46± 1.27 23.43± 1.04 1.97± 1.13 4.144 0.000

Week 5 22.57± 1.42 24.43± 1.02 1.86± 1.16 3.673 0.001

Week 6 23.46± 1.48 24.94± 1.09 1.48± 1.01 2.791 0.011

Week 7 22.12± 1.60 25.59± 1.17 3.47± 0.94 6.055 0.000

Week 8 21.64± 1.87 26.70± 1.48 5.06± 1.41 7.333 0.000

TABLE 2 Body weight changes of low hypoxia mice in four groups(g) (x ± s).

Time 2,261 m t P 5,000 m t P

LN (n = 10) LOB (n = 10) HN (n = 10) HOB (n = 10)

Week 1 22.66± 0.66 28.53± 1.87 7.252 0.000 2.94± 0.29 26.16± 1.27∗ 4.072 0.000

Week 2 22.73± 0.91 28.46± 1.72 7.204 0.000 22.13± 1.86 26.12± 1.16∗ 5.756 0.000

Week 3 23.13± 0.96 28.92± 1.60 7.624 0.000 22.65± 1.92 25.60± 1.50∗ 2.531 0.021

Week 4 23.08± 0.87 28.96± 1.78 7.265 0.000 22.79± 1.69 26.23± 1.40∗ 3.516 0.003

∗Compared with LOB group (P < 0.05).

normal weight group (LN). HOB and LOB groups were placed

in a low-pressure oxygen chamber (simulated altitude of 5,000m,

atmospheric pressure of 425 mmHg, oxygen partial pressure of

72.5 mmHg, and oxygen concentration of 13.83%), LOB and LN

groups were kept in a laboratory environment (altitude of 2,261m,

mean atmospheric pressure of 574 mmHg, oxygen partial pressure

of 120.1 mmHg, and oxygen concentration of 17.5%) for 4 weeks.

Body weight and food consumption were measured weekly; fecal

gut microbiota and fecal metabolomics analysis were measured

after 30 days.

Collection of fecal samples

Sterile plastic cassettes were used to collect fresh stool samples

(5 g) from each group. The fecal samples were quickly placed

in an ice box, transported to the laboratory with 2 h, and

then stored at −80 in a refrigerator for further processing

and testing.

16s rRNA gene sequencing

Total genomic DNA was extracted from the samples

using the acetyltrimethylammonium bromide (CTAB) method

(Attitalla, 2011). DNA concentration and purity were analyzed

using 1% agarose gels. According to the concentration, the

DNA samples were diluted to 1 ng/µl using sterile water. An

equal volume of 1× loading buffer (containing SYBR green)

was mixed with the PCR products, and electrophoresis was

performed on a 2% agarose gel to visualize the PCR products.

PCR products were mixed in equidensity ratios. Then, the PCR

products were purified with a Qiagen Gel Extraction Kit (Qiagen,

Germany). The DNA purity and concentration were analyzed by

measuring the optical density (OD) at wavelengths of 260 and

280 nm with a NanoPhotometer R spectrophotometer (Implen,

Munich, Germany) and then calculating the OD260:OD280

ratio. The DNA concentrations were measured with the

Qubit R dsDNA Assay Kit in a Qubit R 2.0 Fluorometer

(Life Technologies, Camarillo, CA, United States) (Du et al.,

2022).

Based on many previous studies (Nagayama et al., 2020;

Yu et al., 2020; Song et al., 2021), we selected the V3–V4

region to study the microbiome through second-generation

sequencing. 16S rRNA gene sequencing was performed by

Novogene Bioinformatics Technology Co., Ltd., China. DNA

samples were diluted to a concentration of 1 ng/µl in sterile

water and then PCR amplified with the 515F/806R primer

set (515F: 5
′
GTGCCAGCMGCCGCGGTAA-3

′
, 806R: 5

′
-

XXXXXXGG ACTACHVGGGTATCTAAT-3
′
). Sequencing

libraries were generated using the TruSeq R DNA PCR-

Free Sample Preparation Kit (Illumina, USA) following the

manufacturer’s recommendations, and index codes were

added. Library quality was assessed with a Qubit@ 2.0

Fluorometer (Thermo Scientific) and Agilent Bioanalyzer

2100 system. Finally, the library was sequenced on the

Illumina NovaSeq platform, and 250-bp paired-end reads

were generated.

Paired-end reads were assigned to samples based on their

unique barcodes and were truncated by removing the barcode and
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TABLE 3 Basic characteristics of mice (x ± s).

Index 2,261 m t P 5,000 m t P

LN (n = 10) LOB (n = 10) HN (n = 10) HOB (n = 10)

Hight

(cm)

10.38± 0.13 10.13± 0.38 1.511 0.162 10.50± 0.55 10.37± 0.39 0.619 0.551

Weight

(g)

24.12± 0.76 29.08± 0.85 13.75 0.000 22.51± 0.83a 26.33± 0.51b 12.400 0.000

aCompared with LN group (P < 0.05); bCompared with HN group (P < 0.05).

TABLE 4 Alpha-diversity analysis of faces in mice.

Group Shannon Simpson Chao1 ACE

LN 5.334± 0.698 0.913± 0.698 486.515±

39.647

492.314

± 39.024

LOB 4.843± 0.841 0.857± 0.720a 499.291±

48.923

505.821

± 49.218

HN 5.907± 0.257 0.957± 0.009 517.493±

29.088a
522.998

± 26.675

HOB 4.931± 0.742b 0.890± 0.484b 452.293±

60.283bc
457.891

±

60.393bc

F 0.005 0.001 0.025 0.025

P 0.011 0.007 0.054 0.054

aCompared with LN group (P < 0.05); bCompared with HN group (P < 0.05); cCompared

with LOB group (P < 0.05).

primer sequences. Paired-end reads were merged using FLASH

(V1.2.7) (Magoč and Salzberg, 2011), which is a very fast and

accurate analysis tool that was designed to merge paired-end

reads when at least some of the reads overlapped with the

read generated at the opposite end of the same DNA fragment.

The splicing sequences are called raw tags. Quality filtering of

raw tags was performed under specific filtering conditions to

obtain high-quality cleantags (Bokulich et al., 2013) according

to the QIIME (V1.9.1) (Caporaso et al., 2010) quality control

process. The tags were compared with those in the reference

database (Silva138 database) using the UCHIME (Attitalla, 2011)

algorithm to detect chimeric sequences, and the chimeric sequences

were removed (Haas et al., 2011). Then, effective tags were

finally obtained.

The Kruskal–Wallis test was used to investigate significant

differences in operational taxonomic units (OTUs) and the

abundance-based coverage estimator (ACE), Chao 1, Simpson’s,

and Shannon’s indexes among the four groups. To correct for

type I errors, we applied the Bonferroni method for multiple

comparisons between two groups. Differences in microbial

community abundances between the obesity group and the control

group were analyzed using the Wilcoxon rank sum test, and

the significance of these differences was assessed using the false

discovery rate (FDR). Principal coordinate analysis (PCoA) was

performed using the WGCNA package, stat packages, and ggplot2

package in R software (v 2.15.3) to compare the similarity

of community structures. Multiresponse permutation procedures

(MRPPs) (O’Reilly and Mielke, 1980) were used to analyze

differences in the microbial community structure between groups.

Analysis of untargeted metabolomics

The supernatant of the stool sample was taken after grinding

and centrifugation. The QC samples were prepared by mixing

the supernatants of all samples in equal quantities. UHPLC-

MS/MS analyses were performed using a Vanquish UHPLC system

(ThermoFisher, Germany) coupled with an Orbitrap Q Exactive

TM HF mass spectrometer (Thermo Fisher, Germany). Samples

were injected onto a Hypesil Goldcolumn (100 × 2.1mm, 1.9µm)

using a17min linear gradient at a flow rate of 0.2 mL/min. The

eluents for the positive polarity mode were eluent A (0.1% FA

in Water) and eluent B (Methanol). The eluents for the negative

polarity mode were eluent A (5mM ammonium acetate, pH9.0)

and eluent B (Methanol).The solvent gradient was set as follows:

2% B, 1.5min; 2–85% B, 3min; 85–100% B, 10min; 100–2% B,

10.1min; 2% B, 12min. Q Exactive TM HF mass spectrometer was

operated in positive/negative polarity mode with spray voltage of

3.5 kV, capillary temperature of 320◦C, sheath gas flow rate of 35

psi and aux gas flow rate of 10 L/min, S-lens RF level of 60, and Aux

gas heater temperature of 350◦C.

The raw data files generated byUHPLC-MS/MSwere processed

using the Compound Discoverer 3.1 (CD3.1, ThermoFisher) to

perform peak alignment, peak picking, and quantitation for

each metabolite, and these metabolites were annotated using

the KEGG database, HMDB database, and LIPIDMaps database.

Positive and negative data were combined to obtain a combined

data set, which was imported into the SIMCA-P+14.0 software.

Principal component analysis (PCA) was first used to observe

the overall distribution of each sample and the stability of the

whole analysis process. Then, OPLS-DA were used to distinguish

the overall differences of metabolic profiles between groups and

screen differential metabolites between groups. The differentially

expressed metabolites should meet the importance of the first

principal component variable in the OPLS-DA model at projection

VIP > 1 and P < 0.05. Volcano plot (FC > 1.2 or FC <

0.833), P used Benjamin and Hochberg to check (FDR). Metabolic

pathway analysis was performed using MetaboAnalyst 5.0 (https://

www.metaboanalyst.ca/) software and for mapping. The data were

subjected to multivariate (PCA) and orthogonal OPLS-DA and

univariate [fold change (FC) and T-tests] analysis. Meanmetabolite

concentrations in each groupwere used to calculate FC values, Final

identification of differential metabolites by VIP, FC and P.

Statistical analysis

Quantitative data with normal distribution between the two

groups were expressed by mean±standard deviation and analyzed
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FIGURE 1

Beta diversity analysis based on UniFrac analysis. Orange dots represents the hyposia obese mice (HOB) group. Green dots represents the hyposia

normal weight mice (HN) group. Blue dots represents the normoxic obese mice (LOB) group. Red dots represents the normoxic weight children (LN)

group. Circles in orange, green, blue, and red represent di�erent periodontal bacterial community clusters, respectively.

TABLE 5 MRPP analysis of di�erences in microbial community structure

between groups.

Group A Observed
delta

Expected
delta

P

LOB-

LN

0.232 0.369 0.481 0.001

HOB-

HN

0.228 0.428 0.554 0.001

HN-LN 0.101 0.389 0.432 0.001

HOB-

LOB

0.163 0.411 0.491 0.001

Multiresponse permutation procedures (MRPP) analysis of differences in microbial

community structure between group, A = 1 – (observed-delta/expected-delta), the smaller

the Observe Delta value, the smaller the difference within the group, and the larger the Expect

delta value, the larger the difference between the groups. A > 0, indicates that the difference

between groups is greater than the difference within the group, A < 0, indicates that the

difference within the group is greater than the difference between the groups.

by student t test. The quantitation sequencing data with non-

normal distribution were expressed by median ± quartile range

(QR) and analyzed byWilcoxon rank sum test. Association analysis

of gut microbiota and metabolites was carried out using spearman

correlation. The SPSS 22.0 version was used for statistical analysis.

P < 0.05 was considered as statistically significant different.

Results

Construction of a mouse obesity model

The results showed that there was no significant difference in

body weight between the two groups at baseline (P > 0.05) after

8 weeks of feeding, and the body weight gain value of the high-

fat diet group was higher than that of the normal control group in

the same feeding environment. When the weight of the two groups

was compared at the same time, there was a significant statistical

difference in the weight of the two groups at each time point (P <

0.05) (Table 1).

Weight change in four groups of mice
under hypoxic treatment

Twenty mice were randomly selected from the two groups

with a high-fat diet (LOB and HOB), as were 20 mice from the

normal diet groups. the weight change of mice after 4 weeks was

shown in Table 2; the results showed that at the same altitude,

there were statistical differences in body weight between the two

groups between the normoxic group (2,261m) and the hypoxic

group (5,000m) (P < 0.05). The comparison between the obese

groups at different altitudes showed that the weight gain of theHOB

was lower than that of the LOB, and the difference between the two

groups was statistically significant (P < 0.05).

General characteristics of the four groups
of mice

Mice heights were not different between altitudes and body

weights (P > 0.05), and mice weights were statistically different

between groups at the same altitude (P < 0.05). The body weight

of the normoxic group was higher than that of the hypoxic group

(Table 3).
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FIGURE 2

In phylum and genus level gut microbiota composition. (A) The phylum level. (B) The genus level.

TABLE 6 Top 10 genus level gut microbiota di�erence.

Genus level Relevant abundance Significant

LN LOB HN HOB LOB vs
LN

HOB vs
HN

HOB vs
LOB

HN vs
LN

Muribaculaceae 0.350± 0.101 0.103± 0.066 0.348± 0.083 0.082± 0.026 0.001 0.001 0.421 0.964

Faecalibaculum 0.061± 0.159 0.282± 0.130 0.047± 0.147 0.141± 0.089 0.001 0.004 0.015 0.073

Dubosiella 0.229± 0.149 0.046± 0.145 0.090± 0.054 0.061± 0.083 0.005 0.337 0.742 0.022

Romboutsia 0.016± 0.012 0.023± 0.011 0.041± 0.023 0.210± 0.119 0.216 0.001 0.001 0.023

Lactobacillus 0.063± 0.026 0.164± 0.105 0.066± 0.021 0.031± 0.017 0.005 0.002 0.001 0.804

Helicobacter 0.009± 0.007 0.018± 0.012 0.020± 0.039 0.010± 0.014 0.285 0.590 0.281 0.713

Turicibacter 0.027± 0.013 0.023± 0.012 0.062± 0.030 0.011± 0.007 0.562 0.001 0.012 0.006

Bacteroides 0.023± 0.012 0.022± 0.013 0.035± 0.028 0.030± 0.025 0.846 0.662 0.439 0.271

A2 0.008± 0.003 0.024± 0.028 0.008± 0.002 0.031± 0.019 0.018 0.001 0.489 0.913

Erysipelatoclostridium 0.002± 0.001 0.004± 0.004 0.005± 0.002 0.022± 0.030 0.096 0.013 0.041 0.075

α and β diversity analysis of four groups of
gut microbiota

α-diversity analysis by Shannon, Simpson, Choa1, and ACE

index showed that there were differences in α-diversity between

the groups (P < 0.05). Further intergroup comparisons showed

that in the same oxygen groups, Shannon, Simpson, Chao1, and

ACE indices were significantly different in the HOB andHN groups

(P<0.05). Simpson index was significantly different in the LOB and

LN groups (P<0.05), suggesting that gut microbiota diversity was

lower in the obese group than in the control group. In the same

body weight groups, Chao1 and ACE indices were significantly

different in HOB and LOB groups (P < 0.05, Table 4), suggesting

that gut microbiota diversity was lower in the hypoxic obese group

compared to the control group. All these results suggested that

hypoxia and obesity affect the diversity of the gut microbiota. PcoA

was used to analyze the β-diversity of fecal samples among the four

groups, and the results showed that the gut microbiota composition

of normal weight mice was similar; the gut microbiota composition

of obese mice was significantly different at different oxygen levels

(P < 0.05, Figure 1). Using MRPPs based on Bray-Curtis distance,

there was a small difference between samples within each group and

a large difference between groups (P < 0.05, Table 5).

Gut microbiota composition among the
four groups

Overall, 25 phylum, 38 classes, 92 orders, 139 families, 230

genera, and 117 species were detected in the bacterial microbiome
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FIGURE 3

Metabolic profiles of four groups of fecal metabolites (A) PCA map. The distance of each coordinate point represents the degree of aggregation and

dispersion between samples. (B) Clustering heatmap. (A) Heatmap provides intuitive visualization of a data table. Each colored cell on the map

corresponds to a concentration value in your data table, with samples in rows and features/compounds in columns.

FIGURE 4

Di�erences in fecal metabolites between the groups (OPLADA map). (A) HOB vs. LOB group. (B) HN vs. LN group. (C) HOB vs. HN group. (D) LOB vs.

LN group. The first prediction of X-axis is mainly the decomposition degree, and the first orthogonality of y-axis is the decomposition degree.

communities of the four group samples. Composition at the

phylum level: In the obese group, Firmicutes, Bacteroidota, and

Desulfobacterota dominated, and their proportions were HOB

group (67.96%, 15.85%, 12.68%) and LOB group (72.38%, 17.09%,

6.34%). Firmicutes/Bacteroidota in the HOB group was higher

than in the LOB group. Normal body groups were dominated
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TABLE 7 OPLS-DA model parameters.

Groups A N R2X R2Y Q2

HN-LN 1+4+0 10 0.747 0.997 0.993

HOB-LOB 1+5+0 10 0.816 1 0.945

LN-LOB 1+1+0 10 0.701 1 0.982

HN-HOB 1+1+0 10 0.688 0.998 0.963

A, the principal component score; R2X, the explanatory rate of the model to the X variable;

R2Y, the explanatory rate of the model for the Y variable; Q2, the model’s predictive ability.

by Firmicutes and Bacteroidota, and their proportions were HN

(47.61%, 45.14%) and LN (51.52%, 42.70%) (Figure 2A). At the

genus level, the LN group was dominated by Muribaculacea

(35.02%), Faecalibaculum (6.13%), and Dubosiell (22.90%), while

the LOB group was dominated by Muribaculaceae (10.26%),

Faecalibaculum (28.17%), and Lactobacillus (16.44%). The HN

group was dominated by Muribaculaceae (34.82%) and Dubosiella

(9.04%) and the HOB group by Romboutsia (21.01%) and

Faecalibaculum (14.07%). Among them, the hypoxic obesity group

was significantly dominated by Romboutsia (Figure 2B).

Analysis of discrepancy among four groups

The Metastat method was used to analyze the differences in

microbiota abundance composition of the top 10 microbiota at

the genus level between the groups. For the same body weight

groups, the HN vs. LN groups demonstrated that Dubosiella,

Romboutsia, and Turicibacter were significantly different (P<0.05),

and the abundance of Romboutsia and Turicibacter was higher

in the HN group. In the HOB vs. LOB group, Faecalibaculum,

Romboutsia, Lactobacillus, Turicibacter, and Erysipelatoclostridium

were significantly different (P<0.05), the abundance of Romboutsia

was higher in the HOB group, and Romboutsia was significantly

dominant in the hypoxia group. At the same oxygen level, in the

LOB and LN groups, Muribaculaceae, Faecalibaculum, Dubosiella,

Lactobacillus, and A2 showed significant differences (P<0.05), and

Faecalibaculum and Lactobacillus had higher abundance in LOB.

In the HOB and HN groups, Muribaculaceae, Faecalibaculum,

Romboutsia, Lactobacillus, Turicibacter, and A2 showed differences

(P<0.05), and Faecalibaculum and Romboutsia were more

abundant in HOB (Table 6), suggesting that Faecalibaculum,

Lactobacillus, and A2 were predominant in the obese groups, while

Romboutsia and Turicibacter were predominant in hypoxia groups.

Metabolic profiles of four groups of fecal
metabolites

The PCA and clustering heatmap illustrate the differences

between the sample distributions. The PCA map shows that the

metabolites are clustered within groups and separated between

groups (Figure 3A), and the clustering heatmap can roughly

indicate that metabolites of the same body weight have similar

expression patterns (Figure 3B).

Di�erences in fecal metabolites among the
four groups

OPLS-DA model validation (Figure 4) revealed significant

differences between the distribution of samples, suggesting a

significant difference of fecal metabolites between the two groups,

The model parameters are shown in Table 7, suggesting that

the model was reliable. For the same body weight groups,

i n HOB vs. LOB, a total of 736 different metabolites

(P < 0.05, VIP > 1) were detected (Figure 5A), while 64

differential metabolites were successfully annotated, the majority

of which were dominated by lipid compounds. KEGG pathway

enrichment analysis of a total of 64 differential metabolites

revealed that 60 differential metabolites were involved in pathway

enrichment, involving a total of 26 metabolic pathways, of

which seven pathways were significantly enriched (P < 0.05),

namely arginine biosynthesis (P = 0.000), alanine, aspartate

and glutamate metabolism (P = 0.001), pyrimidine metabolism

(P = 0.004), D-Glutamine and D-glutamate metabolism (P

= 0.004), purine metabolism (P = 0.005), steroid hormone

biosynthesis (P = 0.010), and arginine and proline metabolism

(P = 0.030) (Figure 6A). The enriched differential metabolites

are shown in Table 8. In HN vs LN, a total of 737 differential

metabolites were detected (P < 0.05, VIP > 1) (Figure 5B);

209 differential metabolites were successfully annotated. KEGG

enrichment pathway analysis of a total of 209 differential

metabolites revealed that 61 differential metabolites were involved

in pathway enrichment, involving a total of 26 metabolic pathways,

of which seven pathways were significantly enriched (P < 0.05),

involving a total of 34 metabolic pathways, of which four

pathways were significantly enriched (P < 0.05), namely histinide

metabolism (P = 0.000), arginine metabolism (P = 0.002), primine

metabolism (P = 0.023), and purine metabolism (P = 0.034)

(Figure 6B); the enriched differential metabolites are shown in

Table 9.

For the same hypoxia level groups, in HOB vs. HN, a

total of 705 differential metabolites (P < 0.05, VIP > 1)

were detected (Figure 5C), while 121 differential metabolites

were successfully annotated. The KEGG enrichment pathway

analysis of a total of 121 differential metabolites revealed that

78 differential metabolites were involved in pathway enrichment,

involving a total of 26 metabolic pathways, of which six pathways

were significantly enriched (P < 0.05), namely steroid hoemone

biosynthesis (P = 0.000), alainine, aspartate and glutamate

metabolism (P = 0.015), arginine biosynthesis (P = 0.029),

arachidonic acid metabolism (P = 0.030), butanoate metabolism

(P = 0.032), and tyrosine metabolism (P = 0.044) (Figure 6C),

the enriched differential metabolites are listed in Table 10. In

LOB vs. LN, a total of 785 differential metabolites (P <

0.05, VIP > 1) were detected (Figure 5D); 143 differential

metabolites were successfully annotated. The KEGG enrichment

pathway analysis of a total of 143 differential metabolites

revealed that 74 differential metabolites were involved in pathway

enrichment, involving a total of 19 metabolic pathways, of

which five pathways were significantly enriched (P < 0.05):

pyrimidine metabolism (P = 0.002), pantothenate and CoA

biosynthesis (P = 0.009), purine metabolism (P = 0.018), steroid

hormone biosynthesis (P = 0.033), butanoate metabolism (P
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FIGURE 5

Di�erences in fecal metabolites between the groups (Volcano plot). (A) HOB vs. LOB. (B) HN vs. LN. (C) HOB vs. HN. (D) LOB vs. LN. Volcano plot

combines results from Fold Change (FC) analysis and T-tests into one single graph, which intuitively select significant features based on either

biological significance, statistical significance. Red dots indicate up-regulated metabolites, blue dots are vice versa.

= 0.048), and tyrosine metabolism (P = 0.044) (Figure 6D).

The enriched differential metabolites are shown in Table 11.

These results suggest that hypoxia mainly affects nucleotide and

amino acid metabolism, whereas obesity affects lipid and amino

acid metabolism.

Correlation analysis of fecal metabolites
with gut microbiota

Spearman’s correlation was used to investigate the relationship

between gut microbiota and metabolites. The relationship

between the most differentially expressed metabolites and

the top 10 genera was analyzed in mice (Figure 7). In the

same body weight groups, in HOB vs. LOB, we found that

the abundance of Romboutsia was positively correlated with

the fecal lipid compounds adrenosterone, desoxycortone, 2-

methoxyestrone, and cortisol (P < 0.05), and with that of fecal

nucleotide compounds guanosine, cAMP, adenosine, uridine,

and inosin (P < 0.05), but negatively correlated with organic

acids L-glutamine, fumaric acid, L-hydroxyproline, L-ornithine,

L-glutamic acid, N-acetylornithine, and L-argininosuccinate (P

< 0.05). Lactobaculum was positively correlated with the organic

acids L-glutamine, fumaric acid, L-hydroxyproline, L-ornithine,

L-glutamic acid, N-acetylornithine, and L-argininosuccinate (P

< 0.05), but there was a negative correlation with nucleotides

guanosine, thymidine, adenosine, uridine, and inosine (P

< 0.05). This is the opposite of Romboutsia in relation

to metabolites (Figure 7A). In HN vs. LN, Turicibacter was

positively correlated with the nucleotide compounds adenosine,

urocanic acid, and cytidine (P < 0.05) and Romboutsia was

negatively correlated with the organic acid compounds allantoate

and ornithine (P < 0.05). These results suggested that the

microbial Romboutsia characterized by hypoxia showed a

negative correlation with organic acid compounds and a positive

correlation with nucleotide and lipid compounds (P < 0.05)

(Figure 7B).

In the same oxygen level groups, in HOB vs. HN, Romboutsia

was positively correlated with the fecal lipid compounds

prostaglandin I2, estradiol, estriol, desoxycortone, prostaglandin

F2α, and adrenosteron (P < 0.05), but negatively correlated with

the organic acid L-argininosuccinate, succinic acid, and fumaric

acid (P < 0.05). Muribaculaceae was negatively correlated with

the fecal lipid compound prostaglandin I2, estradiol, estriol,

desoxycortone, prostaglandin F2α, and adrenosteron (P < 0.05),

but positively correlated with the organic acid succinic acid.

Lactobacillus was positively correlated with fumaric acid, succinic
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FIGURE 6

Analysis of KEGG pathway related to di�erential metabolites. (A) HOB vs. LOB. (B) HN vs. LN. (C) HOB vs. HN. (D) LOB vs. LN.

acid, and L-argininosuccinat (P < 0.05). A2 was positively

correlated with prostaglandin I2, estradiol, estriol, desoxycortone,

prostaglandin F2α, and adrenosteron (P < 0.05), but negatively

correlated with fumaric acid, succinic acid, and L-argininosuccinat

(P < 0.05) (Figure 7C). In LOB vs. LN, Muribaculaceae was

positively correlated with nucleotides 2′-deoxyadenosine 5′-

monophosphate, dCMP, adenosine 5′-monophosphate, xanthine,

and 2′-deoxyadenosin (P < 0.05); Lactobacillus was negatively

correlated with 2′-deoxyadenosine 5′-monophosphate, dCMP,

and adenosine 5′-monophosphat (P < 0.05). Faecalibaculum

was negatively correlated with orotic acid, succinic acid, and

pantothenic acid (P < 0.05), but positively correlated with uracil

and cytidine-5′-monophosphat (P < 0.05). It was positively

correlated with the fecal lipid compound estriol (P < 0.05) and

with correlated with acetoacetat (P < 0.05). A2 was negatively

correlated with 5′-adenylic acid, adenosine 5′-monophosphate,

and deoxycytidin (P < 0.05) (Figure 7D). These results suggested

that gut microbiota in the hypoxic group were positively correlated

with lipid and nucleotide compounds and negatively correlated

with organic acid compounds.

Discussion

In this study, we compared the gut microbiota and feal

metabolites of obese and normal weight mice with different oxygen

levels using 16S rRNA sequencing and metabolomics. We found

that (1) the diversity of the hypoxic and obese gut microbiota was

reduced compared to the control groups. (2) Hypoxia and obesity

lead to disturbances in gut metabolism. (3) Gut microbiota and

fecal metabolism are closely related. Identifying the characteristic

bacteria and metabolites of obesity in different environments will

help us to target interventions for obesity.

Studies have shown that low-grade inflammation is a hallmark

of obesity, characterized by changes in the composition of the

gut microbiota and its metabolites, which are transferred from
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TABLE 8 Relative abundance of significant di�erential metabolites involved in KEGG pathway analysis (HOB vs. LOB).

Name Mode m/z RT/min VIP P FDR FC Trend

L-Glutamine pos 147.07687 1.312 1.416 0.003 0.025 0.433 ↓

Uridine neg 243.06261 2.385 1.514 0.000 0.001 22.261 ↑

Fumaric acid neg 115.00394 1.429 1.248 0.002 0.018 0.386 ↓

Thymine pos 127.05068 4.892 1.363 0.000 0.005 2.514 ↑

L-Hydroxyproline neg 307.11533 1.286 1.193 0.001 0.015 0.433 ↓

Inosine neg 267.0737 3.789 1.474 0.000 0.004 39.701 ↑

Thymidine neg 241.08347 4.884 1.178 0.006 0.038 2.015 ↑

L-Ornithine neg 131.08289 1.297 1.252 0.008 0.049 0.587 ↓

2-Methoxyestrone pos 301.17996 6.691 1.451 0.000 0.001 3.155 ↑

Estriol pos 289.17963 6.456 1.033 0.006 0.039 1.221 ↑

cAMP pos 330.05826 1.636 1.301 0.000 0.004 5.320 ↑

L-Glutamic acid pos 131.03448 1.321 1.449 0.000 0.004 0.470 ↓

N-Acetylornithine pos 175.10803 1.411 1.303 0.006 0.039 0.634 ↓

Adenosine pos 268.10471 3.155 1.279 0.000 0.003 11.592 ↑

Cortisol pos 363.21686 5.663 1.232 0.001 0.009 2.005 ↑

Desoxycortone pos 331.22726 6.329 1.256 0.000 0.008 2.150 ↑

L-

Argininosuccinate

neg 289.1156 1.302 1.249 0.006 0.039 0.566 ↓

Guanosine pos 284.09943 3.761 1.474 0.000 0.000 42.993 ↑

Adrenosterone pos 301.1799 6.179 1.414 0.001 0.015 1.897 ↑

the gut across the disrupted intestinal barrier and affect various

metabolic organs, such as the liver and adipose tissue, thereby

promoting metabolic inflammation (Tilg et al., 2020). Available

evidence on the correlation between metabolomics and obesity

metabolite profiles suggests that it is mainly related to amino acid

and lipid metabolites (Payab et al., 2022). In this study, we found

that in the hypoxic obesity group (HOB vs. HN), changes were

mainly caused in Romboutsia, Muribaculaceae, Lactobacillus and

A2, and in the metabolism of amino acids and lipid compounds.

Among them, Romboutsia showed a positive correlation with

lipid compounds Prostaglandin I2 (FC = 76.406), Estriol (FC =

32.960), Prostaglandin F2α (FC = 44.775), Adrenosterone (FC

= 11.118), and Desoxycortone (FC=10.312). Studies have shown

that Romboutsia, Erysipelatoclostridium, and Enterobacteriaceae

are positively associated with obesity and intestinal inflammation

(Nagayama et al., 2020; Yu et al., 2020; Song et al., 2021), and

suggested that the Romboutsia-driven microbiome, characterized

by low bacterial diversity and high primary bile acids, is associated

with fat-driven obesity (Therdtatha et al., 2021). Thus, we

hypothesized that hypoxic obesity is associated with Romboutsia-

driven ecological dysregulation of the gut microbiome. Among

these metabolic compounds, Prostaglandin I2 and Prostaglandin

F2α, as bioactive lipid mediators, are associated with inflammation

(Idborg and Pawelzik, 2022), and 8-iso-PGF2α are associated with

obesity (Furukawa et al., 2004), and both compounds are involved

in the metabolism of arachidonic acid, which can be metabolized

to leukotriene A4 (LTA4) and lipoxin (LXs), and further generate

other types of leukotriene (LT)(Guriec et al., 2014). LT can activate

leukocytes and promote inflammation (Bertin et al., 2014). Studies

have shown that steroid hormones are associated with metabolic

diseases in women (e.g., obesity and gestational diabetes), whereas

estradiol increases energy expenditure by increasing thermogenesis

and lipolysis of BAT (Vigil et al., 2022). The metabolism of these

lipid compounds may also be associated with hypoxic factors. One

study has suggested that hypoxia is also an important trigger for

fatty acid oxidation (Hikita et al., 2007). Amino acids are not only

essential nutrients and energy sources but are also involved inmany

biochemical processes such as purine biosynthesis and uric acid

production. The main organ involved in amino acid metabolism

is the liver, which plays an important role in maintaining amino

acid homeostasis. Abnormal amino acid metabolism results in

dysregulation of fatty acid, protein, and urea synthesis, energy

metabolism, protein hydrolysis, and cell signaling (Newsholme

et al., 2003).Previous studies found that compounds such as

alanine, glutamate, proline, succinate, tyrosine, and BCAA were

found to be higher in obese participants (Butte et al., 2015),

however, our study found a downregulation trend in hypoxic

obese mice. Many organic acids are involved in the TCA cycle

and their metabolism is disturbed in obese mice, affecting energy

metabolism, but the exact mechanism is not clear. In the LOB vs.

LN group, a higher abundance of Faecalibaculum, Lactobacillus,

and A2 was found in the normoxic group. Lactobacillus, which

is particularly abundant in obese mice, can regulate body weight

by hydrolyzing indigestible polysaccharides into easily absorbed
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TABLE 9 Relative abundance of significant di�erential metabolites involved in KEGG pathway analysis (HN vs. LN).

Name Mode m/z RT/min VIP P FDR FC Trend

Methylimidazoleacetic

acid

pos 1.369 141.0661 1.410 0.004 0.034 1.786 ↑

Urocanic acid pos 1.909 139.05069 1.498 0.000 0.006 1.784 ↑

dCMP neg 1.900 306.04962 1.289 0.000 0.012 0.116 ↓

Creatine pos 1.364 132.07698 1.166 0.006 0.039 15.866 ↑

Histamine pos 1.134 112.08722 1.036 0.006 0.040 0.185 ↓

allantoate pos 1.399 389.20242 1.355 0.008 0.049 0.511 ↓

Uracil pos 1.828 113.03475 1.396 0.004 0.034 0.600 ↓

L-Glutamic acid pos 1.321 131.03448 1.274 0.002 0.026 0.641 ↓

N-Acetylornithine pos 1.411 175.10803 1.358 0.003 0.031 0.404 ↓

Cytidine pos 1.727 244.09276 1.173 0.000 0.012 2.311 ↑

Adenosine pos 3.155 268.10471 1.431 0.005 0.038 2.902 ↑

Ornithine pos 1.144 133.09763 1.497 0.007 0.048 0.325 ↓

TABLE 10 Relative abundance of significant di�erential metabolites involved in KEGG pathway analysis (HOB VS HN).

Name Mode m/z RT/min VIP P FDR FC Trend

Prostaglandin I2 pos 353.23062 11.912 1.216 0.000 0.000 76.406 ↑

Estradiol pos 273.18478 6.407 1.257 0.000 0.000 9.954 ↑

Fumaric acid neg 115.00394 1.429 1.070 0.000 0.000 0.037 ↓

Etiocholanolone pos 273.22147 9.228 1.265 0.000 0.000 0.196 ↓

Pregnenolone neg 315.23352 9.836 1.079 0.000 0.000 0.027 ↓

Estriol pos 289.17963 6.456 1.287 0.000 0.000 32.960 ↑

Succinic acid neg 117.01951 2.692 1.032 0.001 0.002 0.063 ↓

acetoacetate pos 103.03941 6.634 1.277 0.000 0.000 231.080 ↑

2,5-

Dihydroxybenzaldehyde

neg 137.02498 5.372 1.143 0.004 0.009 0.380 ↓

16(R)-HETE pos 343.22513 8.25 1.275 0.000 0.000 0.198 ↓

Desoxycortone pos 331.22726 6.329 1.093 0.000 0.000 10.312 ↑

Prostaglandin F2α pos 337.23798 6.638 1.263 0.000 0.000 44.775 ↑

L-Argininosuccinate neg 289.1156 1.302 1.076 0.024 0.046 0.307 ↓

Adrenosterone pos 301.1799 6.179 1.283 0.000 0.000 11.118 ↑

monosaccharides, thereby activating lipoprotein lipase, and it

regulates DNA methylation levels at the host miR-378a promoter

by increasing acetate and butyrate in SCFAs, thereby preventing

the development of obesity and glucose intolerance (Du et al.,

2021). Faecaalibaculum is mainly present in obese individuals

and can maintain intestinal homeostasis by producing butyrate,

inhibiting NF-KB, and upregulating PPAR-γ to suppress the onset

of inflammation (Gomes et al., 2018). In this study, we found

that Faecalibaculum showed a positive correlation with lipid and

nucleotide compounds. In a high-fat diet-induced gut microbiota

sequencing of obese mice, Colidextribacter and Faecalibacterium

were found to be indicators of obesity and their abundance was

positively correlated with obesity. Therefore, we speculate that the

occurrence of obesity in the normoxic group may be related to

the disruption of the gut microbiota induced by Faecalibacterium

(Yu et al., 2022). Pyrimidine and purine nucleotide metabolism

disorders predominate, suggesting that under conditions of cellular

damage (inflammation, hypoxia, acute injury), ATP is rapidly

released from cells into the extracellular compartment, causing

a rapid increase in extracellular levels of ATP, ADP, or AMP,

and adenosine produced by hydrolysis (Fredholm, 2007). Some

studies have found that obesity increases the breakdown of adenine

nucleotides in adipose tissue (Tsushima et al., 2013), and xanthine

is one of the representative metabolites. Xanthine is a common

host-microbe metabolite found in human tissues, body fluids, and

intestinal flora, and can be converted to uric acid in mice. Both

xanthine and hypoxanthine are precursors of oxidized purines

and uric acid, are oxidized by xanthine oxidoreductase in purine

catabolism, and play an important role in ATP generation (Nishino

and Okamoto, 2015). Studies have shown that uric acid is the
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TABLE 11 Relative abundance of significant di�erential metabolites involved in KEGG pathway analysis (LOB vs. LN).

Name Mode m/z RT/min VIP P FDR FC Trend

2′-Deoxyadenosine

5′-monophosphate

neg 330.06134 2.111 1.150 0.000 0.000 0.046 ↓

dCMP neg 306.04962 1.9 1.061 0.000 0.000 0.056 ↓

5′-Adenylic acid pos 348.06906 1.373 1.221 0.003 0.006 0.216 ↓

Dehydroepiandrosterone pos 289.21661 6.269 1.045 0.000 0.000 3.414 ↑

Adenosine

5′-monophosphate

neg 346.05624 3.327 1.091 0.000 0.000 0.035 ↓

Xanthine pos 153.04117 2.211 1.226 0.014 0.026 0.602 ↓

Cytidine-5′-

monophosphate

pos 324.05881 5.453 1.253 0.000 0.000 8.871 ↑

Pregnenolone neg 315.23352 9.836 1.028 0.000 0.000 0.081 ↓

Estriol pos 289.17963 6.456 1.257 0.000 0.000 22.049 ↑

2′-Deoxyadenosine pos 252.10947 4.666 1.075 0.000 0.001 0.137 ↓

Succinic acid neg 117.01951 2.692 1.173 0.001 0.002 0.147 ↓

Uric acid pos 113.03475 1.828 1.188 0.020 0.035 6.456 ↑

Pantetheine pos 279.13684 1.29 1.068 0.000 0.000 6.656 ↑

acetoacetate pos 103.03941 6.634 1.248 0.000 0.000 119.600 ↑

Adenosine pos 268.10471 3.155 1.084 0.000 0.001 0.217 ↓

Orotic acid neg 155.01024 1.812 1.135 0.006 0.011 0.225 ↓

Deoxycytidine pos 228.09785 1.414 1.147 0.000 0.001 0.347 ↓

Desoxycortone pos 331.22726 6.329 1.210 0.000 0.000 5.582 ↑

Pantothenic acid pos 220.11832 5.075 1.234 0.001 0.002 0.575 ↓

final oxidation product of purine nucleotide catabolism in humans,

that serum uric acid levels are based on the balance between

the absorption, production, and excretion of purines and purine

nucleotides, and that obesity is often associated with hyperuricemia

(Tsushima et al., 2013). Elevated serum uric acid is strongly

associated with visceral fat accumulation and several metabolic

diseases (Tamba et al., 2008; Kim et al., 2012). In this study, uric

acid levels showed an upregulation trend in the obese groups

(FC=6.456), which is consistent with the above conclusions.

In the same body weight groups (HOB vs. LOB, HN vs.

LN), the main dominant bacterium was Romboutsia, which was

mainly associated with the metabolism of nucleotide and amino

acid compounds. The analysis of the effect of altitude on Sanhe

heifers’ gut microbiota and metabolism found that Romboutsia

was associated with the metabolism of purine pyrimidines and

amino acids (Zhang et al., 2023). Another study found that some

potential probiotics, including Christensenellaceae_R-7_group,

Ruminococcus_1, Romboutsia, Alloprevotella, E. coprostanoligenes,

and Clostridium, were enriched in the rumen of high-altitude yaks.

Shifts in the rumen microbiomes were caused by a high-altitude

environment characterized by cold temperatures, hypoxia, and

the production of high-fiber herbage. Moreover, rumen microbial

diversity and herbage fermenting ability of yaks increased with

elevation; therefore, high-altitude yaks should be considered to

have microbiota adaptation to partially meet the higher energy

requirements needed for survival in the harsh cold and hypoxic

environment (Fan et al., 2020). In an in vivo study, it was found

that Romboutsia was significantly associated with bile acids,

triglycerides, amino acids and derivatives, and organic acids and

derivatives in the standard diet groups, whereas triglycerides and

free fatty acids were significantly associated in the high-fat diet

groups (Yin et al., 2023). A large body of research suggests that

hypoxic environments can alter lipid metabolism in mice and

humans (Famulla et al., 2012; Siques et al., 2020; Morin et al.,

2021). It may be that the hypoxic environment at high altitude

promotes fat mobilization.

This study only analyzed changes in metabolites in mouse feces,

and so cannot fully elucidate systemic metabolic changes in mice.

At the same time, during the hypoxic intervention, the effect of

oxygen concentration on mice at different time points cannot be

displayed dynamically without dividing the time periods. Due to

the small sample size, the construction of models for predicting

the onset of obesity by metabolites is limited. Therefore, based on

this study, further sample expansion and targeted metabolomics

research with multiple time points and tissues can be carried out in

subsequent studies, providing new ideas for the potential molecular

mechanisms of preventing or treating obesity in high-altitude areas.

Conclusions

In conclusion, 16S rRNA gene sequencing and untargeted

metabolomics revealed characteristic changes in fecal metabolites

and gut microbiota in obese and hypoxic groups of mice. In
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FIGURE 7

Correlation analysis of gut microbiota and fecal metabolites. (A) HOB vs. LOB. (B) HN vs. LN. (C) HOB vs. HN. (D) LOB vs. LN. The red line represents a

significant positive correlation, while the blue line represents a significant negative correlation, *P < 0.05; **P < 0.01.

the same body weight groups, we found that the dominant flora

was associated with the metabolism of nucleotide and amino

acid compounds. In the same oxygen concentration groups, we

found that the dominant bacteria were associated with lipids and

amino acids.
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