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Otitis media is an inflammatory disorder of the middle ear caused by airways-
associated bacterial or viral infections. It is one of the most common childhood 
infections as globally more than 80% of children are diagnosed with acute otitis 
media by 3  years of age and it is a common reason for doctor’s visits, antibiotics 
prescriptions, and surgery among children. Otitis media is a multifactorial 
disease with various genetic, immunologic, infectious, and environmental 
factors predisposing children to develop ear infections. Streptococcus 
pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most 
common culprits responsible for acute otitis media. Despite the massive global 
disease burden, the pathogenesis of otitis media is still unclear and requires 
extensive future research. Antibiotics are the preferred treatment to cure middle 
ear infections, however, the antimicrobial resistance rate of common middle ear 
pathogens has increased considerably over the years. At present, pneumococcal 
and influenza vaccines are administered as a preventive measure against otitis 
media, nevertheless, these vaccines are only beneficial in preventing carriage 
and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine 
serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an 
important healthcare burden. The development of multi-species vaccines is an 
arduous process but is required to reduce the global burden of this disease. 
Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and 
M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower 
the disease burden and provide better protection against otitis media. To study 
disease pathology the rat, mouse, and chinchilla are commonly used to induce 
experimental acute otitis media to test new therapeutics, including antibiotics 
and vaccines. Each of these models has its advantages and disadvantages, yet 
there is still a need to develop an improved animal model providing a better 
correlated mechanistic understanding of human middle ear infections, thereby 
underpinning the development of more effective otitis media therapeutics. This 
review provides an updated summary of current vaccines against otitis media, 
various animal models of otitis media, their limitations, and some future insights 
in this field providing a springboard in the development of new animal models 
and novel vaccines for otitis media.
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1 Introduction

Otitis media (OM) is inflammation within the middle ear (ME), 
most frequently occurring in children. OM is caused by a variety of 
factors including bacterial or viral infections, allergy, Eustachian tube 
(ET) malfunction, physiological/immunological/pathological factors 
within the ME, as well as genetic and environmental factors (Yeo, 
2018). Clinical manifestations of OM vary, depending on the type of 
exudate and the duration of the disease (Lieberthal et al., 2013). Acute 
OM (AOM) is the usual symptomatic presentation caused by an 
ongoing viral or bacterial infection accompanying fever, lethargy, 
otorrhea, irritability, vomiting, diarrhea, and in severe cases hearing 
loss. There is often a connection between AOM, and recent upper 
respiratory tract infections (URTI) caused by bacteria or viruses, in 
part because the ME is contiguous with URT via the ET. The less-
developed ET/ME anatomy of young children is suggested as one 
factor that predisposes them to AOM (Toll and Nunez, 2012). ME 
disease recurs in many children, termed recurrent AOM (rAOM) 
(Granath, 2017). Some children are prone to develop AOM mainly 
due to immune dysfunctions. If they develop 4 AOM episodes in 
6 months or 4 episodes in 12 months period, they are defined as otitis-
prone children (Alho et al., 1991; Pichichero, 2020). Non-purulent 
fluid accumulation behind the tympanic membrane is a sign of OM 
with effusion (OME) which is often not associated with pain and may 
occur following AOM, rAOM, or other upper respiratory infections 
(Rosenfeld et al., 2016). OME makes children more prone to bacterial 
and viral infections. If it persists for extended periods, resulting in 
chronic OM (COM) (Granath, 2017), it can result in damage to the 
ME and conductive hearing loss. This is especially important for 
preschool children whose speech development may be delayed by this 
condition (Simon et al., 2018). The typical characteristics of COM are 
ear pain, ear discharge, and hearing impairment which may persist 
even after surgery, leading to many restrictions in daily life (Lucidi 
et  al., 2022). Pro-inflammatory cytokines like TNF-α and IL-1, 
produced to combat bacterial infection during an AOM episode, set 
up an inflammatory response leading to the evolution of COM, which 
may include epithelial remodeling (Juhn et al., 2008). However, the 
exact mechanisms leading to COM are still poorly understood. 
Chronic suppurative OM (CSOM) is characterized by persistent or 
recurrent ear drainage (otorrhoea) for more than 2–6 weeks. During 
CSOM, bacterial pathogens may also infect the mucosa of the ME 
through the external canal (Jensen et al., 2017).

It is estimated that nearly 80% of young children (6–24 months 
old) suffer from at least one episode of OM each year (Tong et al., 
2018). Its high prevalence in infants and children, despite low 
associated mortality, makes it a major health burden worldwide as it 
poses a substantial impact on the development of children, their 
families, and the health care system. OM is a frequent cause of visiting 
doctors, antibiotic prescriptions, and surgery among children (Coker 
et al., 2010) and the annual cost of OM to the healthcare system has 
been estimated to be more than $5 billion in the United States (Rovers, 
2008) and $100 – $400 million in Australia (Kong and Coates, 2009). 
According to the World Health Organization (WHO), nearly 28 
thousand people die due to OM globally, and nearly 50% of permanent 
hearing loss cases are caused by OM (Acuin, 2004). Indigenous 
populations across the world are at high risk for OM including Native 
Americans, the Alaskan, Canadian and Greenland Inuit, and 
Australian Aborigines (Bluestone, 1998; Daly et al., 2010).

The etiology of OM is often polymicrobial where the most 
common bacterial pathogens associated with AOM are Streptococcus 
pneumoniae (S. pneumoniae), non-typeable Haemophilus influenzae 
(NTHi), and Moraxella catarrhalis (Mcat). Contribution to disease by 
each pathogen varies by study and detection method [see (Tamir et al., 
2023] for review of recent reports of microbiology of OM). The viruses 
that are commonly associated with OM include respiratory syncytial 
virus (RSV), coronaviruses, influenza viruses, adenoviruses, human 
metapneumovirus, human bocavirus, and picornaviruses (Pettigrew 
et  al., 2011; Ngo et  al., 2022). The most commonly associated 
pathogens with CSOM are Staphylococcus aureus and Pseudomonas 
aeruginosa (Afolabi et  al., 2012; Khattak et  al., 2017). Fungi and 
anaerobic bacteria have also been associated with OM/CSOM 
(Prakash et al., 2013). The anaerobic bacteria associated with OM/
CSOM are Prevotella melaninogenica, Clostridium spp., Peptococcus 
spp., and Fusobacterium spp. (Brook, 2008). Bacteria that are 
commonly associated with OME are coagulase-negative staphylococci, 
Veillonella spp., and S. aureus (Daniel et al., 2012). Viral infections 
predispose the host to bacterial infections of the ME, particularly 
influenza A virus, coronavirus, and respiratory syncytial virus (RSV) 
[reviewed by (Marom et al., 2012)]. For the development of OM when 
the tympanic membrane is intact, the pathogen needs to establish 
nasopharyngeal colonization by gaining access to the tympanic cavity 
via the ET, as illustrated in Figure 1.

The ME mucosa, like other mucosal surfaces in the body, has a 
local immune system that plays a critical role in protecting against 
infections. The ME mucosa and URT are connected anatomically, and 
their immune systems are interconnected as well (Massa et al., 2021; 
Kurono, 2022). To prevent OM, enhancement of mucosal immune 
responses in the nasopharynx (NP) and ME is desired, however, how 
the immune protection in the ME mucosa relates to URT is still 
poorly understood.

Antibiotics are frequently used as a treatment strategy for OM, 
nonetheless, high morbidity and the alarming rise in antibiotic 
resistance over the years have increased interest in the development 
of alternative strategies such as vaccination. The development of 
several vaccines has been achieved to combat disease caused by 
S. pneumoniae, such as a 14-valent pneumococcal polysaccharide 
vaccine (1977), the 23-valent pneumococcal polysaccharide vaccine 
(1983), a 7-valent pneumococcal conjugate vaccine (2000), and a 
13-valent pneumococcal conjugate vaccine (2010) (Grabenstein and 
Klugman, 2012). Although these vaccines are effective against OM, 
they do however present the risk of further serotype replacement 
(Weinberger et al., 2011; Lo et al., 2019). Pneumococcal vaccine 
development has received priority because pneumococcus causes 
life-threatening pneumonia and invasive diseases, including sepsis 
and meningitis. Vaccines against NTHi and Mcat, however, are not 
currently available, despite both species causing significant 
morbidity through OM, pneumonia, exacerbations of chronic lung 
disease, and other diseases of respiratory mucosa in adults and 
children. Advances have been made in the development of vaccines 
targeting the major otopathogens, and many potential vaccine 
antigens from these bacteria have been investigated. This review 
aims to offer an updated summary of candidate vaccine antigens, 
including their putative or known functions. Furthermore, it also 
discusses currently used animal models of OM, which are crucial for 
relevant pre-clinical assessment of candidate antigens and 
vaccine formulations.
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2 Vaccines against OM

An ideal vaccine antigen will possess some essential features leading 
to broad protection against the target pathogen. First, the vaccine 
antigen needs to be conserved among clinically relevant strains so that 
it can provide the necessary coverage (Murphy, 2005). The majority of 
bacterial otopathogens are highly adapted to the colonization of the 
human URT and are frequent asymptomatic colonizers. As such, 
surface-exposed regions are under immune-pressure. Many surface-
exposed epitopes have variable sequences between strains or are 
expressed at different levels between strains, and this inter-strain 
variability needs to be known (Karls and Perkins-Balding, 2013). If a 
targeted gene is not present in all strains, or it is antigenically variable 
between strains, then one or more additional vaccine candidates may 
be required for optimal protection. The development of multi-protein 
vaccines is becoming increasingly recognized as necessary for pathogens 
with highly variable antigens between and within strains (Watson et al., 
2019). However, such formulations can lead to antigenic competition, 
or masking of key antigenic epitopes leading to compromised immune 
responses to one or more antigens (Michel et al., 2022). This requires 
analysis of antigens and responses in animal and human trials.

Secondly, it is highly desirable that the antigen is exposed on the 
surface of the pathogen so that this region can be recognized by the 
antibodies. Ideally, the antigen is essential for colonization or 

pathogenesis, and its function is known (Murphy, 2005). Moreover, if 
the candidate vaccine has some toxicity, genetic or chemical 
modification will be  required (Rappuoli, 1999). Importantly, it is 
necessary to establish if there is a risk of autoimmunity, e.g., if there is 
significant sequence or structural similarity to host antigens (Kraus 
et  al., 1989). Most importantly, the vaccine antigen needs to 
be immunogenic in the host and elicit a lasting protective immune 
response upon immunization, induced by humoral or cellular 
immunity (Murphy, 2005).

During the last few decades, both computational and experimental 
methods have been utilized to identify potential vaccine antigens for 
major pathogens involved in OM. In this review, we focus on those 
potential antigens that have progressed substantially as vaccine 
candidates and show potential for inclusion in vaccines that will 
reduce the burden of OM.

2.1 Pneumococcal vaccines

2.1.1 Pneumococcal conjugate vaccines (PCVs), 
pneumococcal polysaccharide vaccine (PPV), and 
OM

Streptococcus pneumoniae is naturally found in the human NP, and 
this nasopharyngeal carriage is important for active infection and 

FIGURE 1

Anatomy of the human ear and pathogenesis of acute otitis media. The human ear is composed of three parts: the outer ear, the middle ear, and the 
inner ear. The tympanic membrane (eardrum) separates the outer ear, from the middle ear. The middle ear is composed of the middle ear cavity and 
the middle ear bones, which are attached to the tympanic membrane. The Eustachian tube connects the middle ear cavity to the nasopharynx. A viral 
or bacterial upper respiratory tract infection initiates inflammation of the nasopharynx and the Eustachian tube leading to the blockage of the latter 
trapping fluid inside the middle ear, leading to increased adherence and colonization of bacteria. Eustachian tube dysfunction also leads to negative 
middle ear pressure, allowing bacteria and/or viruses in the nasopharynx to move into the middle ear causing infection and inflammation.
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transmission of the pathogen (McDaniel and Swiatlo, 2004). Its 
capsular polysaccharides (CPSs) are important virulence factors, 
especially for invasive disease that can be classified into 100 serotypes, 
based on chemical and immunological profiles (Ganaie et al., 2020). 
The most identified pathogen in OM following culture is 
S. pneumoniae (Tamir et al., 2023).

Currently, two types of pneumococcal vaccines are available. Both 
are based on CPS: (A) the 23-valent pneumococcal polysaccharide-
based vaccine (PPV-23); and (B) the 7-, 10-, 13-, and 20-valent 
pneumococcal conjugate vaccines (PCV-7, −10, −13, −20).

PPV23 is based on the CPS antigens from 23 different serotypes 
of S. pneumoniae and is recommended for individuals aged 65 and 
older, as well as those aged 2 to 64 years who have multiple chronic 
conditions, such as diabetes and chronic cardiovascular disease 
(CDC, 2019). Most bacterial CPS are poorly immunogenic in young 
children, in part because they are T-cell independent antigens and 
induce little immune memory. Newborns and infants up to the age 
of 1.5–2 years of age are unable to produce antibodies to bacterial 
CPS due to less developed immunity (Rijkers et al., 1998), therefore, 
there is much debate surrounding the use of pneumococcal 
polysaccharide vaccines in young children (Borrow et al., 2012). In 
PCVs, the pneumococcal polysaccharide is coupled to a carrier 
protein to convert the antigens from T-cell independent to T-cell 
dependent antigens for enhanced immunogenicity (Pichichero, 
2013). PCVs have been incorporated into the national immunization 
programs of 148 out of 194 World Health Organization (WHO) 
member states as of the end of 2020 (CDC, 2020). There has been a 
decline in OM and NP colonization by vaccine serotypes of 
S. pneumoniae with these vaccines, however, their use has been 
linked with replacement by non-vaccine serotypes of S. pneumoniae 
as well as NTHi and Mcat (Barenkamp et al., 2017; Kaur et al., 2017; 
Ben-Shimol et  al., 2019; Pereira et  al., 2023). Pneumococcal 
serotype replacement after vaccination has been noted for both 
childhood carriage (Lee et  al., 2017) and in AOM (Gene et  al., 
2013), and in some cases the replacing strains are antibiotic resistant 
(Lo et al., 2019), so that vaccination may change the distribution of 
resistance and potential treatment failures not only for URTI/OM 
but also for pneumonia or invasive disease. A study in Israel 
evaluated the efficacy of PCV7 and PCV13 and reported that these 
vaccines reduced pneumococcal AOM by 77%, however, an increase 
in AOM cases due to non-vaccine serotypes was observed 
(Ben-Shimol et al., 2014). Similarly, a Costa Rican study of AOM in 
children reported that pneumococcus had a lower frequency and 
NTHi cultured at a higher frequency in vaccinated vs. unvaccinated 
children (Abdelnour et al., 2015). A 14-year observational study on 
the effects of PCV7, PCV10, and PCV13  in Swedish preschool 
children showed that Mcat and NTHi were proportionally more 
common than S. pneumoniae after PCV introduction in NP culture 
of PCV-immunized children with URTI (Littorin et al., 2021). A 
global surveillance study that used whole-genome sequencing for 
analysis reported that non-PCV serotypes15B and 15C (15B/C), 
12F, and 35B/D were among the most prevalent pneumococcal 
serotypes in the post-PCV13 era (Lo et  al., 2019). In Italy, 
non-vaccine serotype 24F has been reported as a prevalent serotype 
in pneumococcal otorrhea cases (Sings et  al., 2019). Such 
epidemiological studies of pneumococcal serotypes from both 
carriage and OM inform future changes to polyvalent vaccines. 
Notably, PCV-20 includes several recently emergent serotypes (1, 3, 

4, 5, 6A, 6B, 7F, 8, 9 V, 10A, 11A, 12F, 14, 15B, 18C, 19A, 19F, 22F, 
23F, and 33F) and is now approved for use in all age groups in the 
United States (ACIP, 2023).

As there are at least 100 pneumococcus serotypes, increasing the 
number of vaccine serotypes in the PCV vaccines is more complex 
and expensive. In summary, both PPV and PCVs induce serotype-
specific immunity and their usage has been linked with the emergence 
of replacement serotypes (Weinberger et al., 2011; McElligott et al., 
2015; Kaur et al., 2016; Kawaguchiya et al., 2017). Nonetheless, the 
success of PCVs in reducing childhood mortality and morbidity due 
to pneumonia and invasive disease is significant, for example, see a 
recent review of pneumococcal disease in children in the United States 
(Walter and Smith, 2022).

2.1.2 Protein-based pneumococcal vaccines in 
clinical and pre-clinical trials

Despite the success of PCVs, the challenge of regular 
re-formulation, and the theoretical and practical challenges of 
including more serotypes means the search for protein antigens has 
continued, aimed at developing pneumococcal vaccines targeting 
conserved and universally present pneumococcal proteins to 
complement or ultimately substitute PCVs. A protein-based vaccine 
would theoretically be simpler and cheaper to make than a conjugate 
vaccine. Several protein antigens have been investigated in human 
trials, individually, and in multivalent formulations. Table  1 
summarizes antigens and vaccine candidates for pneumococcal 
diseases [Also recently reviewed by (Duke and Avci, 2023)].

Pneumolysin (Ply) is a cholesterol-dependent cytolysin that has 
haemolytic properties, and aids in bacterial pathogenesis and 
infection. Vaccination with a detoxified or non-toxic form of Ply 
(dPly) is known to confer protection against multiple serotypes in 
animal models (Alexander et al., 1994; Ogunniyi et al., 2001; Denoël 
et al., 2011). A genetically mutated pneumolysin derivative (PlyD1) 
was safe, robustly immunogenic, and induced neutralizing antibody 
responses in a phase 1 trial (NCT01444352) (Kamtchoua et al., 2013). 
More recently, a genetic toxoid of Ply with two amino acid mutations 
(G293S and L460D) termed Ply-D protected mice from the lethal 
challenge of various clinical pneumococcal isolates (Thanawastien 
et al., 2021).

Pneumococcal histidine triad protein D (PhtD) is a highly 
conserved adhesin protein. The PhtD-based vaccines protect 
immunized mice against NP and lung colonization of pneumococcus 
(Khan and Pichichero, 2012; Kaur et al., 2014b; Brookes et al., 2015; 
Ochs et  al., 2016). Combining PlyD1 and PhtD, and including 
PHiD-10 (conjugated to protein D of H. influenzae), Odutola et al. 
(2016, 2017, 2019) reported on phase 2 trials in African children 
(NCT01262872), while the same vaccine was assessed in toddlers in 
Czech republic for safety, immunogenicity, and non-inferiority to 
PCV-10 (Urbancikova et  al., 2017). None of these trials assessed 
protection against OM. Pneumococcal surface protein A (PspA) is a 
choline-binding protein that is located on the cell surface in 
approximately all pneumococcus strains and is involved in the 
complement-mediated clearance of bacteria. PspA was shown to 
be safe during phase I clinical trials (Briles et al., 2000b). However, 
PspA shows homology to the human cardiac myosin and must 
be  modified to prevent possible autoimmune disease or cardiac 
inflammation (Ginsburg et al., 2012). PspA recently underwent phase 
1a clinical trial as part of a multi-element vaccine alongside PlyD 

https://doi.org/10.3389/fmicb.2024.1345027
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TABLE 1 Potential vaccine antigens of Streptococcus pneumoniae at various stages of development.

Antigen(s) Putative antigen function/
other features

Adjuvant Current 
development stage

References

PhtD Histidine-triad protein D Aluminum hydroxide, 

aluminium phosphate, AS02

Phase 1 completed Brookes et al. (2015)

PlyD1 Cholesterol-dependent toxin Aluminum hydroxide Phase 1 completed Kamtchoua et al. (2013)

PlyD1 + PcpA + PhtD A trivalent vaccine containing Ply, PcpA, and 

PhtD

Aluminum hydroxide Phase 1 completed Brookes et al. (2015) and Ren 

et al. (2015)

PHiD-CV/dPly/PhtD-

10/30

Vaccine formulations containing 

pneumolysin toxoid (dPly) and PhtD each at 

either 10 μg (PHiD-CV/dPly/PhtD-10) or 

30 μg (PHiD-CV/dPly/PhtD-30).

Aluminum phosphate Phase 1 and Phase 1/2 safety 

and immunogenicity

completed,

Phase 2b infants vs. AOM,

Phase 2 carriage

and non-inferiority to PCV-10

Leroux-Roels et al. (2014), 

Prymula et al. (2014), 

Odutola et al. (2016, 2017), 

and Prymula et al. (2016)

PcpA,

PcpA + PhtD

Monovalent, and bivalent vaccine containing 

choline-binding protein A and PhtD

Aluminum hydroxide Phase 1 completed Bologa et al. (2012)

wSp Streptococcus pneumoniae whole-cell vaccine Aluminum hydroxide Phase 1 and 2 completed NCT02543892 (2018) and 

Keech et al. (2020)

PnuBioVax Detergent extract of TIGR4 strain with non-

toxic Ply

None Phase 1 completed (adults) Entwisle et al. (2017)

Salmonella Typhi 

expressing PspA

A live vector expressing pneumococcal 

surface protein A

None Phase 1 (dose-escalation trial) 

completed

Frey et al. (2013)

PsaA Pneumococcal surface adhesin A involved in 

bacterial adherence and virulence

Aluminum hydroxide, cholera 

toxin (CT),

nanogel based delivery system, 

bacterium-like particle (BLP) 

delivery system

Phase 1 completed Briles et al. (2000a), Kong 

et al. (2013), González-Miro 

et al. (2017), and Wang et al. 

(2018)

PspA+PlyD A bivalent vaccine containing PspA and PlyD Not available Phase 1a completed NCT04087460 (2022)

CpbA+ L460D 

pneumolysoid

A fusion protein consisting of the choline 

binding protein A peptide and L460D, a 

nontoxic pneumolysoid

Alum Animal studies Mann et al. (2014)

MAV A multiple-antigen vaccine (MAV) prepared 

from Streptococcus pneumoniae TIGR4 lysates

None Animal studies Chan et al. (2022)

Elongation factor Tu 

(EF-Tu)

Surface protein involved in the catalysis of 

aminoacyl-tRNA binding to the ribosome, 

inhibits protein synthesis

FCA Animal studies Nagai et al. (2019)

LytB A murein hydrolase involved in 

nasopharyngeal colonization and cell 

separation

Aluminum hydroxide Animal studies Ren et al. (2015) and Corsini 

et al. (2016)

PspAB1-5 A recombinant PspA-based protein vaccine 

consisting of the B region fragments from 

clades 1 to 5 of both families 1 and 2

Alum Animal studies Akbari et al. (2019)

Pneumococcal 

Δpep27ΔcomD whole 

cell vaccine

Whole-cell pneumococcus lacking pep27 and 

comD genes

None Animal studies Kim et al. (2019)

Pneumococcal 

TIGR4Δlgt whole cell 

vaccine

A whole-cell pneumococcal vaccine based on 

lgt-deficient TIGR4 strain

None Animal studies Jang et al. (2019)

BLP, bacterium-like particle; CpbA, choline-binding protein A; dPly, detoxified pneumolysin; EF-Tu, elongation factor Tu; FCA, Freund’s complete adjuvant; L460D, non-toxic 
pneumolysoid with the L460D substitution; LytB, an endo-β-N acetylglucosaminidase; lgt, prolipoprotein diacylglycerol transferase gene; NA, not available; OM, otitis media; PlyD1, 
detoxified pneumolysin derivative; PhtD, polyhistidine triad protein D; PhtE, polyhistidine triad protein E; PsaA, pneumococcal surface adhesin A; PcpA, pneumococcal choline 
binding protein A; PHiD, non-typeable Haemophilus influenzae protein D; PCV, pneumococcal conjugate vaccine; wSp, Streptococcus pneumoniae whole cell vaccine; WCA, whole cell 
antigen; μg, microgram.
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(NCT04087460, 2022). Pneumococcal choline-binding protein A 
(PcpA) is a surface-exposed protein that is conserved among different 
pneumococcal strains (Glover et al., 2008). A bivalent PcpA/PhtD 
vaccine was immunogenic and safe in humans during a phase 1 
clinical study (NCT01444339) (Bologa et  al., 2012), and induced 
functionally relevant antibodies (Ochs et al., 2016). A trivalent vaccine 
containing recombinant PcpA, PhtD, and PlyD1 (designed from 
serotype 6B) protected infant mice from the serotype 6A challenge 
(Verhoeven et al., 2014). This vaccine formulation was considered safe 
and immunogenic in a phase 1 study including adults, toddlers, and 
infants (NCT01764126) (Brookes et al., 2015). Furthermore, serum 
IgG antibody responses against PhtD, PcpA, and PlyD1 were in 
synchrony, indicating they are similarly immunogenic and therefore 
compatible with combining in a trivalent protein vaccine (Ren 
et al., 2015).

Another serotype-independent pneumococcal protein vaccine 
candidate called PnuBioVax™ is expected to offer broader coverage 
at a low unit price. This vaccine is formulated by fermenting a 
genetically modified S. pneumoniae TIGR cell substrate. Following 
harvesting, the protein antigens are detergent-extracted and purified 
using ion exchange chromatography (Cecchini et al., 2015). During 
phase 1 human trials (NCT02572635), this vaccine demonstrated 
good safety and immunogenicity profile (Entwisle et al., 2017; Hill 
et al., 2018).

Other antigens have been investigated in animal models and show 
promise for inclusion in a multivalent protein vaccine. Kong et al. 
developed a PspA vaccine with an intranasal vaccine delivery system 
based on a nanometre-sized hydrogel (nanogel) composed of a 
cationic cholesteryl group-bearing pullulan (cCHP). Intranasal 
vaccination with the cCHP-PspA vaccine protected mice from a lethal 
S. pneumoniae Xen10 challenge by reducing the invasion and 
colonization of bacteria in the upper and lower respiratory tracts 
(Kong et al., 2013). Wang et al. utilized a bacterium-like particle (BLP) 
delivery system designed to express PspA on the BLP surface. 
Intranasal delivery of this vaccine-induced PcpA-specific IgG and IgA 
antibodies in mice and protected the animals from a lethal challenge 
with S. pneumoniae (Wang et al., 2018). A recombinant PspA-based 
protein vaccine (PspAB1-5) consisting of the B region fragments from 
clades 1 to 5 of both families resulted in improved C3 complement 
component depositioning in immunized mice. The antibodies 
induced were cross-reactive against pneumococci from clades 1, 2, 
and 5. Consequently, the PspA vaccines based on the B region of all 
clades may be able to provide better protection against S. pneumoniae 
(Akbari et al., 2019).

Elongation factor Tu (EF-Tu) is a universally expressed surface 
protein that is highly conserved in different S. pneumoniae. EF-Tu has 
chaperone activity and mediates peptide biosynthesis, protein folding, 
and cellular stress response (Gregersen and Bross, 2010). A vaccine 
containing recombinant EF-Tu from S. pneumoniae strain D39 
protected immunized mice against lethal challenges with serotype 2 
and a multidrug-resistant serotype 15A, and increased the levels of 
cytokines including TNFα, IL-6, IL-17, and IFN-γ. The anti-EF-Tu 
serum demonstrated an enhanced phagocytic activity against 
S. pneumoniae, irrespective of its serotypes (Nagai et al., 2019). Hence, 
EF-Tu presents as a potential broad-spectrum vaccine candidate 
against common pneumococcal serotypes. LytB is an endo-β-N 
acetylglucosaminidase involved in the formation of biofilm, separation 
of daughter cells, and pathogenesis (Bai et al., 2014). An anti-LytB 

antiserum demonstrated significant protection in mice from a lethal 
pneumococcal challenge (Wizemann et al., 2001). In another study 
mice immunized with LytB showed enhanced complement-mediated 
immunity against various pneumococcal serotypes. Anti-LytB serum-
stimulated neutrophil-mediated phagocytosis against S. pneumoniae 
(Corsini et al., 2016). Thus, LytB could be an effective antigen in a 
pneumococcus vaccine.

In an interesting approach, Mann et al. fused peptides of choline-
binding protein A (CbpA) with a non-toxic Ply (L460D). In mice, this 
fusion was more effective than L460D at reducing nasal colonization, 
OM, pneumonia, OM, and meningitis (Mann et al., 2014).

2.1.3 Live vector based pneumococcal vaccine
Shi et  al. developed three live recombinant Salmonella Typhi 

vectors expressing PspA pneumococcal protein. These live vectors 
were shown to be highly immunogenic in mice and highly susceptible 
to killing in human blood (Shi et al., 2010). In a phase I clinical trial, 
administration of these live attenuated Salmonella strains was safe and 
well-tolerated in healthy adult subjects. The immunogenicity profile 
of these live vectors was limited perhaps because of pre-existing cross-
reactive antibodies, therefore further genetic manipulation is needed 
to develop a candidate with improved immunogenicity (Frey 
et al., 2013).

2.1.4 Whole-cell vaccines
Whole-cell vaccines are an attractive alternative to 

polysaccharide-based vaccines because they take advantage of 
whole-cells expressing various protein antigens without involving 
the purification of individual antigens. Live-attenuated or killed 
whole-cell vaccines from unencapsulated S. pneumoniae can provide 
serotype-independent protection in animal models. One caveat is 
that use of live attenuated strains must be  used cautiously in 
populations with a risk of impaired or sub-optimal immune status. 
The pneumococcal whole-cell vaccine (wSp) consists of a killed, 
unencapsulated pneumococcal strain delivered with an alum-based 
adjuvant. The purpose was to provide a cost-effective vaccine with 
broader coverage. In phase 1 studies in healthy adults in the 
United States (NCT01537185), the vaccine demonstrated a good 
safety, tolerability, and immunogenicity profile (Keech et al., 2020). 
It has also been tested in phase 1 and 2 trials in healthy adults and 
toddlers in Kenya to evaluate its safety and immunogenicity which 
was reported to be satisfactory (NCT02543892). Although it has not 
been assessed for its efficacy in the human paediatric OM population, 
a subcutaneous dose of wSp decreased the density of pneumococcus 
in the ME of mice, however, it could not protect from S. pneumoniae-
induced OM (Manning et al., 2019). A whole-cell vaccine consisting 
of an ethanol-killed capsule-deficient S. pneumoniae mutant 
prevented the colonization of serotype 19F and 4 strains in mice (Xu 
et al., 2014; Jang et al., 2019). Chan et al. reported a multiple-antigen 
vaccine (MAV) based on bacterial lysates. In addition to having the 
advantages of a whole-cell vaccine, the preparation of this vaccine 
improved the amount of surface antigens as it had heat shock 
proteins (Hsps), PspA, and Ply proteins. In animal studies, MAV was 
able to elicit functional antibody production against multiple 
serotypes of S. pneumoniae, including non-vaccine serotypes (Chan 
et al., 2022). Based on these observations, it can be anticipated that 
the MAV approach may confer serotype-independent protection 
against S. pneumoniae.
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Immunization of mice with a live attenuated whole-cell vaccine 
based on S. pneumoniae D39 (lacking pep27 and comD genes to 
eliminate the reversion of the bacterium to wild-type phenotype) 
showed significantly higher IgG titers against serotype D39. This 
immunization also reduced colonization regardless of the serotype. 
Furthermore, this strain depicted a good safety profile in both normal 
and immunocompromised mice. Thus, the Δpep27ΔcomD strain 
presents efficiency and safety in preventing pneumococcal infections 
(Kim et  al., 2019). Another live attenuated vaccine strain has the 
pro-lipoprotein diacylglycerol transferase (lgt) gene deletion from the 
capsule of the pneumococcal strain TIGR4 (TIGR4Δlgt). This strain 
evokes a significantly reduced inflammatory response and is reduced 
in virulence. Intranasal immunization of mice resulted in protection 
against invasive pneumococcal infections (Jang et al., 2019). Thus, 
TIGR4Δlgt is an attractive broad-spectrum vaccine candidate.

2.2 NTHi vaccines against OM

NTHi commonly colonizes the URT and is predominantly present 
in the upper respiratory nasopharyngeal microbiota. It is associated 
with various non-invasive infections including OM, non-bacteremic 
pneumonia, and sinusitis (Van Eldere et al., 2014). NTHi is the main 
culprit of recurrent and chronic OM (Pichichero et al., 2008; Casey 
et al., 2010; Jalalvand and Riesbeck, 2018). As discussed earlier, PCVs 
have contributed to the increased proportion of OM associated with 
NTHi strains (Van Eldere et al., 2014). Prevention of NTHi-associated 
OM could reduce the global burden of OM by an estimated 350 
million fewer annual cases of AOM episodes (Barenkamp, 2013). 
Since NTHi improves the NP colonization of Mcat (Andrade et al., 
2018), therefore, to infect the ME and establish polymicrobial OM a 
symbiotic relationship between Mcat and NTHi is suspected 
(Armbruster et  al., 2010). Given these observations, it can 
be  anticipated that effective vaccine strategies specifically against 
NTHi-induced OM may also confer an indirect benefit for the 
prevention or resolution of polymicrobial OM.

The search for a safer broadly cross-reactive immuno-protective 
NTHi antigen has been expanding recently, however, to achieve this 
goal there are significant obstacles, mainly due to the heterogeneous 
nature of moieties present on the surface of NTHi: most surface-
exposed antigens are variably present across strains, antigenically 
variable, phase variable, or a combination of more than one of these. 
At present, no NTHi-specific vaccines are licensed and the only NTHi 
antigen incorporated in a licensed vaccine is protein D as the protein 
conjugate in Synflorix™ (PHiD-CV). PhiD-CV is also in experimental 
vaccines with other NTHi antigens. Both PHiD-CV and PCV-10 likely 
reduce all-cause OM, but there is not strong evidence that Protein D 
in this formulation reduces carriage of NTHi or OM disease caused 
by NTHi (de Sévaux et al., 2020; Beissbarth et al., 2021). Given these 
observations and the expansive heterogeneity of NTHi strains, a 
multicomponent vaccine is essential to confer adequate protection 
against NTHi (Price et al., 2015; Jalalvand and Riesbeck, 2018).

2.2.1 Recent vaccine candidates against NTHi
Numerous NTHi vaccine candidates have been investigated in the 

past years. In this section, we  review only those candidates who 
presented great potential to undergo further development.

Many NTHi proteins including H. influenzae adhesin protein 
(Hap), H. influenzae autotransporter (Hia), Protein D (PD), outer-
membrane protein 6 (P6), and outer-membrane protein 26 (OMP26) 
have been studied by several groups for the prevention of NTHi 
disease (see review by (Khan et al., 2016)). Antisera raised in guinea 
pigs against high molecular weight (HMW) proteins HMW1/HMW2 
or Hia proteins showed opsonophagocytic activity against a wide 
range of NTHi strains (Winter and Barenkamp, 2014). Given these 
observations, a vaccine formulated with HMW1/HMW2 and Hia 
proteins may protect against a broader range of NTHi strains. 
Pre-clinical studies with these proteins revealed that PD immunization 
with OMP26 produced lowered antibody responses against PD, 
however, PD immunization with P6 did not mask PD immune 
responses (Michel et  al., 2022), emphasizing the necessity of 
compatibility studies when combining antigens. Mice immunized 
with a truncated adhesin protein F (PF) showed faster clearance of 
NTHi infections compared to mice immunized with a control peptide 
(Jalalvand et al., 2014). Type IV pili (Tfp) are crucial for NTHi biofilm 
development, adherence, competence, and twitching motility (Das 
et al., 2017). Antisera raised against recombinant soluble PilA (rsPilA) 
dispersed in vitro formed NTHi biofilms and blocked NTHi-induced 
OM in chinchilla (Novotny et al., 2015b, 2017).

A recombinant fusion protein consisting of immunologically 
important components of protein E (PE) and PilA was evaluated in 
pre-clinical trials. PE-PilA-induced anti-PilA antibodies halted NTHi 
biofilm development and disrupted in vitro established biofilms, as 
seen for rsPilA. After the intranasal NTHi challenge, NP colonization 
was significantly reduced in immunized mice, and in chinchillas, 
symptoms of experimental OM were notably hindered (Ysebaert et al., 
2019). A multi-component NTHi vaccine consisting of a free 
recombinant PD and a recombinant fusion protein PE-PilA was tested 
in a phase 1 clinical trial in healthy adults (NCT01657526), with a 
good safety profile and acceptable reactogenicity (Leroux-Roels et al., 
2016). A further development added the Mcat antigen UspA2 to this 
combination, to test a multi-component vaccine in two-dose and 
three-dose phase 1 and 2 clinical trials, showing promising safety and 
immunogenicity profiles in healthy adults and adults aged 50–71 with 
a history of smoking (De Smedt et al., 2021; Galgani et al., 2022).

Other vaccine candidates have not yet been tested in human trials 
but show promise in a range of animal studies. Intracellular elongation 
factor thermal-unstable (EF-Tu) was identified recently as a novel 
NTHi surface protein (Thofte et al., 2018); and it was reported that 
antibodies against EF-Tu can result in complement-dependent killing 
of NTHi (Thofte et al., 2019), indicating the potential of this protein 
as a NTHi vaccine antigen. To date, no further investigations in animal 
models have been reported.

In a parallel approach to the recombinant PE-PilA, Novotny et al. 
found that ChimV4, a fusion of P5 peptide and rsPilA resolved NTHi-
induced OM when delivered transcutaneously (Novotny et al., 2015a). 
The formulation also prevented OM in a viral-bacterial model of 
experimental disease. Transcutaneous immunization with 
chimV4 + dmLT significantly increased mature B-cell phenotypes and 
antibody-secreting cells within nasal-associated lymphoid tissues 
(Novotny et al., 2017; Novotny and Bakaletz, 2020). A bioinformatics 
approach to identify candidate peptides could result in more rapid 
development of polyvalent protein antigens (see section 2.2.5 on 
recombinant polypeptide antigens).
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One challenge for mucosal pathogens is eliciting a response to 
target bacteria at the surfaces. Building on previous studies that 
showed NTHi P6 as a promising candidate (DeMaria et al., 1996; 
Bakaletz et al., 1999; Kodama et al., 2000;), Kodama et al. found that 
prior treatment with CCL20 enhanced murine responses and bacterial 
clearance following intranasal P6 immunization (Kodama et  al., 
2011a). Similarly, P6 was tested with FMS-like tyrosine kinase receptor 
3 ligand as a mucosal adjuvant and this combination also improved 
nasopharyngeal clearance of NTHi and dendritic cell recruitment 
(Kodama et  al., 2011b; Kodama and Suzuki, 2011). Nasal 
immunization with P6 protein alone produced minimal or no antigen-
specific immune responses and hence no effective protection against 
NTHi (Bertot et al., 2004; Abe et al., 2006; Noda et al., 2011). More 
recently, when combined with cCHP, a cationic cholesteryl pullulan 
nanogel, cCHP-P6 nanogel nasal vaccine induced P6-specific mucosal 
IgA and serum IgG responses without additional biologically active 
adjuvant. The P6-specific IgG titers were equivalent to those generated 
by the intramuscularly administered vaccine containing alum 
adjuvant (Nakahashi-Ouchida et al., 2022). This highlights that route 
of delivery, and adjuvant choice are crucial to assess vaccines to reduce 
disease at mucosal surfaces.

2.2.2 Lipo-oligosaccharides (LOS) as NTHi 
vaccine candidates

LOS are a major component of the Gram-negative bacterial outer 
membrane and thus, in theory, they are an attractive target for vaccine 
development. In NTHi, five different antigenically heterogeneous LOS 
serotypes I-V are produced (Campagnari et  al., 1987), but these 
glycans are phase-variable within a strain and occur during infection 
(Fox et al., 2014). Despite this, several studies examined LOS as a 
candidate vaccine. In a mouse model of NP colonization, intranasal 
immunization with detoxified LOS-tetanus toxoid (dLOS-TT) 
demonstrated a substantial reduction of the same LOS type III NTHi 
strains as well as types IV and V, but only 50% reduction of type I and 
29% reduction of type II NTHi strains (Hirano et al., 2003). Parenteral 
immunization with dLOS conjugates in chinchillas produced anti-LOS 
antibodies in serum or ME which were bactericidal and 
opsonophagocytic and lowered homologous NTHi-induced OM (Sun 
et al., 2000). Notably, dLOS was tested in a phase I study of healthy 
adults vaccinated intramuscularly with dLOS-TT resulting in 
increases in serum antibodies, with acceptable safety. However, no 
further human trials have proceeded. An alternate approach is to 
target a glycan present in bacteria but absent from host tissues. 
Ketodeoxyoctonic acid (KDO) is present in most lipo-polysaccharides 
(LPS)/LOS, as well as in some CPS. A monoclonal antibody, 6E4, 
raised against KDO is bactericidal against 12 out of 33 tested strains 
of NTHi in vitro (Apicella et  al., 2018). Using a glycoconjugate 
composed of either multiple KD residues or a KDO-N-acetyl-
lactosamine conjugated to an immunogenic protein may be  an 
approach to develop a component of a vaccine that would target many 
bacterial species.

2.2.3 Outer membrane vesicles (OMVs) as NTHi 
vaccine candidates

OMVs produced by Gram-negative bacteria are enriched in outer 
membrane components, including major and minor outer membrane 
proteins and LOS. The functional activity of NTHi OMV-specific 
antisera and the protective ability of NTHi OMVs as vaccine antigens 

in the chinchilla OM model were tested. Immunization of chinchillas 
with OMVs isolated from HMW1/HMW2- and Hia- Hia-expressing 
NTHi prevented experimental OM (Winter and Barenkamp, 2017). 
In another study, immunization of NTHi-derived OMVs along with 
CpG-MPLA adjuvant induced the production of protective antibodies 
and cytokines in mice (Behrouzi et al., 2020). Several licensed and 
effective vaccines targeting meningococcal disease are based on 
OMVs. The presence of immunodominant proteins can lead to strain-
specific responses, but either the removal of strain-specific antigens or 
the addition of conserved antigens can address this problem (Pizza 
et al., 2020). This approach may be feasible for both NTHi and Mcat 
but requires significant development.

2.2.4 Lipidated NTHi antigens
Adding a lipid moiety to a recombinant protein is expected to 

increase the immunogenicity through Toll-Like Receptor 2 (TLR2) 
signaling of antigen-presenting cells and T-helper 17 cells (Th17) to 
evoke or enhance cellular responses in the nasal-associated lymphoid 
tissue (NALT). Recently, the effects of lipidation vs. non-lipidation of 
recombinant P6 and OMP26 were compared in a mouse model. 
Lipidated P6 and OMP26 elicited nearly 10- to 100-fold higher IgG 
antibody levels, and lipidated antigens also reduced NP colonization 
and ME bullae NTHi density more than non-lipidated formulation 
(Kaur and Pichichero, 2022). Therefore, lipidation of NTHi antigens 
represents a promising approach in the development of novel NTHi 
vaccine formulations (Table 2).

2.2.5 Recombinant polypeptides as vaccine 
candidates for NTHi, and use of reverse 
vaccinology

As noted above, combining protein antigens can be achieved by 
identifying immunologically relevant epitopes, and generating fusion 
proteins (see PE-PilA and ChimV4). Since bacterial genomes have 
been available, bioinformatics analysis has identified putative surface-
exposed proteins, in an approach described as “reverse vaccinology,” 
an approach that contributed to antigens in the GlaxoSmithKline 
vaccine against serogroup B meningococcus (Masignani et al., 2019). 
Significant improvements in bioinformatic analysis tools, availability 
of increasing numbers of genome sequences for each bacterial species, 
and increased understanding of immunologically relevant sequences 
and structure allow more sophisticated and rapid screening for 
candidate proteins, domains, or short peptide sequences. Recently 
Whitby et al. identified 56 putative surface proteins conserved in 26 
genomes (selected to represent diverse strains). Potential surface 
exposed regions were identified using molecular modeling. Antisera 
were raised in rats against 10 synthetic peptides corresponding to 
surface-exposed regions highly conserved in strains. Five of the 
antisera were protective in the infant rat model of invasive NTHi 
infection establishing their in vivo efficiency (Whitby et al., 2015). A 
different bioinformatics platform identified two similar proteins as 
being future NTHi vaccine candidates (D’Mello et al., 2019).

The same group extended their strategy to produce a single 
polypeptide comprising 9 unique peptides from 6 different surface 
proteins. Immunization of chinchillas with this polypeptide resulted 
in faster clearance of NTHi-induced OM (Whitby et al., 2020). This 
approach has the potential to be applied to other pathogens that have 
complex diversity in surface antigens, including Mcat. In the coming 
years, it can be anticipated that high throughput bacterial genomics, 
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TABLE 2 Potential vaccine antigens of non-typeable Haemophilus influenzae at various stages of development.

Antigen Putative antigen 
function/other 
features

Adjuvant Current development stage References

Protein D (PD) Glycerophos-phodiesterase, 

binds IgD

AlPO4 + MPL, Freund’s 

adjuvant, OMVs

Animal studies, licensed as antigenic carrier 

protein in PHiD-CV pneumococcal conjugate

Kennedy et al. (2000), 

Forsgren et al. (2008), and 

Davoudi Vijeh Motlagh 

et al. (2016)

PD + PE-PilA A trivalent vaccine 

containing10 μg PD and 10 μg 

PE-PilA fusion

Alum, AS01E Phase 1 and 2 completed Leroux-Roels et al. (2016) 

and Wilkinson et al. (2019)

PD + PE-PilA+UspA2 A multicomponent vaccine 

containing antigens of three 

surface proteins from NTHi 

and one from Mcat

AS01E Phase 1 and 2 completed Van Damme et al. (2019), 

De Smedt et al. (2021), and 

Galgani et al. (2022)

Hap Adhesin, IgA

protease-like

autotransporter protein

None or mutant cholera toxin 

(CT-E29H)

Animal studies.

Immunization with Hap protected against 

intranasal challenge of NTHi in mice.

Cutter et al. (2002) and 

Bafroee et al. (2016)

Hia Adhesin, Hsf in type b

strains.

Freund’s adjuvant Animal studies.

Immunization with recombinant adenovirus 

vaccines expressing the

Hia protected against NTHi OM in chinchillas.

Winter and Barenkamp 

(2009), and Winter and 

Barenkamp (2014)

HMW1, HMW2 Adhesins Freund’s adjuvant Animal studies and in vitro human specimen tests.

Immunization with HMW1/HMW2 mixture 

partially protected against NTHi OM in 

chinchillas.

Winter and Barenkamp 

(2003, 2014)

Protein E (PE) Adhesin Alum Animal studies.

Induced protection in a mouse pulmonary 

challenge model with NTHi

Ronander et al. (2009) and 

Behrouzi et al. (2017)

Protein F (PF) Adhesin, ABC transporter Freund's adjuvant, Alum Animal models and in vitro human specimen tests.

Immunization with protein F protected against the 

intranasal challenge of an NTHi strain in mice.

Jalalvand et al. (2014)

PilA2 Type IV

Pilus, involved in

adherence,

twitching

motility and

biofilm

formation

dmLT (A double mutant 

form of E. coli heat-labile 

enterotoxin)

Animal studies. The recombinant soluble form of 

PilA inhibited NTHi biofilm formation in vitro

and hindered onset of NTHi-induced OM in a 

chinchilla model.

Novotny et al. (2015a) and 

Mokrzan et al. (2016, 2018)

PE-PilA fusion A fusion protein containing 

PE and PilA sequence

Alum, ASO1, ASO4 Animal studies.

PE-PilA immunized mice showed significant 

protection against intranasal NTHi challenge. 

Passive transfer of antiserum to Protein E-PilA 

prevented NTHi-induced OM in chinchillas.

Ysebaert et al. (2019)

P5 fimbrin Adhesin,

binds mucin, OMP A like

protein

Freund's adjuvant Animal studies and in vitro human specimen tests.

Immunization with P5 enhanced lung clearance 

and ME clearance of NTHi in rats.

Immunization with P5 enhanced ME and NP 

clearance of NTHi in chinchillas.

Bakaletz et al. (1999), 

Novotny et al. (2002), and 

Kyd et al. (2003)

ChimV4 A fusion protein containing 

P5 and rsPilA

dmLT Animal studies Novotny et al. (2015a, 

2017) and Novotny and 

Bakaletz (2020)

(Continued)
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TABLE 2 (Continued)

Antigen Putative antigen 
function/other 
features

Adjuvant Current development stage References

P6 Peptidoglycan-associated 

lipoprotein involved in 

immunomodulation and 

induction of bactericidal 

antibody responses

Freund’s adjuvant, alum, CT, 

α-galactosylceramide, FMS-

like tyrosine kinase receptor 

3 ligand as a mucosal 

adjuvant

Animal studies and in vitro human specimen tests.

Immunization with P6 protected against NTHi 

OM in chinchillas.

DeMaria et al. (1996), 

Bakaletz et al. (1999), and 

Kodama et al. (2000, 

2011b)

P6 + CCL20 A nasal NTHi vaccine 

containing P6 and the 

chemokine CCL20

None Animal studies Kodama et al. (2011a, 

2011b)

cCHP-P6 nanogel 

vaccine

A cationic cholesteryl 

pullulan-based nasal vaccine 

containing P6 protein

None Animal studies Nakahashi-Ouchida et al. 

(2022)

OMP 26 Translocation of OMPs and 

LOS

Freund’s adjuvant, Ribi 

adjuvant, S5 (aluminium 

salts, monophosphoryl lipid 

A, and QS21)

Animal studies and in vitro human specimen tests. 

Immunization with OMP26 enhanced lung 

clearance of NTHi in rats.

Immunization with OMP26 induced clearance of 

NTHi

from the chinchilla ME and NP.

Kyd and Cripps (1998), 

Kyd et al. (2003), and 

Pichichero et al. (2010)

Lipidated OMP26 & P6 Lipidated recombinant P6 and 

OMP26

Aluminium hydroxide, 

Curdlan

Animal studies.

Lipidation of antigens enhanced immunogenicity 

by stimulation of TLR2 receptors and Th17 cells 

and, consequently improved protection against NP 

colonization and ME infections caused by NTHi in 

mice

Kaur and Pichichero 

(2022)

EF-Tu Intracellular elongation factor 

thermal-unstable, surface 

protein

Freund’s adjuvant Animal studies and in vitro human specimen tests. Thofte et al. (2018, 2019)

Surface-exposed 

proteins (SEPs)

A vaccine containing synthetic 

peptides corresponding to 

some highly conserved 

surface-exposed regions

Freund’s Adjuvant Animal studies Whitby et al. (2015)

Hi Poly 1 A bacterial vaccine 

polypeptide, comprising 9 

unique peptides from 6 

different surface proteins of 

NTHi

NA Animal studies.

Hi Poly 1-immunized chinchillas cleared NTHi 

infection faster than the control group.

Whitby et al. (2020)

KDO Ketodeoxyoctanoate, a sugar 

unique to Gram-negative 

bacteria which is used to 

decorate LOS during active 

infection

NA In vitro assays. Monoclonal antibody raised against 

an NTHi KDO was shown to be bactericidal 

against 12 out of 33 NTHi strains tested.

Apicella et al. (2018)

OMVs Outer membrane vesicles Freund’s Adjuvant, MPLA-

CpG adjuvant

Animal studies. OMV-immunized animals were 

completely protected against OM and OMV-

specific antisera had opsonophagocytic activity 

against many HMW1/HMW2-expressing NTHi 

strains.

Winter and Barenkamp 

(2017) and Behrouzi et al. 

(2020)

ABC, adenosine triphosphate-binding cassette; AS01, adjuvant system 01; AS04, adjuvant system 04; AS0E, adjuvant system 0E; CT, cholera toxoid; cCHP, cationic cholesteryl pullulan; 
CCL20, Chemokine ligand 20; CpG, Unmethylated cytosine–guanine dinucleotide; dmLT, double mutant heat-labile toxin of E. coli; FMS, feline mcDonough sarcoma; Hap, 
haemophilus adhesin protein; Hia, Haemophilus influenzae adhesin; HMW, high molecular weight protein; Hi Poly 1, Haemophilus influenzae polypeptide 1; IgD, Immunoglobulin D; 
KDO, ketodeoxyoctonic acid; LOS, lipo-oligosaccharide; MPL/MPLA, monophosphoryl lipid A; Moraxella catarrhalis, Moraxella catarrhalis; ME, middle-ear; NA, not available; NP, 
nasopharynx; NTHi, non-typeable Haemophilus influenzae; OM, otitis media; OMP, outer membrane protein; OMVs, outer membrane vesicles, P5, outer membrane protein 5; P6, outer 
membrane protein 6; PilA, pilus A; PhtD, pneumococcal histidine triad D; QS-21, Quillaja saponaria derived saponin 21; SEPs, Surface-exposed proteins; Th17, T helper 17 cells; TLR2, 
toll-like receptor 2.
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computational-based vaccine candidate identification approaches, and 
experimental validation will identify additional vaccine candidates 
for NTHi.

2.3 Mcat vaccines

Mcat is a Gram-negative diplococcus that is typically present in 
the NP of most infants and children. Mcat is commonly associated 
with OM, however, the exact percentage of Mcat-induced OM differs 
between studies because of alterations in sample collection, methods 
of bacterial detection, and geographical location. It is the first 
otopathogen that colonizes the NP and the first otopathogen to initiate 
an episode of OM (Kaur et  al., 2014a; Ngo et  al., 2016), in some 
susceptible populations colonizing within a month of birth (Beissbarth 
et al., 2021). Mcat, like NTHi, is also a key pathogen in exacerbations 
of COPD (Murphy et al., 2019). Mcat can be treated with antibiotics, 
but almost all strains are now beta-lactamase positive, potentially 
promoting the survival of otherwise beta-lactam-sensitive bystander 
bacteria (Verduin et al., 2002).

Mcat vaccine can help prevent NTHi and pneumococcal 
infections by excluding a potential co-pathogen that can induce 
passive protection from β-lactam antibiotic therapy (Perez and 
Murphy, 2017). However, Mcat vaccine development is lagging behind 
that of S. pneumoniae and NTHi. Learning from the NTHi vaccine 
approach, it is likely that an effective Mcat vaccine may need multiple 
antigens, as it also has a range of antigenically and phase variable 
antigens. Nevertheless, various factors deter the progress of Mcat 
vaccine development, including the absence of a known correlate of 
protection and a suitable animal model mimicking Mcat infection in 
humans (Perez and Murphy, 2019) (and see section below on animal 
models). Regardless of these barriers, noteworthy strides have been 
made in the last few years in the identification of potential antigens, 
efficient adjuvant formulations, and immunization routes using both 
computational and experimental methods [see Table 3 and a review 
by (Perez and Murphy, 2017)]. However, several potential vaccine 
candidates showed initial promise, but for which there are few recent 
reports of progress. This may reflect the lower priority that Mcat 
appears to have or the lack of high-throughput animal models of OM 
that can be used to test their efficacy.

2.3.1 Adhesin proteins as vaccine candidates
As discussed earlier, presently only one Mcat protein antigen has 

been tested in clinical trials (UspA2). UspA2 interacts with host 
structures and extracellular matrix proteins and induces bacterial 
adherence and serum resistance (Singh et al., 2010; Su et al., 2013; 
Singh et  al., 2015). Vaccination with UspA2 induced protective 
antibodies in mice (Chen et al., 1996). UspA2 has been reported to 
have variations in sequence and structure (Su et al., 2013), which may 
affect antibody recognition and binding. Despite this, anti-UspA2 
antibodies raised in mice, rabbits, and guinea pigs were able to induce 
complement-mediated killing of many, but not all Mcat strains of 
different origins (Ysebaert et  al., 2021). The NTHi-Mcat vaccine 
containing UspA2 was immunogenic in the phase 1 clinical trial, with 
a satisfactory safety profile both in healthy individuals and adults with 
a smoking history (Van Damme et  al., 2019). A 4-year follow-up 
(NCT03201211) found that immune responses to NTHi antigens 
persisted over an extended period, whereas UspA2 did not (De Smedt 

et al., 2021). However, in all human trials to date, baseline titers of 
serum antibodies against UspA2 are relatively high, suggesting either 
natural immune responses to UspA2 or similar proteins in Mcat, or 
cross-reactivity with an antigen from another source. This observation 
complicates the interpretation of data in clinical trials on the 
persistence of serum antibody responses. In a randomized, placebo-
controlled, phase 2b trial (NCT03281876) of adults with a history of 
acute exacerbations of COPD, this vaccine showed good safety, 
however, did not demonstrate efficacy in lowering the yearly rate of 
severe or moderate exacerbations of COPD (Andreas et al., 2022; 
Arora et al., 2022).

2.3.2 Mcat vaccine antigens validated by reports 
of human natural responses

Several antigens have shown promise in early animal trials but 
have few recent reports. This includes Hemagglutinin Moraxella IgD 
binding protein (Hag/MID), PilA2 (the major protein subunit of Tfp), 
and outer-membrane protein CD (OMP CD). However, they have 
been identified as targets of natural antibody production in COPD 
patients, or children (LaFontaine et al., 2009; Ren et al., 2019). OMP 
CD is an adhesin and a porin protein (Murphy et  al., 2003) with 
surface-exposed epitopes and is considered conserved among different 
Mcat strains (Sarwar et  al., 1992; Murphy et  al., 1993). Murine 
immunization with OMP CD increased Mcat clearance following 
pulmonary challenge (Liu et al., 2007). Hag/MID is an OMP involved 
in human erythrocyte agglutination (Pearson et al., 2002; Forsgren 
et  al., 2003; LaFontaine et  al., 2009). Hag/MID shows sequence 
diversity among different strains, however, the adhesive domain 
region is conserved. A truncated Hag/MID induced a protective 
response in mice (Forsgren et al., 2004). PilA2 was present in 57.5% 
of 106 tested clinical Mcat isolates (Luke-Marshall et al., 2011). It was 
required for the adherence of Mcat to in vitro cultured human 
epithelial cells and NP colonization in a chinchilla model (Luke et al., 
2004, 2007). At present, no data is available on measuring the immune 
responses to the PilA2-based vaccine in animal models or humans. 
Ren et al. studied natural antibody production against OMP CD, Hag, 
and PilA2 in stringently defined otitis-prone (sOP) children compared 
to non-otitis-prone children (NOP). All proteins elicited antibodies, 
but the sOP population showed reduced serum antibody responses 
(Ren et al., 2019). Serum and sputum sample analysis from COPD 
patients revealed that a Hag/MID domain encompassing amino acids 
706 to 863 was a target of serum IgG and sputum IgA (LaFontaine 
et al., 2009).

2.3.3 Mcat vaccine antigens with animal data but 
no recent reports

Moraxella catarrhalis-adherence protein (McaP) is an adhesin and 
an autotransporter having esterase and phospholipase B activities 
(Timpe et al., 2003). Moreover, this protein is highly conserved as 
98–100% amino acid sequence similarity was observed among 8 
studied strains (Timpe et al., 2003; Lipski et al., 2007). Mouse anti-
Mcap serum hindered the binding of Mcat and recombinant E. coli 
expressing McaP to human respiratory epithelial cells (Timpe et al., 
2003; Lipski et al., 2007). Outer-membrane protein E (OMP E) is a 
porin and is involved in the binding and transport of fatty acids. Gene 
sequence analysis showed that the ompE gene stayed stable during the 
colonization process (Martin et al., 1993). OMP E also expressed a 
highly conserved surface epitope (Bhushan et  al., 1997). Further 
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TABLE 3 Potential vaccine antigens of Moraxella catarrhalis at various stages of development.

Antigen Putative antigen 
function/other 
features

Adjuvant Current development 
stage

References

UspA2 Adhesin and autotransporter;

involved in serum resistance 

and

other virulence mechanisms

QS-21, Conjugated to 

dLOS + Ribi-700

Phase 2 completed Tan et al. (2006), Ysebaert et al. 

(2021), Andreas et al. (2022), and 

Arora et al. (2022)

OMP CD Adhesin, binds mucin Alum, MPL + Alum, QS-21, 

conjugated to dLOS + Ribi-

700, IFA, AdDP

Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Murphy et al. (1999, 2005) and 

Liu et al. (2007)

Hag/MID Functions as an adhesin and 

hemagglutinin, binds IgD

CFA/IFA Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Forsgren et al. (2004), Bullard 

et al. (2005), and LaFontaine 

et al. (2009)

MhaB1, MhaB2 Adhesin CFA/IFA Animal studies. Enhanced lung

clearance of

bacteria in

immunized chinchilla (CNCM).

Balder et al. (2011) and Shaffer 

et al. (2013)

CysP The substrate binding protein of 

ABC transport system, binds 

sulfate

IFA Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Murphy et al. (2016)

AfeA Substrate binding protein of an 

ATP binding cassette (ABC) 

transporter, binds ferric ions

CFA/IFA Animal studies. Induced protective 

responses in the mouse pulmonary 

clearance model following challenge 

with Mcat.

Murphy et al. (2017)

OppA SBP of ABC transporter, binds 

peptides

CT Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Yang et al. (2011) and Ren et al. 

(2019)

SBP2 Substrate binding protein of an 

ABC transporter, binds arginine

IFA Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Otsuka et al. (2014, 2016)

Msp22 Surface lipoprotein, binds heme IC3, IFA Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Ruckdeschel et al. (2008) and 

Smidt et al. (2013)

Msp75 Homology to succinic 

dehydrogenase

CT Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Ruckdeschel et al. (2008, 2009)

M35 Porin, involved in the uptake of 

energy resources

None Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Easton et al. (2005, 2008, 2011)

dLOS Adhesin, endotoxin Conjugated TT or 

HMP + Ribi-700, Conjugated 

CRM9 + CT,

Conjugated CRM9 + Ribi-700

Animal studies. Enhanced lung

clearance of

bacteria in

immunized mice (MPCM).

Jiao et al. (2002), Yu and Gu, 

(2005, 2007), and Ren et al. 

(2011a)

BamA Outer membrane protein 

assembly factor

NA Predicted through in silico analysis Soltan et al. (2021)

LptD LPS assembly protein NA Predicted through in silico analysis Soltan et al. (2021)

(Continued)
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investigations are needed to gain a clear understanding of McaP and 
OMP E immunogenicity, its different antigenic domains, and the 
protective immune responses they elicit. M35 is an OMP that acts as 
a general porin and is essential for energy source uptake for Mcat 
(Easton et  al., 2005). M35 is suggested to be  essential for in vivo 
colonization and resistance mechanisms (Easton et al., 2008). M35 
gene sequence showed high conservation (99.6–100%) among 18 
tested isolates. In immunoblot analysis, mouse anti-M35 serum 
displayed binding to whole-cell protein preparations from all the 
tested isolates (Easton et al., 2005). Anti-sera from M35 immunized 
mice did not show bactericidal activity, however, it improved opsonic 
activity. In another study, mucosal immunization of mice with 
recombinant M35 through intra Peyer’s patch increased clearance of 
bacteria from the lungs of Mcat-challenged mice (Easton et al., 2011).

Moraxella catarrhalis filamentous hemagglutinin adhesin-like 
protein (Mha)B1 and MhaB2 (exoproteins), and MhaC (transporter) 
(Balder et  al., 2007), which are also named M. catarrhalis 
hemagglutinin-like protein (Mch)A1 and MchA2 for the secreted 
proteins and MchB for the transporter are potential vaccine candidates 
(Plamondon et al., 2007). A mutant Mcat lacking MhaB1 and MhaB2 
could not colonize the chinchilla NP, emphasizing the importance of 
these proteins. Immunization of chinchillas with a polypeptide shared 
by MhaB1 and MhaB2 induced antibodies that interfered with the 
colonization of Mcat and promoted bacterial clearance (Balder et al., 
2011; Shaffer et al., 2013).

2.3.4 Proteins involved in nutrient acquisition as 
potential antigens

Murphy et al. screened the genome of Mcat strain ATCC 43617 
for potential surface proteins. This identified several substrate-binding 
proteins (SBPs) of the ABC transporter family. The group evaluated 
CysP, AfeA, OppA, and Sbp2 for their immunogenic potential which 
are studied by other groups as well (Yang et al., 2011; Otsuka et al., 
2014; Murphy et al., 2016; Otsuka et al., 2016; Murphy et al., 2017). 
CysP is involved in the uptake of sulfate, AfeA binds ferrous, ferric, 

zinc, and manganese ions, OppA is likely an oligopeptide binding 
protein of the oligopeptide permease ABC transport system, and Sbp2 
mediates the uptake of arginine, a strict growth requirement of Mcat. 
All were found to express accessible surface epitopes, to be conserved 
within Mcat strains, and to provide enhanced clearance in a lung 
challenge model in mice (Yang et al., 2011; Otsuka et al., 2014; Murphy 
et al., 2016, 2017).

2.3.5 Other OMPs as vaccine candidates
Moraxella surface proteins (Msp) including Msp22, Msp75, and 

Msp78 showed 97–99% homology in amino acid sequence among 10 
tested strains (Ruckdeschel et  al., 2008). Mucosal and systemic 
immunizations of mice with recombinant Msp22 and Msp75 induced 
IgG and IgA antibodies. Mouse and rabbit anti-sera to recombinant 
Msp22 and Msp75 were able to recognize corresponding proteins in 
numerous Mcat strains. In addition, intranasal immunization of mice 
with recombinant Msp22 substantially lowered the bacterial load in 
the lungs of Mcat challenged mice (Ruckdeschel et al., 2009; Smidt 
et  al., 2013). Therefore, these proteins are attractive Mcat vaccine 
antigens, nonetheless, more studies are required to uncover their 
detailed functions and immunogenicity in humans.

2.3.6 Peptide-based vaccines against Mcat
Peptide-based vaccines offer numerous advantages, such as the 

exclusion of deleterious parts from full-length antigens, ease of 
chemical modification, absence of infectious material, and ease of 
production and storage. Although they generally have poor 
immunogenicity, this can however be  compensated for by using 
modified formulations of the vaccine (Purcell et  al., 2007). 
Lactoferrin-binding protein A (LbpA) is a receptor for human 
lactoferrin and is involved in iron transport. Whole LbpA, both 
native and recombinant was reported to be non-immunogenic (Du 
et al., 1998; Yu et al., 1999). Yassin et al. used immune-informatics 
analysis to identify a peptide from LbpA named peptide A which 
showed high immunogenicity in mice and successfully cleared Mcat 

Antigen Putative antigen 
function/other 
features

Adjuvant Current development 
stage

References

OMP G1a, OMP G1b Lipoprotein, putative copper 

transport protein

NA NA Adlowitz et al. (2004, 2006)

PilA The major protein subunit of 

TFP; involved

in natural genetic 

transformation,

biofilm formation, and 

adherence

NA NA Ren et al. (2019)

McaP Adhesin, autotransporter NA NA Timpe et al. (2003) and Lipski 

et al. (2007)

OMP E Fatty acid transport NA NA Bhushan et al. (1997)

ABC, ATP-binding cassette; AdDP, adamantylamide dipeptide; AfeA, substrate binding protein of an ATP binding cassette (ABC) transporter; BamA, β-barrel assembly machinery; CNCM, 
chinchilla nasopharyngeal colonization model; CysP, sulphate binding protein of Moraxella catarrhalis; CFA, complete Freund’s adjuvant; CRM, Cross-reactive mutant of diphtheria toxoid; CT, 
cholera toxoid; dLOS, detoxified lipo-oligosaccharide, Hag, hemagglutinin; HMP, high molecular weight proteins; IFA, incomplete Freund’s adjuvant; IgD, Immunoglobulin D; IC31, a novel 
two-component adjuvant; LptD, LPS transport protein D; LbpB, lactoferrin-binding proteins; mAb, monoclonal antibodies; MPL, monophosphoryl lipid A; MPCM, mouse pulmonary 
clearance model; MID, Moraxella immunoglobulin D-binding protein; M35, Moraxella porin 35; Mcap, Moraxella catarrhalis-adherence protein; Mha, Moraxella catarrhalis filamentous 
hemagglutinin adhesin-like protein; Msp., Moraxella surface protein; NA, not available; OMP, outer membrane protein; OppA, oligopeptide permease protein A; PilA, pilus A; QS-21, Quillaja 
saponaria derived saponin 21; SBP, substrate-binding protein; TbpB, transferrin binding protein B; TFP, type IV pili; TT, tetanus toxoid; UspA2, ubiquitous surface protein A2.

TABLE 3 (Continued)
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from mouse lungs. Furthermore, anti-peptide LbpA antibodies were 
bactericidal against heterogeneous Mcat strains (Yassin et al., 2016). 
Peptide A is the first promising peptide-based vaccine against Mcat, 
and it warrants further investigation.

2.3.7 Mcat LOS as a vaccine candidate
LOS comprises a major virulence factor of Mcat and performs a 

vital role in eliciting inflammatory immune responses (Hassan et al., 
2012). It also mediates serum resistance (Zaleski et al., 2000) and 
adherence to human epithelial cells (Peng et al., 2005). LOS from Mcat 
is relatively conserved, with three major serotypes (Holme et al., 1999; 
Verduin et al., 2002; Ren et al., 2011b), and no phase variation within 
a strain (unlike NTHi). In common with CPS, LOS glycans are poorly 
immunogenic unless conjugated to a carrier protein. Removal of toxic 
Lipid A moieties is also necessary. Detoxified LOS (dLOS) is 
conjugated to a carrier protein. Immunization of rabbits and mice 
with the conjugates derived from all three serotypes induces significant 
levels of antigens-specific mucosal and serum antibodies. Bactericidal 
antibodies were also identified in immunized animals (Jiao et al., 2002; 
Yu and Gu, 2005, 2007). Ren et al. generated two mutant LOS from 
Mcat strain O35E to produce conserved LOS antigens and exclude a 
potential autoimmune response in humans. These mutant LOS had 
one or two terminal galactopyranose (Galp) residues deleted and 
conjugated to tetanus toxoid (TT). These conjugates exhibited broad-
spectrum protection and induced high levels of serum IgG with 
bactericidal activity against all three serotypes (Ren et al., 2011b). In 
another study, dLOS-protein conjugates from all three serotypes were 
combined and immunized mice developed humoral and cell-mediated 
immunity which enhanced pulmonary clearance of six strains of all 
three serotypes of Mcat (Ren et al., 2011a). In a similar approach, 
truncated (common) LOS was conjugated to recombinant OMP26 of 
NTHi. This elicited complement-mediated bactericidal activity against 
tested strains of serotype A and Mcat and one NTHi strain (Singh 
et al., 2020).

2.3.8 Mcat vaccine targets identified by reverse 
vaccinology: promising future candidates

As mentioned above, D’Mello et  al. used a computational 
approach to identify potential candidate antigens against a range of 
criteria, from NTHi and Mcat (D’Mello et  al., 2019). Top Mcat 
candidates identified included a porin protein, an iron transporter 
protein, and 2 unstudied conserved-hypothetical proteins (D’Mello 
et  al., 2019). Soltan et  al. applied a different reverse vaccinology 
approach to identify potential protein candidates, including criteria of 
being essential, outer membrane-localized, involved in virulence, 
antigenic with no human homologs, with appropriate molecular 
weight and less than two transmembrane helices. Only LPS assembly 
protein LptD and outer membrane protein assembly factor BamA met 
these criteria. From this, several peptides of each were combined to 
construct a theoretical multi-epitope candidate peptide (Soltan et al., 
2021). It is likely that future publications will reveal which of these are 
validated and can be further developed, but as with NTHi, a multi-
component vaccine is likely required.

In summary, numerous Mcat antigens have revealed outstanding 
immunogenicity, induced functional antibodies, and generated 
protective responses in animal models. Nonetheless, there has been 
no clinical testing on them. Future studies are needed on these 
antigens to make advances in Mcat vaccine development.

3 OM animal models

Animal models are an important tool to study, (1) pathogens of 
OM; (2) the microenvironment during disease progression; (3) how 
pathogen-specific immunity helps resolve acute OM; and (4) 
vaccination strategies against this disease before they can be applied 
to humans. Over the years, several animal models have been developed 
for studying OM (see a recent review by (Davidoss et al., 2018)). There 
was much interest in the use of guinea pigs as an animal model in the 
1960s and 1970s, mainly because of their popularity in other branches 
of medical research. However, since the late 1970s, the chinchilla has 
been used for investigating OM. This is primarily due to the chinchilla’s 
large bulla that makes access to the ME easy. In the 1980s, gerbils were 
popular because of their propensity to develop cholesteatoma 
(Bakaletz, 2009). However, since 2010 interest in mouse models of 
OM has increased significantly because of the increased ease of genetic 
manipulation, and identification of mouse host mutants with 
susceptibility to OM (Geng et al., 2019). A summary of these animal 
models is provided in Table 4. Since most human bacterial pathogens 
do not naturally colonize or cause disease in animals, infection of ME 
or NP in animals can yield different immune responses to that in 
humans (Sabirov and Metzger, 2008). For a given model, a pathogenic 
organism must meet certain criteria to be considered pathogenic that 
is: (a) the pathologies induced by the pathogen in the animal must 
resemble those observed in humans; (b) otomicroscopy, 
tympanometry, and histopathology, pathologies can be objectively 
recorded; and, (c) the organism is able to reproduce in the ME space 
(Doyle, 1989).

3.1 Routes of pathogen administration

To mimic human OM, an ideal model is one in which intranasal 
(IN) instillation of bacteria leads to NP colonization, and ascent of 
bacteria through the ET to the ME. As host-adapted pathogens, the 
three major otopathogens exhibit the differential capacity to survive, 
colonize, replicate, and directly ascend to the ME. Some animal 
models of OM use direct instillation of bacteria into the ME.

In the IN-inoculation method, the entry portal for the pathogen 
into the ME is analogous to the human disease process, because NP 
is the first place where bacteria and viruses colonize and reproduce 
before invading the ME cavity. This method can be  highly 
reproducible if inoculum volume is maintained with negligible 
aspiration or swallowing of the inoculum which can be  assisted 
through aesthesia before IN inoculation. Commonly used 
microorganisms to induce OM in experimental settings are 
S. pneumoniae, NTHi, methicillin-resistant S. aureus, and 
Pseudomonas aeruginosa. Some animal models use prior infection, 
or co-infection of the virus to facilitate bacterial OM (Appell et al., 
1971; Meek III et al., 1999; McCullers and Rehg, 2002; Faisca and 
Desmecht, 2007; McCullers et al., 2007). Notably, Mcat will rarely 
survive in the murine mucosa. Bacteria can be inoculated directly 
into the bullae, or by trans-tympanic inoculation into the ME, 
leading to the induction of OM. These methods have high 
reproducibility and precision as the exact number of microorganisms 
in the inoculum can be  determined leading to less variability 
between individual animals. A drawback of these methods is the 
bypass of NP colonization. Furthermore, surgical skills are required 
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to use the trans-bullar approach. Inconsistency in this process can 
cause damage to the nearby blood vessels (Parks et al., 1996; Pinilla 
et al., 2001). In comparison, the trans-tympanic approach is easier 
to perform, using a fine needle to deliver the inoculum through the 
tympanic membrane. Sometimes, injected material can drain 

through the tympanic membrane hole leading to imprecise 
inoculum volume as compared to intra-bullar inoculation. The hole 
made in the tympanic membrane can be a channel for contamination. 
In addition, pressure equilibration can result in increased drainage 
of ME effusions through this hole. Thus, the trans-tympanic delivery 

TABLE 4 A comparison of different animal species in OM models.

Animal Strengths Limitations References

Rat

(i) ME anatomy, histology, and ET opening 

pressure have a resemblance to that of 

humans

(ii) Medium-sized bulla

(iii) Does not develop sepsis easily

(iv) Well-defined pharmacokinetic 

parameters and gene sequences

(i) Not easily manipulated

(ii) Fragile junction of the tympanic bulla

(iii) Can develop spontaneous AOM

(iv) Costly

Hardy et al. (2001), Cayé-Thomasen and 

Tos (2002), Piltcher et al. (2002), and 

Chaney et al. (2011)

Mouse

(i) Mouse genome and the immune system 

are extensively described

(ii) Low cost

(iii) Small size makes housing comparatively 

easy/cost efficient

(iv) Numerous transgenic and knockout 

species are available

(v) Wide availability of experimental 

reagents

(i) Relationship between age and resistance 

of the tympanic membrane which may lead 

to alteration of the ME response

(ii) ME and TM are ‘small’ in size - difficult 

to perform surgical procedures

(iii) Susceptible to anaesthetic drugs

(iv) Large and patent ET

(v) Thin tympanic membrane

Ryan et al. (2006), Zheng et al. (2006), and 

Tyrer et al. (2013)

Chinchilla

(i) Easy access to ME for surgery - large 

bulla

(ii) Rarely develop spontaneous AOM

(iii) Ear has similar structures to the human 

ear (stapes, cochlea, distribution of hair 

cells, and vestibular system)

(iv) Susceptible to human ME pathogens

(i) Relatively high purchase cost

(ii) Not readily available in many countries

(iii) Easily develops general sepsis with a 

high mortality rate upon infection

(iv) Difficult to access the auditory canal

Bakaletz (2009), Shaffer et al. (2013), and 

Wolter et al. (2014)

Mongolian gerbil

(i) Low cost

(ii) Small size

(iii) Relatively large ME

(iv) Rarely develop natural OM however 

susceptible under laboratory conditions

(i) Small external auditory canal

Chole et al. (1981), Unge et al. (2009), and 

Yamamoto-Fukuda et al. (2011)

Guinea pig

(i) Low cost

(ii) Easily handled in surgical experiments

(iii) Straightforward ME inoculation 

procedure

(iv) The anatomy of the temporal bone, the 

cochlea and its components, and the 

vestibulocochlear nerve resembles the 

humans

(i) Small external auditory canal and ME

(ii) Difficult to induce OM

(iii) Differences in ME anatomy, immune 

response, and pharmacokinetic profiles of 

medications

Dai et al. (2009) and Guan and Gan (2013)

Monkey

(i) Recommended in the analysis of cerebral 

cortex function in central processing 

deficits, because this area finds more 

similarities between monkeys and humans 

than between humans and rodents

(ii) There are similarities between monkeys 

and humans in progressive hearing damage, 

which increases in severity with aging

(i) Costly and less available

(ii) Can be difficult to handle in the 

laboratory, because they are aggressive and 

susceptible to diseases

(iii) The ET is shorter and more flexible, 

especially in the first years of life, and the 

physiological function is lower due to the 

paratubal muscles’ anatomy

(iv) Use is associated with a higher negative 

psychosocial effect

Dohar et al. (1998, 2005), Lavinsky and 

Goycoolea (1997), Kaas and Hackett (2000),  

and Engle et al. (2013)

AOM, acute otitis media; ET, Eustachian tube; ME, middle ear; OM, otitis media.
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method is appropriate for those species having direct trans-canal 
access (Ryan et al., 2006).

Non-infectious animal models have also been reported. Several 
mouse models have been generated by utilizing LPS or peptidoglycan-
polysaccharides (Li et al., 2015; Zhang et al., 2015; Kim et al., 2016). 
Ovalbumin has been used to induce an eosinophilic OM via IN 
administration in a mouse model or a trans-tympanic injection in a 
guinea pig model (Matsubara et al., 2014; Kim et al., 2016). Moreover, 
histamine has been used in guinea pigs to induce AOM (Kozan 
et al., 2015).

OM induction strategies are therefore dependent upon the 
experimental requirements and the type of animal being used. The 
IN-challenge model is preferred for inducing OM while assessing 
protective immunity in ME against NP colonization. A direct ME 
challenge could, however, be preferred for determining the extent of 
ME inflammatory responses as well as studying the protective 
immunity against ME challenge.

3.1.1 OME induction
Several animal models have been developed that examine the 

pathological changes associated with OM, in the absence of pathogen 
challenge. The principal anatomical cause of OME is ET dysfunction. 
To mimic this, animal models of OME are generated through 
ligation or cauterization of ET utilizing a trans-oral or trans-neck 
approach (Piltcher et al., 2002), or by injecting chemical materials 
through the tympanic membrane (Aynali et al., 2011). For the first 
approach, the ET orifice is cauterized, and the cartilage portion of 
the ET is ligated with nylon or an electrical cautery (Piltcher et al., 
2002). Cauterization or ligation of the ET is however an irreversible 
process. The trans-neck method is a precise approach for blocking 
the tube, but it is more laborious as compared to the trans-oral 
approach. On the other hand, the trans-oral approach is easy, 
however, it is difficult to get consistent results with this method 
(Huang et al., 2012). Injecting chemicals via the tympanic membrane 
is comparatively simpler to perform than the methods mentioned 
above. Injection of histamine solution has been used to induce OME 
in rats (Aynali et al., 2011).

3.2 Animal models

The choice of the experimental animal depends on anatomical, 
physiological, economic, spatial, and psychological factors, as well as 
experimental objectives. Depending on the research objective, animal 
model chosen, and access to equipment, there may be variations in 
studies. Therefore, it is crucial to understand the characteristics of the 
chosen model’s auditory system, along with its advantages, 
disadvantages, and limitations.

3.2.1 Rats
Rats exhibit the highest compatibility in terms of ME anatomy 

and histology to human infants and children as compared to other 
rodents, therefore, they are preferred models of AOM (Cayé-
Thomasen and Tos, 2002). In addition, most human pathogens 
readily infect rat ME (Chaney et al., 2011) and the opening pressure 
of the ET is equivalent to that in humans (Hellstorm and Stenfors, 
1983). The rat AOM course bears a close resemblance to that of 
humans (Hermansson et al., 1988), and ciliary clearance tracts and 

histological cell types are also analogous to humans (Daniel III 
et al., 1982). As a result of the relatively large tympanic bulla in the 
rat, bacteria can easily be  inoculated into ME via the tympanic 
membrane or the bulla. Once infection has occurred, it usually 
resolves within 10–12 days without ME effusion signs and affecting 
tympanic membrane preservation (Hermansson et  al., 1988; 
Prellner et al., 1999). It is also possible to induce a persistent OME 
in rats which can last for more than 16 weeks upon using 
appropriate inoculum (Piltcher et al., 2002). Moreover, rats are not 
prone to develop general sepsis which further enhances their 
usefulness (Prellner et  al., 1999). Rat models of AOM with 
S. pneumoniae and OME model with ET obstruction by dental 
material are reported (Hermansson et  al., 1988; Piltcher et  al., 
2002). An allergen-induced OME rat model was established using 
an intraperitoneal injection of ovalbumin and a subsequent 
intratympanic injection of ovalbumin into the ME (Hardy et al., 
2001; Zhang et al., 2022). Rat OM model with methicillin-resistant 
S. aureus and P. aeruginosa injected into the ME cavity via the 
tympanic membrane have been developed (Yadav et  al., 2017). 
Magnuson et al. utilized Haemophilus influenzae type b and NTHi 
strain 3,655 to inoculate the ME of Sprague–Dawley rats and 
studied the course of AOM development. Rats developed AOM 
with both bacterial strains 4 days post-inoculation (Magnuson 
et al., 1997). Rat models of OM with cholesteatoma have also been 
developed utilizing different chemical compounds such as 
dimethyl-benzanthrancene (DMBA) or propylene glycol injections 
into the ME (Klein-Szanto et al., 1982; Huang et al., 1988). An acute 
secretory OM (SOM) rat model was developed by delivering 
endotoxin into the ME cavity through the eardrum (Li et al., 2021). 
Mcat can induce OM in rats, but only with high dose, trans-
tympanic inoculation, and OM is shorter lived than that caused by 
NTHi or S. pneumoniae (Westman et al., 1999).

3.2.2 Chinchilla
Another rodent that is favored for AOM research is the chinchilla 

which displays general susceptibility to human bacterial and viral 
pathogens of OM (See review by (Bakaletz, 2009)). An advantage of 
using the chinchilla is that its tympanic membrane is almost the same 
size as humans. In addition, its large bulla facilitates the inoculation 
of pathogens and collection of ME effusions (Watanabe et al., 1982). 
The temporal progression and natural history of the disease process 
resemble human OM (DeMaria et al., 1996; Bakaletz, 2009). However, 
this species has a multi-loculated bulla, which is easily prone to 
fibrosis, with the ability to seal a chamber of the bulla and prevent 
infection from spreading. The external auditory canal of chinchillas is 
elongated and S-shaped, making it difficult to inspect the tympanic 
membrane with an ordinary otoscope and making the trans-tympanic 
challenge more difficult. It is only widely available in North and South 
America; therefore, lack of easy availability hinders its application. The 
rate of inner ear complications is high in chinchillas, and they tend to 
develop general sepsis, especially the younger chinchillas, and have a 
high mortality rate. Furthermore, chinchillas are not as capable of 
withstanding adverse conditions in laboratory settings as rats. 
Chinchillas tend to shed their fur at the insignificant sign of distress 
(Murrah et al., 2015).

AOM models of chinchilla with S. pneumoniae, H. influenzae type 
b, NTHi strain 86-028NP, and other ME-associated aerobic and 
anaerobic microbes have been developed through trans-bullar 
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inoculation into the ME (Fulghum et al., 1982; Morton et al., 2012; 
Guan et al., 2014). Cholesteatomatous chronic OM chinchilla models 
have also been developed through the use of propylene glycol injection 
(Masaki et al., 1988).

3.2.3 Mongolian gerbil
Mongolian gerbils have been widely used to establish AOM 

models for the study of AOM and analysis of efficacies of different 
antimicrobials. The small size and cost-effectiveness of Mongolian 
gerbils made them popular in OM studies. They have a reasonably 
large ME making it easy to inoculate through the overlying skin. It is 
also easy to sample ME fluid, however, they have narrow external ear 
canals. Mongolian gerbils normally have healthy ears and rarely 
experience OM, while cholesteatoma is common in elderly gerbils 
(Chole et al., 1981).

Compared to chinchillas and rats, fewer studies using gerbils as a 
model for bacterially induced AOM are reported. Direct bacterial ME 
inoculation has been used with S. pneumoniae type 3, Haemophilus 
influenzae type b, and NTHi strain 119 (Fulghum et al., 1982, 1985; 
Von Unge et al., 1997; Cenjor et al., 1998; Larsson et al., 2003; Unge 
et  al., 2009). For non-bacterial ME disease, cholesteatoma 
development or other ME disease was reported in gerbils through 
ligation of the external ear canal, ET blocking by electrocauterization 
or glue, and chemical injections into the bulla (Larsson et al., 2005; 
Yamamoto-Fukuda et al., 2010, 2011).

3.2.4 Guinea pig
The MEs of guinea pigs have structural similarities to those 

of mice and rats, but the size of bulla in this animal is smaller 
compared to gerbils and chinchillas (Hellström et  al., 1982; 
Foxwell et al., 1998). Several studies have used the AOM guinea 
pig model developed by using non-typeable S. pneumoniae and 
S. pneumoniae type 3 (Sp3) via a trans-bullar approach (Parks 
et  al., 1996; Dai et  al., 2009; Guan and Gan, 2013). LPS from 
Klebsiella pneumoniae was injected into the ME of the guinea pig 
to develop an OME guinea pig model (Ohashi et al., 1991; Dai 
and Gan, 2008). Yu et al. developed a guinea pig model of OME 
by reversible ET obstruction (Yu et  al., 2013). Cholesteatoma 
guinea pig models with chemical inoculants in the bulla have also 
been developed (Yamamoto-Fukuda et al., 2011).

3.2.5 Monkey
The NP-ET-ME complex of primates has been employed to model 

the normal and pathological activities of the human ET. There have 
been very few studies on monkey models of OM. The Rhesus monkey 
model has been used to evaluate the impact of allergic rhinitis in the 
development of ET obstruction and OME (Friedman et al., 1981; 
Doyle et al., 1985).

Dohar et  al. (1998, 2005) established a CSOM cynomolgus 
monkey model by infection of P. aeruginosa to investigate the safety 
and efficacy profile of topical ciprofloxacin hydrochloride for treating 
experimental CSOM. The tympanic membrane of cynomolgus 
monkeys was perforated and the ME was injected with a strain of 
P. aeruginosa which forms biofilms (Dohar et  al., 1998, 2005). 
Although monkeys share more similarities to humans than rodents, 
their large size makes their handling in experimental settings very 
difficult. They are costly and not readily available, and modern ethical 
considerations have also reduced their use.

3.2.6 Mouse models of OM
Since 2010, mouse OM models have significantly increased as 

compared to other models and now the mouse is more utilized in OM 
research because it offers many remarkable advantages over other 
animals [see review by (Bhutta, 2012)]. The wide availability of 
reagents allows complex analysis of immunological progression and 
host responses. Importantly, several genetic, transgenic, and gene 
deletion strains are available that can be used in studying various 
aspects of OM pathophysiology as well as host susceptibility to OM 
(Mitchell et al., 1997; Hardisty et al., 2003; MacArthur et al., 2006; 
Zheng et al., 2006).

Although mouse models offer many benefits as model systems 
for OM, yet there are some limitations to consider. The small size of 
the tympanic membrane in mice makes it difficult to access as 
compared to larger rodents. Even with the use of a microscope, 
surgical procedures on mice can be challenging. Inoculating and 
removing fluid from the mouse ME is difficult, and sampling large 
amounts of effusion is impractical because of the small size of the 
ME. The mouse is less hardy in tolerating general anaesthesia and 
surgical bleeding. Since major pathogens of OM such as NTHi, 
S. pneumoniae, and Mcat are not natural murine pathogens 
(Murphy, 2005; Doherty et al., 2006), variations can be observed in 
patterns of colonization and immune responses resulting from 
infecting mouse ME and NP than those observed in humans. This 
notable limitation is also associated with other rodent models. 
Nonetheless, it can be  overcome via direct ME inoculation or 
multiple IN inoculations. Genetically modified mice which are 
more susceptible to human pathogens can be used for this purpose. 
Moreover, the use of mutant bacterial strains capable of adhering 
and invading the murine mucosa more effectively than wild-type 
bacteria offers another approach (Tu et al., 2007).

To study the natural course of OM in mice, Dewan et al. have 
described a novel pathogen capable of transmission between mice that 
causes OM (Dewan et al., 2019; Ma et al., 2022). Bordetella pseudohinzii 
efficiently replicates in the NP, quickly escalates the ET, and colonizes 
the ME. The resulting acute and chronic histopathological 
transformations with an increasing decline in hearing acuity closely 
represent OM in humans. Laboratory mice experimentally inoculated 
with a very small inoculum of B. pseudohinzii consistently had their 
MEs colonized and subsequently transferred it to cage mates (Dewan 
et al., 2019; Ma et al., 2022).

3.2.6.1 Genetic mouse models of OM
Several mouse mutations from the ethylnitrosourea (ENU) 

mutagenesis program have been described that develop spontaneous 
OM. The deaf mouse mutant Jeff (Jf) is a single locus OM model 
that was discovered from the ENU program. A notable conductive 
hearing loss along with pus and fluid in the ME cavity is observed 
in heterozygous Jeff mouse postnatal day 35 and it develops a 
CSOM with a high rate of inflammation. Jeff mouse has a mutation 
in an F-box gene (FBXO11). The expression of this gene occurs in 
the epithelial cells of the ME from the latter stages of embryonic 
development until day 13 after birth (Hardisty et  al., 2003). 
Homozygous Jeff mouse, on the other hand, demonstrates facial 
clefting, cleft palate, and perinatal death (Hardisty-Hughes et al., 
2006). A study genotyped 13 single nucleotide polymorphisms 
(SNPs) in FBXO11 establishing the link between FBXO11 
polymorphisms and chronic OM with effusion/recurrent OM 
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(COME/ROM) (Segade et al., 2006). The Junbo (Jbo) mouse, again 
from the ENU mutagenesis program, has a mutation in the 
inflammatory-signaling regulator Evi1 (Parkinson et al., 2006). The 
heterozygote develops spontaneous CSOM. Another important 
mouse model from the ENU program is a genetic OM-one (gom1) 
mutant mouse. This mouse is prone to develop OME and develops 
many characteristics of OM such as craniofacial abnormalities, ME 
effusion, epithelial hyperplasia, and hearing loss. Thus, the gom1 
mouse provides a remarkable tool for elucidating OM pathogenesis, 
presenting similar pathological changes and auditory dysfunction 
as those observed in human OM patients (Zheng et al., 2022). Gene 
targeting and other transgenic modifications have been used to 
develop genetic mouse models to investigate OM susceptibility in 
human patients with genetic defects. Patients having velo-cardio-
facial syndrome/DiGeorge syndrome (VCFS/DGS) with 22q11 
deletions commonly develop chronic OM (Funke et al., 2001). In 
bacterial artificial chromosome (BAC) transgenic mice, 
overexpression of the TBX1 transcription factor (an equivalent of 
human VCFS/DGS in mice) and three other transgenes resulted in 
similar defects as seen in VCFS/DGS patients (Liao et al., 2004). 
Mice with a deletion in the p73 locus (p73−/− mice) exhibited a 
100% occurrence of OM (Yang et  al., 2000). Deficiency of 
lymphocyte function-associated antigen-1 (LFA-1−/− (CD11a/
CD18)), in mice resulted in an elevated OM rate along with a 
notably high mortality rate (Prince et al., 2001). A dysmorphology 
of ET and abnormal ME cavity is observed in eya4 knockout mice 
leading to the development of OME (Depreux et al., 2008). A point 
mutation in the nischarin protein causes chronic OM resulting in 
conductive hearing loss development (Crompton et al., 2017). The 
mutant mouse strain known as ages-with-stiffened-joints (asj), 
carrying a point mutation in the Enpp1 gene, exhibits early-onset 
conductive hearing loss and defects in the ME with approximately 
90% of the mutant mice have hearing loss (Tian et  al., 2016). 
Furthermore, mutations in the EDA, EDAR, and EDARADD genes 
have been linked with the onset of nasopharyngitis, rhinitis, and 
OM (Azar et al., 2016).

In addition to investigating spontaneous OM in genetic mouse 
trains, several studies have investigated the known human 
otopathogens in these strains of mice. A high susceptibility to ME 
infections with S. pneumoniae was seen in lysozyme knockout mice 
(M−/−) mice leading to more pronounced inflammation in ME 
compared to wild-type mice (Shimada et al., 2008). Junbo heterozygote 
mice had NTHi intranasally inoculated, resulting in NTHi ascending 
and establishing in the ME (Hood et al., 2016). This mouse strain was 
also used to study vaccine responses (Hood et al., 2016) and cellular 
immune responses to NTHi OME (Vikhe et al., 2019). Kurabi et al. 
used Asc−/− knockout mice to develop an OM model using NTHi 
strain 3,655. A comparison of responses to NTHi in the ME between 
wild-type and Asc−/− mice showed persistent inflammation and 
delayed clearing of NTHi from the ME cavity of the latter (Kurabi 
et al., 2015). To define the function of CCL3 (a potent effector of 
inflammation) in OM, ccl3−/− mice were infected with NTHi to induce 
OM. The ccl3−/− mouse had prolonged mucosal hyperplasia and 
impaired bacterial elimination (Deniffel et  al., 2017). Moreover, a 
genetic mouse model having a mutation in a G protein-coupled 
receptor was demonstrated to develop spontaneous OME (Kerschner 
et al., 2013). To date, there are no reports of Mcat establishing OM in 
these mice. Although great leaps forward have been made in the 

development of genetic mouse models of OM, nonetheless, more 
genetic OM models are needed to improve our grasp on genome-
related interactions between hosts and pathogens to aid in the 
discovery of innovative therapies for better and alternative treatment 
approaches for human OM conditions.

3.2.6.2 Humanized mouse model
The “humanized” mouse has become an invaluable tool for 

studying the human immune system in recent years. Son et  al. 
developed the first humanized mouse model to study OM which had 
engraftment of CD34+ hematopoietic stem cells from human fetal liver 
and recapitulated the acute OM process utilizing NTHi. This model 
mimics the inflammatory responses of the ME to bacterial infection, 
immune cells’ recruitment, and typical recovery process thus allowing 
researchers to investigate human immunity in OM in preclinical 
settings (Son et al., 2022).

3.2.7 Mcat model
A major challenge to Mcat vaccine development is the 

unavailability of a suitable animal model and a dependable correlate 
of protection. Under experimental settings, Mcat does not readily 
survive and replicate in the rodent NP. Although, chinchilla has been 
used in evaluating the NTHi and S. pneumoniae vaccine antigens, 
however, it readily clears Mcat from the ME (Bakaletz, 2009). 
Therefore, either NTHi and/or viruses are used in chinchillas to study 
Mcat infections and vaccine antigens (Armbruster et  al., 2010; 
Brockson et al., 2012; Shaffer et al., 2013; Perez et al., 2014), or direct 
intra-bullae inoculation (Blakeway et  al., 2019). Nevertheless, the 
chinchilla NP colonization model, the mouse lung clearance model, 
or the in vitro functional assays are unable to provide a fixed correlate 
of protection for assessment in animal models. Therefore, the 
development of improved animal models for evaluating potential 
Mcat vaccines is highly desired.

4 Concluding remarks

Vaccines are required to lower the burden of childhood OM 
disease worldwide and would also reduce the burden of bacterial 
diseases caused by these pathogens in other susceptible populations. 
Given the fact that OM is a polymicrobial disease, it presents 
numerous challenges for vaccine development. It would be most 
advantageous to develop an OM vaccine that targets all three 
causative bacteria to confer better protection against the disease. 
Progress has been made in identifying and investigating vaccine 
targets against OM, and several candidates from three major 
pathogens of OM are in different stages of development as vaccine 
antigens. Moreover, many of these antigens are ready for preclinical 
and early clinical testing. Investment in these studies will enable 
valuable advances in the development of new vaccines with better 
efficacy and coverage. Nonetheless, further research is required to 
discover and analyze new vaccine antigens. A crucial aspect of 
developing antigen-based strategies is to use highly conserved 
antigens that are shared between similar bacterial species. The 
combination of reverse vaccinology and immuno-informatics is 
increasingly being adopted in the search for new vaccine candidates. 
The combination of these two approaches has the potential to 
reduce both time and costs before taking a vaccine into clinical 
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trials thus providing a better estimate of how human populations 
would respond to the vaccine candidate worldwide.

Several animal models of OM are available. Researchers studying 
OM should be familiar with the strengths and limitations of these 
models to select the model that best fits their experimental needs. 
While chinchillas and rats have been favored animals to date for OM 
research, recently, many mouse models have been developed through 
NP colonization and ME infection. Many groups have used these 
models to demonstrate induction of protection against experimental 
OM and NP carriage following IN vaccine administration. Knockout 
and transgenic mice have proved to be vital for revealing the roles of 
different components of a host immune response relevant to 
susceptibility. Furthermore, the humanized mouse model offers the 
potential to execute a range of studies on human immunity in 
OM. However, there is still a need to develop an appropriate OM 
model that will allow rapid and high throughput assessment of Mcat 
vaccine candidates in preventing disease. Moreover, a mouse model 
of OM developed using polymicrobial infection (NTHi, 
S. pneumoniae, and Mcat) would allow the assessment of 
polymicrobial OM vaccines. Until we have a vaccine effective against 
the three major otopathogens, the global burden of acute and chronic 
OM morbidity will continue.
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