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The potential roles of gut
microbiome in porto-sinusoidal
vascular disease: an
under-researched crossroad

Yangjie Li, Lingna Lyu and Huiguo Ding*

Department of Gastroenterology and Hepatology, Beijing Youan Hospital A�liated with Capital

Medical University, Beijing, China

Accumulating evidence indicates that patients with liver diseases exhibit

distinct microbiological profiles, which can be attributed to the bidirectional

relationship of the gut-liver axis. Porto-sinusoidal vascular disease (PSVD) has

recently been introduced to describe a group of vascular diseases of the liver,

involving the portal venules and sinusoids. Although the pathophysiology of

PSVD is not yet fully understood, several predisposing conditions, including

immunodeficiency, inflammatory bowel disease, abdominal bacterial infections

are associated with the increasing in intestinal permeability and microbial

translocation, supporting the role of altered gut microbiota and gut-derived

endotoxins in PSVD etiopathogenesis. Recent studies have proposed that the

gut microbiome may play a crucial role in the pathophysiology of intrahepatic

vascular lesions, potentially influencing the onset and progression of PSVD in

this context. This review aims to summarize the current understanding of the

gut microbiome’s potential role in the pathogenesis of hepatic microvascular

abnormalities and thrombosis, and to briefly describe their interactions with

PSVD. The insights into gut microbiota and their potential influence on the onset

and progression of PSVD may pave the way for new diagnostic, prognostic, and

therapeutic strategies.

KEYWORDS

porto-sinusoidal vascular disease, portal hypertension, gut-liver axis, gut microbiome,
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1 Introduction

Porto-sinusoidal vascular disease (PSVD) is a rare vascular and parenchymal liver

disease encompassing a spectrum of often subtle hepatic microvascular lesions and related

microarchitectural abnormalities in the absence of cirrhosis in liver biopsy, regardless of

the presence of portal hypertension (Premkumar and Anand, 2024). Previously, it was

referred to as idiopathic non-cirrhotic portal hypertension (INCPH), characterized by

the presence of portal hypertension in the absence of a clear underlying liver disease

and portal vein thrombosis (PVT) (Lee et al., 2016). However, these diagnostic criteria

for INCPH have certain shortcomings. INCPH excludes patients in the early stages

of the disease spectrum who have not yet achieved portal hypertension but already

exhibit histopathological lesions in sinusoids and portal venules (Khanna and Sarin,

2014). Similarly, nearly 40% of INCPH patients experience PVT as the disease progresses

(Siramolpiwat et al., 2014). Excluding patients with PVT fails to acknowledge that PVT

may be both a consequence and a contributing factor in the progression of INCPH. To

address these limitations and facilitate early diagnosis, the Vascular Liver Disease Group

recently introduced a novel entity named PSVD (De Gottardi et al., 2019). PSVD includes
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patients who meet the diagnostic criteria for INCPH but do

not exhibit symptoms of portal hypertension as well as those

with PVT or other causes of liver disease if the liver biopsy

suggests PSVD, indicating that its prevalence may be significantly

higher than that of INCPH. However, patients with PSVD

are generally asymptomatic unless they present a complication

typical of portal hypertension (Aggarwal et al., 2013; Kang

et al., 2021). The diagnosis of PSVD remains challenging, which

primarily relies on clinical signs of portal hypertension combined

with specific histological features involving the porto-sinusoidal

vascular abnormalities (obliterative portal venopathy, portal tract

hypervascularization, and abnormal periportal vessels) as well as

parenchymal abnormalities (Gioia et al., 2024; De Gottardi et al.,

2022). Moreover, the pathophysiology responsible for PSVD is

complex and hinders the development of treatments capable of

altering the natural history of the disease. A better insight into the

biological processes and pathophysiological mechanisms involved

in PSVD is essential for identifying disease drivers and developing

new diagnostic and therapeutic strategies.

Gut microbiome plays critical roles in the development

of several vascular disease phenotypes by activating vascular

endothelial cells, platelets, and innate immune cells (Hasan

et al., 2020). Since the liver yields most of its blood supply

via the portal circulation, the hepatic microcirculation constantly

encounters gut-derived components, metabolites, and signals.

These factors can induce changes in the liver sinusoidal

endothelium, affecting the immune partitioning of the sinusoids

and influencing portal hypertension (Kiouptsi et al., 2023).

Although the exact pathogenesis of PSVD remains unclear,

it is hypothesized to result from injuries and occlusion of

the intrahepatic portal microvasculature, leading to increased

resistance to portal blood flow and subsequent presinusoidal

type of portal hypertension (Jin and Choi, 2023). Predisposing

conditions of PSVD are related to immune disorders, infections,

prothrombotic conditions, congenital or hereditary defects, drug

exposure, and inherited vascular remodeling disorders (Kmeid

et al., 2021). The link between gutmicrobiome, portal hypertension,

and predisposing conditions of PSVD have supported that gut

microbiota translocation into the sinusoids may impact on the

pathophysiology of PSVD (Fiordaliso et al., 2023). Research has

shown that intestinal permeability and gut-derived endotoxins play

an important role in the pathogenesis of PSVD by activating the

immune response of the liver, trigger inflammatory reactions in the

liver, and thereby affect the health of the portal vein and sinusoidal

vessels (Baffy and Portincasa, 2024). Previous studies reported that

intestinal relocation with Escherichia coli (E. coli) might cause

recurrent septic embolization leading to endothelial damage and

Abbreviations: PSVD, porto-sinusoidal vascular disease; INCPH, idiopathic

non-cirrhotic portal hypertension; PVT, portal vein thrombosis; E. coli,

Escherichia coli; PAPMs, pathogen-associated molecular patterns; LPS,

lipopolysaccharide; LSECs, liver sinusoidal endothelial cells; TLRs, toll like

receptors; VEGF, vascular endothelial growth factor; ET-1, endothelin-1;

HSCs, hepatic stellate cells; KCs, Kup�er cells; vWF, von Willebrand factor;

TMAO, trimethylamine oxide; SCFAs, short-chain fatty acids; ROS, reactive

oxygen species; MAFLD,metabolic dysfunction-associated fatty liver disease;

NO, nitric oxide; H2S hydrogen sulfite.

the obstruction of small portal veins contributing to idiopathic

portal hypertension (Kono et al., 1988; Giuli et al., 2023; Sarin and

Aggarwal, 1998).

Recent advances in metagenomics and bioinformatics have

provided new insights into the microbial ecology in different liver

diseases (Nychas et al., 2025; Parthasarathy et al., 2024; Oh et al.,

2020). Emerging studies have revealed the connection of intestinal

microbiome and porto-sinusoidal vascular abnormalities, as well

as hepatic thrombosis. In this review, we provide an overview of

current knowledge regarding the role of the gut microbiome in

the pathogenesis of intrahepatic microvascular abnormalities and

thrombosis formation. Additionally, this review also introduces a

brief description of the state of research and perspectives on the

interactions between gut microbiome and PSVD progression. The

insights into gut microbiota and its potential role in PSVDwill help

to elucidate the mechanism by which the gut microbiota influence

PSVD and provide new opportunities for its diagnosis, prognosis,

and treatment.

2 The potential interlink between gut
microbiome and PSVD

The human gastrointestinal tract harbors over trillions of

microorganisms including bacteria, fungi, viruses, and archaea

that make up the gut microbiome (Hsu and Schnabl, 2023). The

gut and liver have a symbiotic relationship with gut microbiome,

which is referred to as the gut-liver axis (Wang et al., 2021b).

The composition and structure of gut microbiota, intestinal

barrier, liver vascular system, and liver status all play crucial

roles in maintaining homeostasis within this axis. Under normal

physiological conditions, the intestinal barrier in the gut liver

axis, including physical (gut vascular and epithelial cell tight

junctions), immunological (gut-associated lymphoid tissue), and

biochemical (antimicrobial peptides, secretory immunoglobulin

A and mucus layer) components (Tranah et al., 2021), forms

the first line of defense for human immune system, while

the liver vascular microenvironment provides a second line

of defense to preventing the pathogenic factors of intestinal

mucosal immune response triggering the dissemination of systemic

inflammatory (He et al., 2021; Seo and Shah, 2012). A perturbation

of this balance causes gut dysbiosis, which not only leads to

liver damage and systemic inflammation but is also related to

impaired microcirculation, abnormal vascular permeability, and

liver hemodynamics (Simbrunner et al., 2019).

PSVD involves abnormalities in the liver’s vascular system and

is likely a group of different diseases that can cause inflammation

and obstruction of porto-sinusoidal vascular system affect portal

venous pressure (Isidro and Zhao, 2023). Most of PSVD patients

appears idiopathic portal hypertension, and relevant pathogenesis

is involved in liver structural distortion fibrosis, microvascular

thrombosis, dysfunction of cellular elements in the hepatic

sinusoidal vascular microenvironment (Mehta et al., 2014). The

portal vein is frequently exposed to intestinal microbe-associated

pathogen-associated molecular patterns (PAMPs), including

lipopolysaccharide (LPS), antigens, as well as bacteria, and

transmits them to the liver, thus eliciting negative effects on the

liver (Pabst et al., 2023). Gut dysbiosis can disrupt intestinal
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barriers, increasing permeability causing the translocation of

PAMPs into the liver through portal vein and participate in

enterohepatic circulation (Spadoni et al., 2015), which results in

an imbalance of the gut-liver-vascular homoeostasis, activation

pro-inflammatory response in hepatic sinus and increasing hepatic

vascular resistance (Liang et al., 2020), which may per se contribute

to the occurrence and development of PSVD. In this section, we

will review the current literature on the potential interactions

between gut microbiome and PSVD, focusing on abnormal

intrahepatic porto-sinusoidal vascular microenvironment and

hepatic microvascular thrombosis formation.

2.1 Gut microbial dysbiosis and
porto-sinusoidal microcirculatory
dysfunction

The liver contains two distinct microvascular structures. One

is made up of continuous endothelial cells organized within

the basement membrane, forming a complete vascular structure

seen in portal vein blood vessels. The other is composed of

discontinuous liver sinusoidal endothelial cells (LSECs) (Xu

et al., 2019). The intrahepatic porto-sinusoidal microvascular

unit consists of several discrete units, primarily including portal

venules, hepatic sinusoids, and central venules. LSECs constitute

a natural barrier that separates the liver parenchyma from the

bloodstream in the sinusoidal lumen and participate in regulating

liver sinusoidal blood flow and material exchange in surrounding

tissues, thereby playing a key role in maintaining hepatic

microcirculatory homeostasis (Wang et al., 2021c). In addition,

LSECs actively regulate intrahepatic coagulation by generating

procoagulant factors, stimulating neutrophils, and interacting with

platelets (Yang et al., 2017; Hilscher et al., 2019; Gracia-Sancho

et al., 2021). The occurrence of PSVD is closely related to

changes in the structure and function of the intrahepatic vascular

microenvironment (especially liver sinusoids) accompanied by

microvascular thrombosis. Portal vein collects blood from the

gastrointestinal tract and first supplies it to the capillary network of

hepatic sinusoids (Chopyk and Grakoui, 2020). Obstruction of the

sinusoids and the resulting increase in hepatic vascular resistance

to portal vein blood flow are the main causes of portal hypertension

(Mcconnell and Iwakiri, 2018).

Key mechanisms of gut dysbiosis-related alterations in

sinusoidal vascular include weakened gut barrier and amplified

translocation of PAMPs (Seki and Brenner, 2008). LSECs express

a series of scavenger receptors and toll like receptors (TLRs),

which render LSECs able to mediate hepatic clearance process

of PAMPs and products derived from the gastrointestinal tract

(Shetty et al., 2018; Øie et al., 2020). It is well understood

that LSECs are exposed to relatively high concentrations of gut-

derived PAMPs in portal blood, which can activate TRLs signaling

in LSECs further driving chemokine dependent changes and

enhancing vasoconstrictor production, increasing portal perfusion

pressure (Hilscher et al., 2019). Thus, the phenotype of LSECs

exerts pivotal roles in physiological immune functions and

maintains liver vascular homeostasis, including regulating porto-

sinusoidal shear stress, angiogenesis, as well as hepatic sinusoidal

remodeling (Marrone et al., 2016; Gola et al., 2021). LSECs

typically exhibit unique phenotypic characteristics, including open

fenestrae and lack of a basement membrane. Abnormalities in

LSECs distort the normal architecture of the liver and play a

key role in the recruitment and activation of platelets, which

can lead to microthrombosis and fibrin deposition within the

sinusoids (Lisman and Luyendyk, 2018; Abdelmoneim et al., 2010).

LSECs capillarization is regarded as an early hallmark in the

pathogenesis of portal hypertension (Iwakiri and Groszmann,

2007; Sutton et al., 2018). Meanwhile, the dysfunction of LSECs

and the onset of local inflammation which causes damage to

small portal vein branches, endothelial dysfunction, activation

of HSCs, and hepatic micro-thrombosis, suggest central roles

of LSECs in the pathophysiology and onset of PSVD (Zhang

et al., 2020; Khanna and Sarin, 2019; Cerda Reyes et al., 2021).

Studies have found that increased levels of gut-derived endotoxins

and pro-inflammatory cytokines lead to LSECs dysfunction and

vasoconstriction via activation endothelin-1 (ET-1), which plays

vital roles in raising hepatic vascular resistance (Yadav et al.,

2019; Gracia-Sancho et al., 2007). Bacterial infections have also

been found to target LSECs, leading to a shift from their normal

tolerogenic state to a pro-inflammatory state (Martin-Armas et al.,

2006). PAMPS can stimulate the dedifferentiation of LSECs, driving

their dysfunction and capillarization (Wilkinson et al., 2020).

Leong et al. found that the loss of fenestrations in LSECs was

observed in response to bacilli, specifically Bartonella bacilli (Leong

et al., 1992). Furthermore, liver endothelial cell fenestrations

were found to be negatively correlated with a higher abundance

of Firmicutes phylum and reduced abundance of Bacteroidetes

(Cogger et al., 2016). Taken together, gutmicrobiota-derived signals

and metabolites can influence angiogenesis, transcriptional and

metabolic landscape of the hepatic endothelium, thereby shaping

the LSECs phenotype (Formes et al., 2021).

In addition to LSECs, other non-parenchymal cells, including

hepatic stellate cells (HSCs), monocytes, and Kupffer cells (KCs),

are essential for maintaining the function of the liver vascular

microenvironment (Cheng et al., 2021). HSCs are wrapped around

LSECs and regulate microcirculation within the hepatic sinus

through the contractile function of their slender protrusions,

thereby affecting the sinusoidal tone and regulating liver blood

flow. Activated HSCs increase large amounts of collagen and

myofibroblasts which are deposited in the Disse and sinusoidal

spaces, exacerbating vascular resistance, which can lead to the

distortion of liver vascular structure (Serrano et al., 2019).

Additionally, activated HSCs can produce vasoactive mediators

such as angiopoietin, vascular endothelial growth factor (VEGF)

and increase ET-1 synthesis thereby maintaining the LSEC

phenotype or regulating fenestrations, which in turn influences

vascular tone and endothelial function, further contributing to

hepatic vascular remodeling (Gana et al., 2016; Marrone et al.,

2016). In turn, LSECs play an important role in maintaining the

quiescence of HSCs and LSECs capillarization can lead to the

secretion of exosomes rich in sphingosine kinase-1, promoting the

activation of HSCs (Xie et al., 2012). Previous studies have revealed

that the LSECs communication with HSCs facilitates sinusoidal

vascular remodeling, which is an early feature of intrahepatic portal

hypertension (Deleve et al., 2008; Gracia-Sancho et al., 2019, 2008).

Intestinal microbiota translocation can cause the activation of

HSCs and alter the cell phenotype of LSECs (Cheng et al., 2021;

Corbitt et al., 2013; Stojic et al., 2023).
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KCs are resident macrophages in the liver sinusoids, playing

crucial roles in capturing and eliminating soluble antigens derived

from gut microbes via the portal vein. In general, KCs are

responsible for sensing and processing gut-derived signals reaching

liver sinusoids, such as pathogens, cell fragments, and endogenous

metabolites (Zhou et al., 2022b), playing essential roles in pathogen

clearance and immunosuppressive features (Li et al., 2022). The

expression of TLR receptors on KCs responds to gut-derived LPS

exposure, ultimately promoting the release of pro-inflammatory

cytokines such as IL-1, IL-6, IL-12, and TNF-α (Mehta et al.,

2014; Płóciennikowska et al., 2015). Braedon et al. implicated

the gut microbiota as a direct regulator of KCs antibacterial

functions (Mcdonald et al., 2020). Moreover, KCs have abilities to

enhance LSECs capillarization, resulting in a transition of LSECs

morphology toward a more vascular or capillary-like state by

losing fenestrations, and forming a distinctive basement membrane

(Ford et al., 2015). In cirrhotic patients, KCs activation has been

shown to be closely associated with the hepatic venous pressure

gradient, liver disease severity, and an increased risk of venous

thrombosis (Waidmann et al., 2013; Tranah et al., 2021). CD163 is

a monocyte/macrophage specific membrane marker cleaved from

the surface of activated macrophages as a soluble form (sCD163)

(Maroto-García et al., 2023). KCs serve as the primary source of

CD163 in the liver. The activation of KCs during liver fibrosis

and inflammation upregulates CD163 expression and promotes

the release of sCD163. Consequently, sCD163 levels demonstrate

significant potential as a robust biomarker for evaluating the

progression of liver fibrosis and the severity of hepatic tissue

inflammation (Dultz et al., 2015). Intriguingly, activation of KCs is

also observed in PSVD patients, with higher levels of KC activation

markers, including soluble CD163 and the mannose receptor,

compared to cirrhotic patients (Ørntoft et al., 2021).

In summary, LSECs capillarization, activation of HSCs and KCs

as well as hepatic microvascular thrombosis is associated with the

dysregulation of vascular homeostasis and increased intrahepatic

vascular interactions, which may partly contribute to PSVD

progression. Interlinks between different cell types in the porto-

sinusoids involve host-produced inflammatory cytokines alongside

microbial byproducts generated by the gut microbiota, which affect

the hemodynamics of the intrahepatic vascular microenvironment.

A deeper understanding of the crosstalk between gut dysbiosis and

vascular processes has led to improved insights of the potential

microbial mechanisms associated with PSVD.

2.2 Gut microbial dysbiosis and hepatic
microvascular thrombosis

Coagulation disequilibrium, especially hypercoagulable states

or prothrombotic conditions, has been implicated in the PSVD

onset and progression (Riggio et al., 2016). Liver biopsy often

reveals signs of thrombosis, including intrahepatic portal vein

thickening, occlusion, and obstruction in PSVD cases (De Gottardi

et al., 2022). Accumulating studies have suggested that the presence

of hepatic vein thrombosis may be a common consequence

of PSVD, which can be attributed to both reduced portal

flow velocity and the elevated prevalence of prothrombotic risk

factors (Gioia et al., 2018, 2019). Microvascular thrombosis and

platelet aggregation occurring in intrahepatic portal venules and

sinusoids are suggested to contribute to PSVD. The gut microbiota

can regulate coagulation disorders in thromboembolism (Hasan

et al., 2020). Gut dysbiosis characterized by an increased relative

abundance of opportunistic pathogenic proteobacteria and fewer

beneficial genera play vital roles in thrombosis-related diseases

(Xiang et al., 2020; Yin et al., 2015; Yang et al., 2022). Gutmicrobiota

also affects the hemostatic properties of hepatic microvascular

endothelium through the gut–liver axis (Kiouptsi et al., 2023).

An increasing number of studies have found that gut microbes,

PAMPs, and microbial metabolites play important roles in shaping

vascular development, affecting endothelial cell function and

coagulation system activation causing thrombosis (Hasan et al.,

2020; Mohammed et al., 2020). Under gut dysbiosis, gut microbe-

derived components into portal-systemic circulation activating

PAMPs-induced inflammatory pathways, which are related to

prothrombotic states. Gut microbiota-triggered TLR-2 alters the

synthesis of von Willebrand factor (vWF) by the liver endothelium

and favors platelet integrin-dependent thrombus growth (Jäckel

et al., 2017).

LPS, found in the outer membrane of gram-negative bacteria,

can influence coagulation and lead to continuous, chronic low-

grade inflammation in the liver through stimulation of pattern

recognition receptors and TLRs on endothelial cells and platelets,

which can culminate in the production of large amounts of

inflammatory cytokines and activate the coagulation cascade (An

et al., 2022; Vijay, 2018; Ozinsky et al., 2000). LPS has also

been reported to prime platelets to respond to activation by

common agonists, promoting the expression of tissue factor and

exerting prothrombin activity (Reinhardt et al., 2012). In vitro,

human endothelial cells were incubated were incubated with

LPS concentrations similar with those found in the peripheral

circulation of liver cirrhosis, and the results showed that LPS

increased the release of vWF and factor VIII (Carnevale et al.,

2017). Meanwhile, LPS can decrease thrombomodulin expression

in LESCs resulting in sinusoidal microthrombus formation and

liver dysfunction (Kume et al., 2003). Clinical studies have also

found that the imbalance of inflammatory states and gram-negative

bacteria-derived products (LPS or other bacterial toxins) leads to

activation of the coagulation in cirrhotic patients with PVT (Huang

et al., 2023; Georgescu et al., 2023). Mechanistically, translocated

LPS derived from the gut microbiota activate the immune response

in the liver, triggering inflammatory reactions in the liver, thereby

affecting the health of the portal vein and sinusoidal vessels (Violi

et al., 2023). E. coli-derived LPS has been reported to increase liver

damage by inducing macrophage and platelet activation through

TLR4 pathway (Carpino et al., 2020). TLR4 is widely expressed in

hepatocytes, HSCs, and KCs. Activation of the LPS-TLR4 pathway

can potentially become a risk factor leading to liver diseases (Violi

et al., 2023).

Previous studies have reported that intestinal translocation

of E. coli might cause recurrent septic embolization resulting

in histological changes similar with those seen PSVD including

endothelial damage and obstruction of small portal veins (Kono

et al., 1988; Sarin and Aggarwal, 1998; Giuli et al., 2023). Chronic

or recurrent infections that cause intestinal antigenemia may

ultimately lead to mild portal vein inflammation, resulting in
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pathological changes compatible with PSVD (De Gottardi et al.,

2022; Harmanci and Bayraktar, 2007). In patients with coeliac

disease, factors of enteric origin contribute to the obliteration of

the portal venous microcirculation, suggesting that prothrombotic

factors of gut origin may cause PSVD (Eapen et al., 2011).

Gioia et al. found that LPS translocation and the number of

TLR4+ macrophages were significantly increased in liver biopsies

of patients with PSVD compared to healthy controls. Meanwhile,

TLR4+ macrophages were located both in the portal tract and

perisinusoidal area, regions typically altered in PSVD with the

activation of LPS-TLR4 pathway in patients affected by PSVD

(Gioia et al., 2023). The LPS-TLR4 pathway may also be considered

a key promoter in the development of PSVD.

3 Future research direction and
perspectives

The changes in gut microbiota and its derivatives on liver

pathophysiology has become widely recognized (Wang et al.,

2021b; Shen et al., 2023). As the liver is directly supplied by

gut-derived blood via the portal vein, the periportal areas would be

the first to be exposed to gut-derived metabolites or inflammation

substances (English et al., 2021), playing an important role in the

function of microvasculature. Based on the extensive evidence

linking gut dysbiosis with porto-sinusoidal microcirculatory

abnormalities and hepatic thrombosis, it is reasonable to

hypothesize that the continuous interaction between gut-derived

pathogens and metabolites contributes to the pathophysiology

of PSVD. However, the studies on the interactions between gut

microbiome and PSVD are limited, and many questions remain

unresolved (Figure 1).

A key point is to identify a core group of gut microbes

associated with PSVD and to explore how gut dysbiosis impacts

the structural and functional changes in in the microbiome that

contribute to this condition. The most widely utilized method for

classifying and phylogenetically identifying of bacterial community

composition is 16S rRNA gene amplicon analysis, which allows for

the differentiation of bacteria at the genus level (Rutanga et al.,

2018). However, merely understanding the genus and its relative

abundance is insufficient for clinical applications or mechanistic

research in liver diseases, as each genus encompasses various strains

that may exert different pathological or beneficial effects (Giuffrè

et al., 2020). As sequencing costs continue to decrease, shotgun

metagenomics is progressively replacing 16S rRNA sequencing

in microbiome studies. Shotgun metagenomics can identify the

composition and structure of gut microbiota—including viruses,

bacteria, fungi, and parasites—at the species level, as well as

provide insights into microbial gene expression, elucidating the

functions of actively expressed genes (Valles-Colomer et al., 2023;

Shakya et al., 2019). Although collecting PSVD cases in clinical

practice is challenging due to the relatively low prevalence of PSVD

and the complex diagnostic process, sufficient sample sizes are

essential to account for the inherent inter-individual variability

when using shotgunmetagenomics to detect alterations in structure

and composition of gut microbiota in PSVD patients. Research

designs should ensure that the included PSVD patients should be

diagnosed based on pathology and clinical manifestations, and that

study controls consist of healthy individuals and those with other

liver diseases that may be easily confused with PSVD.

Besides unraveling the alterations and interlinks of gut

microbiome and PSVD, the pathogenesis of PSVD from the

perspective of microbial functional genomics, PAMPs and

metabolites is also a key focus requiring further research.

Compared to gut microbiota, PAMPs, and microbial metabolites

are more readily transported to the liver via the portal vein,

where they impact liver function and contribute to liver disease.

Metabolomics, which targets metabolites, provides insights

into overall metabolic states and host-microbe interactions. A

combination of shotgun metagenomics and metabolomics can

elucidate the intricate interactions among the gut microbiome,

microbial metabolites, and liver diseases. When designing studies

on the relationship between gut microbiota, metabolites, and

PSVD, it is vital to distinguish between metabolites produced

by the host and those generated by microbial communities.

Research should focus on identifying microbial metabolites closely

linked to PSVD progression, emphasizing the sources of gut

microbial metabolites and analyzing the interactions between

these metabolites, alterations in microbial communities, and the

severity of PSVD. Combining cell models and organoid models

with the multi-omics techniques will facilitate functional research

and mechanistic exploration targeting PSVD-related pathogenic

microorganisms, PAMPs, and metabolites. As illustrated in this

review, bacterial LPS accumulation in the liver can induce aberrant

characteristics and functions of hepatic sinusoids, promote

platelet-dependent hepatic thrombosis, and trigger inflammation,

thereby contributing to the onset and progression of PSVD.

In addition to LPS, several metabolites have been reported to

influence vascular development, affect endothelial cell function,

and activate coagulation systems, warranting further investigation,

such as trimethylamine oxide (TMAO), short-chain fatty acids

(SCFAs), and gaseous molecules (Mohammed et al., 2020; Mitten

and Baffy, 2022).

TMAO, a key gut microbiota-derived metabolite, is also

associated with inflammation, vascular endothelial injury, and

thrombosis (Koeth et al., 2013). Several gut microbes (such

as Desulfovibrio) can degrade choline, betaine, and L-carnitine

from the diet into TMA which is absorbed, transferred to the

liver and eventually converted by hepatic flavin monooxygenases

into TMAO (Qiu et al., 2018). TMAO acts on inositol-1,4,5-

trisphosphate generation in platelets can activate macrophage

scavenger receptor expression through various pathways to activate

the inflammatory signal pathway, resulting in the aggravation of

oxidative stress, endothelial dysfunction, and thrombotic process

(Wang et al., 2021a). Studies have revealed that microbial

taxa associated with a high choline diet significantly increased

TMAO which was positively correlated with enhanced platelet

hyper-responsiveness and thrombosis risk (Mohammed et al.,

2020; Skye et al., 2018). Higher levels of TMAO can increase

endothelial reactive oxygen species (ROS) production and impair

vascular endothelial function, which have been found to be

positively correlated with thrombosis (Lässiger-Herfurth et al.,

2019). Modulating the gut microbiome to target TMAO levels

may represent an innovative approach for reducing the risk

of thrombosis (Vinchi, 2019). The liver is the main organ

responsible for TMAO production, and long-term exposure to
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FIGURE 1

A framework to study interactions between gut microbiome and PSVD.

high doses may induce chronic liver diseases by modulating

inflammatory responses. Indeed, TMAO generated by the gut

microbiome affects bile acid metabolism, cholesterol and sterol

metabolism, and oxidative stress, promoting the development of

metabolic dysfunction-associated fatty liver disease (MAFLD) (Li

et al., 2021; Tan et al., 2019). Zhou et al. found that TMAO

mediates the crosstalk between the gut microbiota and hepatic

vascular niche to affect LSECs characteristics in non-alcoholic

steatohepatitis (Zhou et al., 2022a). Nevertheless, there is currently

no research available on the relationships between TMAO and

hepatic microvascular thrombosis.

Short-chain fatty acids (SCFAs), such as acetate, propionate,

and butyrate, which produced through the fermentation of

carbohydrate by gut bacteria, are important for maintaining

intestinal motility, enterocyte viability, and tight junction integrity

(Morrison and Preston, 2016; Boursier et al., 2016). SCFAs in the

portal blood participate in the modulation of liver hemodynamics,

and the level of circulating SCFAs is negatively related to the

severity of liver disease (Koh et al., 2016). Butyric acid has been

reported to be reported to inversely associated with the hepatic

venous pressure gradient values, and induce inflammatory markers

(TNFα and IL-6) in the hepatic, portal, and peripheral blood

(Mitten and Baffy, 2022). Inflammation affecting the blood vessels

activates the coagulation cascade, promoting the formation of

thrombosis (Jonsson and Bäckhed, 2017).

Notably, gut microbiota utilizes carbohydrate and protein

fermentation, as well as hydrocarbons to produce some gas

signal molecules regulation vascular function and maintenance

vasculature homeostasis, which is gradually being recognized in

liver diseases. Nitric oxide (NO) and hydrogen sulfide (H2S) are

the best-known gas molecules playing crucial roles in vascular

signaling and other processes (Zhou et al., 2022a; Yang et al.,

2023). Under normal physiological conditions, endothelial nitric

oxide synthase derived NO in the blood can serve as an

early marker of endothelial injury (Stanhewicz and Kenney,

2017). LSECs are specialized vascular cells located between the

sinusoidal lumen and Disse space. NO is a key factor that

maintains the phenotypes of LSECs. Reduced NO bioavailability

is associated with liver disease progression, which induces

hepatic vascular resistance, activation of HSCs, and endothelial

dysfunction in LSECs (Hwang et al., 2023; Poisson et al., 2017).

Simultaneously, the ability of abnormal LSECs to synthesize NO

is reduced, leading to vasoconstriction, increasing intrahepatic

vascular resistance, eventually inducing the development of porto-

sinusoidal hypertension (Pillai et al., 2015; García-Pagán et al.,

2012). Endogenous H2S have demonstrated the involvement in

regulating angiogenic responses by activation the VEGF-NO

pathway in HSCs participating to maintain LESCs phenotype

and functional status (Yang et al., 2023). Together, ecological

imbalance in the intestinal flora may promote gut microbes,

gut-derived PAMPs, and microbial metabolites to act on porto-

sinusoidal vascular abnormalities and hepatic microthrombosis,

thus participating in the occurrence and development of PSVD

(Figure 2).
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FIGURE 2

The potential role of gut dysbiosis in the pathobiology of PSVD. Emerging evidence has demonstrated that gut dysbiosis is significantly associated

with multiple predisposing conditions of PSVD, particularly immune disorders, bacterial infections and thrombophilia. Changes in gut microbiota,

gut-derived bacterial products (PAMPs) and metabolites can stimulate the toll-like receptor (TLRs) signaling, leading to the activate hepatic stellate

cells (HSCs), and Kup�er cells (KCs) as well as liver sinusoidal endothelial cells (LSECs) capillarization. These pathophysiological processes trigger the

release of pro-inflammatory cytokines and vasoactive substances, which subsequently induce vasoconstriction, elevate intrahepatic vascular

resistance, and promote hepatic microvascular thrombosis, ultimately contributing to the development of portal hypertension and other

pathological manifestations in PSVD.

Understanding the links between gut microbes and PSVD

not only helps us better understand the pathophysiological

mechanisms of PSVD, but also provides important information

for clinical diagnosis and treatment. Currently, in addition to

exploring the diagnostic and prognostic value of microorganisms

for diseases, targeting the gut microbiota has become the focus of

emerging therapies with varying success such as fecal microbiota

transplantation, probiotics, selective antibiotic use, and targeted

small metabolites produced by gut microbiota, such as SCFAs and

TMAO (Wong and Levy, 2019; Velasquez et al., 2016). Advances

in gut microbiota sequencing technology and metabolomics have

made the detection of specific changes in gut microbiota and

related metabolites valuable methods for non-invasive diagnostic

or prognostic biomarkers of PSVD. Previous studies have identified

metabolic features that clearly differentiate patients with PSVD

from those with cirrhosis and portal hypertension, as well as

from healthy individuals (Seijo et al., 2013, 2016). However,

specific treatments to prevent disease progression in PSVD patients

are currently unavailable. Therapeutic options are limited to

agents addressing complications related to portal hypertension

and hepatic thrombosis, which generally result in a poor

prognosis. With better understanding of the interactions between

gut microbial alterations and PSVD, identifying PSVD-related

characteristic gut-derived microbes and metabolites may provide

promising research fields for related clinical applications.

4 Conclusion

Accumulating evidence suggests that gut dysbiosis may play

a pivotal role in the occurrence and progression of PSVD

by promoting porto-sinusoidal abnormalities and intrahepatic

thrombosis. Gut dysbiosis disrupts the homeostasis of the gut-

liver axis, facilitating the translocation of gut-derived microbial

components, including LPS and metabolites into the liver. These

factors induce structural and functional abnormalities in LSECs,

HSCs, and KCs, while simultaneously promoting intrahepatic

vascular resistance and coagulation dysregulation within the

hepatic sinusoids, leading to the subsequent progression of

PSVD. Currently, there is still limited understanding of the

direct association between gut microbiome and PSVD. Integrating

gut microbiota research into the clinical management of PSVD

holds significant promise for enhancing diagnostic accuracy,

prognostic evaluation, and therapeutic efficacy. Future research

should focus on identifying specific gut microbial signatures

and metabolites associated with PSVD by utilizing advanced
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multi-omics approaches. Elucidating the mechanistic pathways

through which gut-derived signals, especially microbial functional

genomics and metabolites, influence PSVD will be crucial

for developing innovative, non-invasive diagnostic tools and

personalized treatment strategies for PSVD.
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