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Aeration is an important factor to regulate composting efficiency and nitrogen 
loss. This study is aimed to compare the effects of different aeration modes 
(continuous and intermittent) and aeration rate on nitrogen conversion and 
bacterial community in composting from dehydrated sludge and corn straw. 
Results showed that the intermittent aeration mode at same aeration volume was 
superior to the continuous aeration mode in terms of NH3 emission reduction, 
nitrogen conversion and germination index (GI) improvement. Intermittent 
aeration mode with 1200 L/h (aeration 5 min, stop 15 min) [K5T15 (V1200)] and 
300 L/h of continuous aeration helped to the conservation of nitrogen fractions 
and accelerate the composting process. However, it was most advantageous 
to use 150 L/h of continuous aeration to reduce NH3 emission and ensure the 
effective composting process. The aeration mode K5T15 (V1200) showed the 
fastest temperature rise, the longer duration of thermophilic stage and the 
highest GI (95%) in composting. The cumulative NH3 emission of intermittent 
aeration mode was higher than continuous aeration mode. The cumulative NH3 
emission of V300 was 23.1% lower than that of K5T15 (V1200). The dominant 
phyla in dehydrated sludge and corn straw composting were Firmicutes, 
Proteobacteria, Actinobacteria, and Bacteroidetes. The dominant phylum in the 
thermophilic stage was Firmicutes (49.39%~63.13%), and the dominant genus 
was Thermobifida (18.62%~30.16%). The relative abundance of Firmicutes was 
greater in the intermittent aeration mode (63.13%) than that in the continuous 
aeration mode (57.62%), and Pseudomonas was dominant in composting with 
lower aeration rate and the lowest NH3 emission. This study suggested that 
adjustment to the aeration mode and rate could affect core bacteria to reduce 
the nitrogen loss and accelerate composting process.
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1 Introduction

There are over 600 million tonnes of corn straw produced each 
year in China, ranking first in the world (Liu et al., 2021). Corn straw 
is rich in organic matter, cellulose, crude protein, crude fat and various 
nutrients such as nitrogen, phosphorus, potassium, calcium, 
magnesium, etc., which can be seen as resources for recycling. On the 
other hand, the production amount of urban and industrial sewage in 
China had reached 7.34 × 108 t/m2, and there is over 7.29 × 105 t/m2 
after dehydration. The large quantities of dehydrated sludge and straw 
have gradually become a social problem, which may lead to 
environmental pollution and hinder economic development (Zhou 
et al., 2023). Composting is an effective way for dehydrated sludge and 
corn straw treatment through microbial aerobic metabolic activity, 
which is conducive to produce nontoxic and nutrient-rich organic 
fertilizers to improve soil fertility, and enhance crop yield (Zhao 
et al., 2024).

Nitrogen, as an important element in organic wastes, provides an 
important nutrient for microbial growth and ensures the smooth 
progress of composting (Caceres et al., 2015). It is widely reported that 
raw material properties, and process control parameters are the main 
factors affecting microbial activity in composting, thus affecting 
nitrogen conversion and ammonia emission (Meng et  al., 2016). 
Ammonia (NH3) is one of the main odors produced in composting 
and NH3 emission was the main factor of nitrogen loss in composing, 
leading to the reduction of the agronomic quality of products (Shan 
et al., 2021). NH3 is volatilized from NH4

+-N by the ammonification 
of degradable organic nitrogen at optimum pH and higher 
temperature (Meng et al., 2016; Han et al., 2018). NH3 emission in 
composting is significantly affected by many factors such as 
temperature, moisture content, aeration modes, pH, etc. (Manu et al., 
2021). Among these factors, many studies indicated that aeration is 
the largest contributor to regulate NH3 emission but excessive aeration 
may result in more nitrogen loss (Jiang et al., 2015).

Forced aeration is widely used in large-scale composting plants 
and it is crucial to control the aeration mode and rate for 
composting efficiency, product quality, gas emissions, and 
operation costs (Hoang et al., 2022). However, the aeration rate 
usually varied depending on the raw materials (Gao et al., 2010). 
Keener et al. (2001) concluded that aeration rates of 0.3 ~ 0.9 L/
(min · kg organic matter) were required for agricultural wastes. For 
municipal waste, it is suggested that the aeration rate of 0.06 ~ 0.4 L/
(min · kg organic matter) is more reasonable (Xiong et al., 2017). 
A large number of studies have also shown that the required 
aeration rates were different for varied composting process 
conditions. Rasapoor et al. (2009) showed that the aeration rate at 
0.6 L/(min · kg organic matter) at the initial stage of composting 
was the most reasonable for the municipal wastes and was better 
to decrease to 0.4 L/(min · kg organic matter) at the maturation 
stage of composting. Therefore, it can be  concluded that the 
aeration rate parameters are appropriate in the range of 0.2 ~ 0.6 L/
(min · kg organic matter) (Chowdhury et al., 2014; Talib et al., 
2014; Zhang et al., 2016; Wu et al., 2019). However, there is also an 
obvious effect of aeration mode on the nitrogen conversion and 
loss in composting (Peng et al., 2023; Lai et al., 2024). It is reported 
that intermittent aeration can reduce cumulative NH3 emission 
and total nitrogen loss compared with continuous aeration, but 
increase N2O accumulation by the alternation of nitrification and 

denitrification (Wang et al., 2021). However, most studies focused 
on the effect of aeration mode and rate on compost product and 
gas emission. Considering that microbial community is the driving 
factor of composting process, it is urgent to pay attention to the 
interaction relationship between aeration, nitrogen fractions 
conversion and microbial community.

In this study, different aeration modes (continuous and 
intermittent) and rates were compared on the dehydrated sludge and 
corn straw composting. Composting basic physico-chemical 
performances, NH3 emission, and nitrogen conversion were assessed 
and the succession of bacterial community was investigated based on 
high-throughput sequencing. This study helps to understand the 
potential microbiological mechanism of the effect of aeration modes 
and rates on nitrogen conservation in composting.

2 Materials and methods

2.1 Raw materials

The raw materials used in the experiment were dehydrated sludge 
and corn straw. The dehydrated sludge was taken from Xiaojiahe 
wastewater treatment plant in Haidian District, Beijing. The corn 
straw came from Shangzhuang experimental station of China 
Agricultural University. The characteristics of raw materials were 
shown in Table  1. The dehydrated sludge and corn straw were 
thoroughly mixed in a ratio of 1:2 (volume), resulting in a carbon 
nitrogen ratio of 22. Each batch of mixture was divided in proportion 
in each reactor, ensuring the consistency of the raw material 
composition in composting.

2.2 Experimental system and protocol

The composting device used in this study is a set of small closed 
composting reactor system, which is composed of air compressor, 
thermal insulation fermentation tank, exhaust fan, thermometer and 
air volume controller. The effective volume of the reactor was 100 L 
and the size was 55 cm × 80 cm × 60 cm. The main body of the reactor 
is a closed silo-type fermentation tank, ventilated by air compression 
pump to ensure that the oxygen inside the reactor is not less than 
10%. The air is forced into the reactor from the bottom of the reactor, 
and the aeration rate is ranged from 0 to 1,500 L/h, which can 
be precisely controlled by adjusting the aeration volume with glass 
rotor flowmeter. A centrifugal fan is arranged at the top of the reactor 
to discharge the water and gas in time. There is an electronic 
thermometer inside the reactor, which can monitor the temperature 
change in real time.

The aeration modes included continuous aeration and intermittent 
aeration. Six aeration rates were set up for continuous aeration 
experiment, that is, 150, 300, 600, 900, 1,200, and 1,500 L/h, which 
were named as V150, V300, V600, V900, V1200, and V1500, 
respectively. Four aeration rates were set up for the intermittent 
aeration experiment with same amount of gas entering each reactor 
in each 20 min, which were 300 L/h (continuous aeration, no stop), 
400 L/h (aeration 15 min, stop  5 min), 600 L/h (aeration 10 min, 
stop 10 min), and 1,200 L/h (aeration 5 min, stop 15 min), which were 
defined as K20T0 (V300), K15T5 (V400), K10T10 (V600), and K5T15 
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(V1200), respectively. Three replicate trials were set up for 
all treatments.

Composting samples (500 g) were collected on day 0, 2, 4, 6, 8, 10, 
and 12, and each sample was collected using the multi-point sampling 
method. Part of samples were stored in the refrigerator at −20°C, and 
the remaining samples were air-dried and ground through 0.2 mm 
sieve and stored in a sealed container.

2.3 Analysis methods

The temperature was measured by an electronic thermometer. The 
O2 and NH3 content were tested using a combination gas detector. The 
moisture content (MC), pH, and germination index (GI) were 
determined with reference to the Chinese National Standard (NY 
525-2021). The organic carbon and total nitrogen were tested by an 
element analyzer (Sheng et al., 2023). The nitrate nitrogen content, 
ammonium nitrogen content, and amide nitrogen content were 
measured with the reference to the Chinese National Standard (NY/T 
1116-2014). The organic nitrogen content was determined by 
differential subtraction method.

The bacterial community analysis was performed via high-
throughput 16S rRNA gene pyrosequencing as described by Wei et al. 
(2018). The total DNA of bacterial community was extracted by soil 
DNA kit (Omega Biotek, Inc.). The PCR amplification of 16S rRNA 
gene fragments was performed based on the universal primers 515F 
(5′-GTGCCAGCMGCCGCGGTAA-3′) and 909R (5′-CCCCGYCAA 
TTCMTTTRAGT-3′). High-throughput sequencing for the purified 
16S rRNA gene fragments were performed using the Illumina 
sequencing platform of Hiseq2500 by Novogene (Beijing, China). The 
sequences were submitted to the NCBI (PRJNA730304).

Multivariate analysis was conducted using SPSS 22 for one-way 
ANNOVA (Gao et  al., 2019). The bacterial community data were 
analyzed using the tools in a galaxy instance1 (Zhan et  al., 2021). 
Microsoft Excel 2016 was used for data analysis and Origin 2021 was 
used for graph production.

3 Results and discussion

3.1 Changes in physiochemical 
characteristics

The different aeration rates had a large effect on the variation of 
composting temperature under both continuous aeration and 
intermittent aeration modes (Figure 1A). When the aeration rate was 
less than 600 L/h by continuous aeration, the temperature increased 

1 http://www.freebioinfo.org

firstly and then decreased. The temperature of V300 increased faster 
than other groups and achieved the highest temperature (64.4°C). 
When the aeration rate was greater than 900 L/h by continuous 
aeration, the rise of temperature was difficult, and the maximum 
temperature was only 40°C, leading to an incomplete thermophilic 
stage. Thus, it can be found that the suitable aeration rate was in the 
range of 150 ~ 600 L/h in a small closed reactor under continuous 
aeration mode and 300 L/h was the best aeration rate. As for 
intermittent aeration mode, the temperature of K20T0 (V300), 
K15T5 (V400), and K5T15 (V1200) peaked on day 4, and the peak 
value in order was K5T15 (V1200) > K15T5 (V400) > K20T0 (V300) 
(Figure 1A). The temperature of K5T15 (V1200) raised above 60°C 
and increased faster than other treatments and had the longer 
duration of thermophilic stage. In terms of temperature, the 
intermittent aeration mode of K5T15 (V1200) was better than 
others. Given the cumulative temperature and the raise rate of 
temperature, continuous aeration at 300 L/h and intermittent 
aeration of K5T15 (V1200) were more suitable for composting 
reactor. Since V300 of continuous aeration and K20T0 (V300) of 
intermittent aeration were the same aeration mode and rate, 
intermittent aeration was more conducive than continuous to the 
increase of composting temperature.

The O2 content is a direct indicator reflecting the intensity of 
aerobic fermentation reaction (Wu et al., 2024). The O2 content of 
each treatment in composting showed a trend of firstly decreasing 
and then increasing in both continuous aeration and intermittent 
aeration modes (Figure 1B). The O2 content decreased more on days 
2–8 as the change in temperature, when the aeration rate was less 
than 600 L/h of continuous aeration. When the aeration rate was 
greater than 900 L/h of continuous aeration, the O2 content 
decreased very little. As for intermittent aeration, O2 consumption 
increased after day 4 in the thermophilic stage of composting and 
the lowest value of O2 content was 16.3% in K10T10 (V600). The O2 
content of all treatments was greater than 16%, suggesting a 
sufficient oxygen supply for composting microbial metabolic activity 
(Mu et al., 2024).

During the composting process, the removal of moisture is not 
only related to the aeration rate, but also to the temperature. As the 
composting process progressed, the moisture content in each 
treatment showed a gradual decrease (Figure  1C). By the end of 
composting, the moisture content of V150, V300, V600, V900, V1200, 
and V1500 with continuous aeration decreased by 12.07, 15.13, 15.78, 
7.83, 4.07, and 6.31%, respectively (p < 0.01). The moisture content 
removal rate was highest for V600, followed by V300 of continuous 
aeration, suggesting that relatively higher aeration rate helped to 
bio-drying. When the aeration rate was greater than 900 L/h of 
continuous aeration, the moisture content removal rate was lower due 
to more heat loss (Xin et al., 2023). As for intermittent aeration, the 
moisture content of K20T0 (V300), K15T5 (V400), K10T10 (V600), 
and K5T15 (V1200) decreased by 15.13, 10.16, 8.07, and 14.29%, 
respectively, after composting (p < 0.01). The above results suggested 

TABLE 1 Characteristics of raw materials used for the composing experiment.

Raw materials Moisture content 
(%)

Organic carbon (% 
DM)

Total nitrogen (% 
DM)

carbon/nitrogen 
(%)

pH value

Dehydrated sludge 80.7 ± 0.9 24.6 ± 0.01 3.7 ± 0.0 6.7 7.4 ± 0.1

Corn straw 11.4 ± 0.9 39.8 ± 0.1 0.5 ± 0.0 73.9 6.3 ± 0.0
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that continuous aeration with V600 and V300 produced a higher 
water removal rate for reactors of dehydrated sludge and corn 
straw composting.

The variations of pH values varied among the treatments and 
showed a trend of increasing and then decreasing in composting, 
especially in groups with intermittent aeration (Figure  1D). The 
increase of pH may be due to the accumulation of ammonia (Onwosi 
et al., 2017). The pH value of all groups ranged from 7.9 to 8.7, and 
composting with intermittent aeration (p > 0.05) had a more stable pH 
value in products compared to that with continuous aeration 
(p < 0.01).

The organic carbon content of each treatment showed a gradually 
decreasing trend (Figure 1E). When the aeration rate was less than 
600 L/h with continuous aeration, the organic carbon content 
decreased more. By the end of composting, the organic carbon of 
V150, V300, and V600 with continuous aeration decreased by 14.35, 
16.94, and 14.07%, respectively (p < 0.01). As for intermittent aeration, 
the organic carbon content K20T0 (V300), K15T5 (V400), K10T10 
(V600), and K5T15 (V1200) decreased by 16.94, 17.40, 12.99, and 
18.77%, respectively (p < 0.05). Overall, the organic carbon content 
degradation rate was the highest for V300 with continuous aeration 
and K5T15 (V1200) with intermittent aeration.

The GI value is an important index reflecting the harmless process 
of composting (Gao et al., 2019; Wei et al., 2020), which was gradually 
increasing in all groups in this study (Figure  1F). By the end of 
composting, the GI value of V150, V300, and V600 with continuous 
aeration were 79.94, 88.97, and 75.48%, respectively, meeting the 
requirement of organic fertilizer standard in China (>70%) (p < 0.01). 

As for intermittent aeration, GI value of K20T0 (V300) increased from 
44.04% on day 2 to 82.52% at the end of composting, and K15T5 
(V400), K10T10 (V600) and K5T15 (V1200) increased to 88.18, 84.68 
and 94.65%, respectively (p  < 0.01). Overall, the GI value of all 
treatments with intermittent aeration and V300 of continuous aeration 
reached more than 80% at the end of composting, with the highest GI 
value in K5T15 (V1200). As with the result of temperature, 
intermittent aeration was more conducive to the increase of GI value.

3.2 Changes in nitrogen conversion

The NH3 emission could be  ascribed to the intensive 
mineralization of organic nitrogen to NH4

+, which was further 
transformed into NH3 under high temperature and alkaline conditions 
(Xiong et al., 2023). As the composting processed, the NH3 emission 
showed a trend of first rising and then falling (Figure 2A). The NH3 
emission of V150, V300, and V600 of continuous aeration all reached 
the highest value on day 3 but the NH3 emission released from the pile 
was small for the treatments with the aeration rates greater than 
900 L/h. As for intermittent aeration, K20T0 (V300), K15T5 (V400), 
K10T10 (V600), and K5T15 (V1200) reached the highest NH3 
emission on day 4, with 619.3, 665.6, 595.0, and 736.9 mg/m3. 
Combined with the variation of pH value, the alkaline systems were 
more conductive to NH3 production. The cumulative NH3 emission 
of V150, V300, V600, V900, V1200, and V1500 of continuous aeration 
were 878.4, 1828.6, 1439.3, 13.3, 6.1, and 2.1 mg/m3, respectively. The 
cumulative NH3 emission of K20T0 (V300), K15T5 (V400), K10T10 

Continuous aeration Intermittent aeration

A B

C D

E F

A B

C D

E F

FIGURE 1

Variations of temperature (A), O2 content (B), moisture content (C), pH (D), organic carbon content (E), germination index (F) at different aeration rates 
of continuous (left) and intermittent (right) aeration mode during composting.
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(V600), and K5T15 (V1200) of intermittent aeration were 1910.6, 
2101.1, 1576.7, and 2376.5 mg/m3, respectively. The cumulative NH3 
emission of intermittent aeration mode was higher than continuous 
aeration mode. The cumulative NH3 emission of V300 was 23.1% 
lower than that of K5T15 (V1200).

The total nitrogen content of all treatments was about 2.50% at 
the beginning of composting and showed a gradual increasing trend 
(Figure 2B). By the end of composting, the total nitrogen content of 
V150, V300, V600, V900, V1200, and V1500 with continuous 
aeration increased by 9.24, 10.40, 8.40, 7.66, 4.82, and 6.37%, 
respectively, and V300 had the highest total nitrogen content at the 
end of composting (p < 0.05). As for intermittent aeration, the total 
nitrogen content of K20T0 (V300), K15T5 (V400), K10T10 (V600), 
and K5T15 (V1200) were 2.76, 2.84, 2.77, and 2.98% at the end of 
composting, and K5T15 (V1200) had the highest total nitrogen 
content in all groups (p < 0.01). The above results suggested that 
intermittent aeration mode by K5T15 (V1200) had more nitrogen 
conservation in composting.

Macromolecular organic matter was decomposed into small 
molecular substances such as amino acids, and the converted into 
ammonia nitrogen by ammoniated bacteria (Lehtovirta-Morley 
et al., 2013). The ammonia nitrogen content of all treatments showed 
a trend of increasing and then decreasing (Figure 2C). The ammonia 
nitrogen content of treatments with aeration rates less than 600 L/h 
with continuous aeration was higher than that of treatments with 
aeration rates greater than 900 L/h. The ammonia nitrogen content 
of V150 and V300 with continuous aeration reached the highest 
value on day 4, which were 6.97 g/kg and 8.27 g/kg, respectively, and 
the ammonia nitrogen content of V300 was higher than that of all 

other treatments. Combined with the variations of temperature, 
these results indicated that the thermophilic stage had higher 
ammonia nitrogen production than other stages (p < 0.05). As for 
intermittent aeration, the ammonia nitrogen content was decreased 
as the order: K5T15 (V1200) > K15T5 (V400) > K20T0 
(V300) > K10T10 (V600) throughout the composting as the results 
of NH3 emission (p < 0.05).

Ammonia nitrogen is converted to nitrate nitrogen under the 
action of nitrifying bacteria, and nitrate nitrogen can be reduced to 
N2, NO, N2O, etc. under the action of denitrifying microorganisms 
(Shafiee-Jood and Cai, 2016). The nitrate nitrogen content of all 
groups gradually increased in composting (Figure 2D). Considering 
that the activity of nitrifying bacteria is easily affected by temperature 
(Xiong et al., 2023), nitrification is inhibited in the mesophilic and 
thermophilic stages, resulting in the mainly production of nitrate 
nitrogen in the later stage of composting. The nitrate nitrogen content 
of V150 with continuous aeration was higher than the other 
treatments on days 2 ~ 7 of composting and reached a maximum 
value of 5.33 g/kg by the end of composting. The nitrate nitrogen 
content of the treatments with aeration rate greater than 900 L/h was 
lower than that of V150 and V300 throughout the composting 
process, suggesting that the smaller aeration rate was favorable to the 
formation of nitrate nitrogen (p < 0.01). As for intermittent aeration, 
nitrate nitrogen content of K15T5 (V400), K10T10 (V600), and 
K5T15 (V1200) was higher than that of the continuous aeration 
K20T0 (V300) in composting (p > 0.05), indicating that under the 
premise of the same aeration volume in 20 min, the intermittent 
aeration favored the formation of nitrate nitrogen especially in the 
thermophilic stage.

Continuous aeration Intermittent aeration

A B

C D

E F

A B

C D

E F

FIGURE 2

Variations of NH3 emission (A), total nitrogen (B), ammonia nitrogen (C), nitrate nitrogen (D), amide nitrogen (E), and organic nitrogen (F) at different 
aeration rates of continuous (left) and intermittent (right) aeration mode during composting.
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The amide nitrogen content of all treatments showed a trend of 
increasing and then decreasing (Figure 2E). Similar to the variation 
pattern of ammonia nitrogen, amide nitrogen content of treatments 
with continuous aeration rates less than 600 L/h was higher than that 
with aeration rates greater than 900 L/h. The amide nitrogen of V150, 
V300, V600, V900, V1200, and V1500 peaked at 3.03, 3.48, 2.75, 1.41, 
1.49, and 1.48 g/kg, respectively (p < 0.05). Composting on day 2–7 at 
the thermophilic stage had more amide nitrogen production. As for 
intermittent aeration, K5T15 (V1200) had the best effect to favor the 
formation of ammonia nitrogen, nitrate nitrogen, and amide nitrogen 
(p > 0.05).

The organic nitrogen content of each treatment showed a 
trend of decreasing and then increasing (Figure  2F). At the 
beginning of composting, the organic nitrogen decreased more in 
treatments with continuous aeration rates less than 600 L/h. V150, 
V300, and V600 reached the lowest values on day 4–6 with 0.98–
1.20%. At the end of composting, the organic nitrogen content was 
about 1.80% for the three treatments with aeration rates less than 
600 L/h, which was beneficial to the degradation of organic 
nitrogen (Zhang et  al., 2016) (p  < 0.05). As for intermittent 
aeration, the organic nitrogen content was about 1.90% at the end 
of composting. K5T15 (V1200) favored the degradation of organic 
nitrogen in the thermophilic stage and the degradation capacity 
of organic nitrogen in each treatment was decreased in the order: 
K5T15 (V1200) > K15T5 (V400) > K20T0 (V300) > K10T10 (V600) 
(p > 0.05).

The above results indicated that intermittent aeration mode by 
K5T15 (V1200) and V300 of continuous aeration helped to the 
conservation of nitrogen fractions and accelerate the composting 
process. However, considering the concentration effect of composting 
and the accumulated NH3 emission, it was most advantageous to use 
V150 of continuous aeration to reduce NH3 emission and ensure the 
effective composting process.

3.3 Dynamics of bacterial community

The variations in bacterial community composition at phylum 
level for different treatments during composting were shown in 
Figure 3. In groups with the aeration rate was less than 600 L/h of 
continuous aeration and all the groups with intermittent aeration, 
the dominant phyla were Firmicutes, Actinobacteria, and 
Proteobacteria, and the bacterial community composition changed 
significantly with the composting process. The relative abundance 
of Firmicutes were 9.00–57.62%, which was dominant in the 
mesophilic and thermophilic stages, due to its rapid growth under 
nutrient-rich conditions and high heat tolerance (Liu et al., 2024). 
The relative abundance of Actinobacteria and Proteobacteria were 
7.87–51.39% and 7.44–58.01%, respectively, in the mesophilic and 
thermophilic stages. Actinobacteria and Proteobacteria are reported 
to be responsible for degrading cellulose, lignin, and proteins (Wei 
et al., 2019; Liu et al., 2021). When the aeration rate was greater 
than 900 L/h with continuous aeration, Proteobacteria and 
Bacteroidetes were the dominant phyla, and the bacterial 
community composition did not change significantly with the 
progress of composting. The members of Bacteroidetes are also 
involved in the degradation of lignocellulose and protein (Wei 
et  al., 2019; Liu et  al., 2021). The relative abundance of 
Proteobacteria were 46.36–64.19% during the composting. Before 
day 6, the relative abundance of Proteobacteria and Firmicutes was 
accounted for over 70% in total in V150 and V300 of continuous 
aeration and K20T0 (V300) with intermittent aeration. As the 
composting progressed, the relative abundance of Actinobacteria 
and Bacteroidetes gradually increased to nearly 50–60% by the end 
of composting in V150 and V300 with continuous aeration and 
K20T0 (V300) with intermittent aeration.

Considering that the better temperature rise, nitrogen fractions 
conversion and NH3 emission reduction, as well as longer duration 

Continuous aeration Intermittent aeration

FIGURE 3

Relative abundance of bacterial phyla at different aeration rates of continuous (left) and intermittent (right) aeration mode during composting.
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of thermophilic stage in V150, V300, and V600 of continuous 
aeration and K5T15 (V1200) of intermittent aeration, we further 
analyzed the variations in main bacterial genera in these groups 
(Figure 4; Table 2). The dominant genera of V150 were Acinetobacter, 
Bacillus, Thermobifida, Pseudomonas, Ureibacillus, Streptomyces, etc. 
with Acinetobacter having the highest relative abundance (19.72%) 
and gradually decreasing in composting. The relative abundance of 
Bacillus (7.68%) and Ureibacillus (4.98%) was higher in the early 
stage of composting, and the relative abundance of Thermobifida 
(6.95%) and Streptomyces (5.80%) was higher in the late stage of 
composting. The dominant genera of V300 were Thermobifida, 
Ureibacillus, Acinetobacter, Bacillus, Sphingobacterium, and 
Saccharomonospora, etc. and the relative abundance of Thermobifida, 
Acinetobacter, and Saccharomonospora was 30.16, 29.18, and 9.40% 
in the thermophilic stage of composting due to their high 
temperature tolerance. The dominant genera of V600 were 
Acinetobacter, Streptomyces, and Saccharomonospora. 
Saccharomonospora at the end composting had higher relative 
abundance (6.69%) than other genera. The dominant genera in 
K5T15 (V1200) were Acinetobacter, Bacillus, Thermobifida, 
Streptomyces, Ureibacillus, and Actinomadura. These results showed 
that there was an obvious increase of relative abundance of 

Thermobifida in V300 and K5T15 (V1200), suggesting that 
Thermobifida as core bacteria had significant positive effect on 
composting process (Zhan et al., 2021). Pseudomonas had an obvious 
advantage in V150 compared to other groups, which was reported 
to be nitrifiers with amoA gene and denitrifiers with nitrite reductase 
genes and nitrous oxide reductase (Hoang et al., 2022).

4 Conclusion

The continuous aeration mode V300 and intermittent aeration 
mode K5T15 (V1200) had a better effect in terms of temperature rise, 
GI value, and nitrogen fractions conversion compared to other 
aeration rates in composting of dehydrated sludge and corn straw. In 
a comprehensive comparison, the intermittent aeration mode was 
superior to the continuous aeration mode at same aeration volume, 
especially in terms of NH3 emission reduction and GI with the highest 
value (94.65%) in K5T15 (V1200). The relative abundance of 
Firmicutes was greater in the intermittent aeration mode than that in 
the continuous aeration mode. Thermobifida was the core bacteria for 
significantly accelerating composting process and Pseudomonas was 
dominant in V150 with the lowest NH3 emission.

FIGURE 4

Relative abundance of bacterial genus in microbiota at different aeration modes and rates during composting. Continuous aeration: V150, V300, and 
V600. Intermittent aeration: K5T15 (V1200).
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TABLE 2 The relative abundances of major genera during the composting.

Treatment Day Acinetobacter 
(%)

Bacillus 
(%)

Thermobifida 
(%)

Pseudomonas 
(%)

Ureibacillus 
(%)

Streptomyces 
(%)

V150 2 19.72 1.80 0.13 6.21 4.27 0.18

4 13.83 7.68 2.41 0.84 4.98 1.02

6 9.62 5.28 4.83 0.76 3.21 3.87

8 7.74 2.19 4.48 0.15 2.24 5.59

10 0.66 3.21 6.95 0.35 3.60 5.80

12 0.86 2.60 4.09 3.15 0.90 3.63

V300 Acinetobacter (%) Bacillus (%) Thermobifida (%) Ureibacillus (%) Sphingobacterium 

(%)

Saccharomonospora 

(%)

2 0.18 15.33 0.04 19.09 0 0.12

4 0.22 11.74 18.62 5.80 0 0.60

6 0.32 6.39 30.16 2.78 0 9.40

8 29.18 1.96 7.43 0.43 1.18 1.78

10 7.03 0.95 7.08 0.11 15.48 2.25

12 1.08 0.87 6.91 0.40 16.35 2.03

V600 Acinetobacter (%) Ureibacillus 

(%)

Luteimonas (%) Streptomyces (%) Brevibacillus (%) Saccharomonospora 

(%)

2 20.26 0.28 0.05 0.30 0.15 0

4 0.71 5.14 0.12 9.12 3.40 7.78

6 0 1.51 1.32 7.07 3.07 4.51

8 21.76 0.71 0.53 4.14 1.47 3.36

10 11.17 1.70 2.05 5.71 1.23 4.40

12 0.31 0.30 3.19 6.21 0.32 6.69

K5T15 (V1200) Acinetobacter (%) Bacillus (%) Thermobifida (%) Streptomyces (%) Ureibacillus (%) Actinomadura (%)

2 6.80 3.78 0.11 0.08 0.69 0

4 6.40 6.40 3.86 2.99 5.69 0.09

6 13.25 3.79 7.16 4.30 3.70 0.30

8 4.80 2.89 2.86 7.159 2.77 1.39

10 0 2.19 5.60 3.65 3.25 4.08

12 0.86 2.90 4.66 2.99 2.68 5.13
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