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1 INTRODUCTION

In recent years, novel methods from artificial intelligence (AI) and machine learning (ML)
commonly referred to as data science (DS) enabled many advances in data-driven fields
including computational biology, bioinformatics, network medicine, precision medicine and
systems medicine (He et al., 2019; Rajkomar et al., 2019; Zou et al., 2019). Given the
continuation of technological innovations that will further lead to new high-throughput
measurements on all molecular levels, it can be expected that the importance of AI and ML for
medicine and biomedicine will even increase in the future (Obermeyer and Emanuel, 2016; Emmert-
Streib, 2021). For this reason, a scientific forum is needed for nurturing methodological
developments and practical applications of AI, ML and general DS in molecular medicine
allowing the community to disseminate and discuss recent results.

The Bioinformatics andAI Specialty Section aims to provide such a forum for publishing articles about
the analysis of all types of Omics, clinical and health data for enhancing our understanding of molecular
medicine. The emphasize is on either the application or the development of data-driven methods for
diagnostic, prognostic, predictive or exploratory studies based on methods from AI or ML.

In Figure 1, we show an overview of the iterative process of scientific discovery utilizing artificial
intelligence and machine learning to enhance our knowledge about molecular medicine. In the
following, we discuss several of these topics that are in our opinion of particular relevance for the
development of AI and ML in molecular medicine.

2 DATA: UTILIZATION AND INTEGRATION

In (Feldman et al., 2012), “data” have been called “fuel” because it is like oil for scientific discoveries.
For this reason, it is not surprising that we start by discussing the importance of data for molecular
medicine. In general, all methods from data science, regardless if they have their origin in artificial
intelligence, machine learning or statistics, are based on data (Emmert-Streib and Dehmer, 2019). In
other words, a method alone is not capable of contributing anything of meaning for molecular
medicine but the combination with data is required.

Nowadays there are many big data resources available that can be utilized for developing and testing
methods. Prominent examples thereof are The Cancer Genome Atlas Research Network (TCGA) (The
Cancer Genome Atlas Research Network, 2008), Gene ontology (GO) (Ashburner et al., 2000), Gene
ExpressionOmnibus (GEO) (Edgar et al., 2002) or Library of IntegratedNetwork-based Cellular Signatures
(LINCS) (Koleti et al., 2017). Interestingly, the idea that such data can also be used for making novel
discoveries about the molecular understanding of disorders is so far largely underexplored.

A common problem encountered is how the diverse and often heterogeneous data can be integrated in a
meaningful and sound way (Zitnik et al., 2019). Traditionally, one tried to accomplish this by the
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normalization of data with the hope that this allows the pooling of
data, i.e., two or more data sets can be combined, from different
sources. While this approach is applicable in certain situations it does
not offer a generic solution. Instead, a conceptual approach that could
be of great practical relevance in this context is provided by transfer
learning (Pan and Yang, 2009). The basic idea of transfer learning is to
utilize data from two different domains and to use both for learning a
so called target task. Importantly, the underlying feature spaces of both
domains can be different. Hence, this framework allows to utilize data
from different domains without actually combining them. For
instance, data from DNA microarrays can be used to improve
tasks for RNA-seq data or even to utilize imaging data, e.g., from
X-Rays or fMRIs, or text data from electronic health records (eHR) for
the same target task. Other machine learning paradigms that could be
of relevance are multi-task learning or semi-supervised learning
(Chapelle et al., 2006; Zhang and Yang, 2018).

3 NETWORKS: INFERENCE AND ANALYSIS

Another type of approach that is of crucial relevance for molecular
medicine is network-based approaches (Vidal, 2009). Specifically,
there have been many studies inferring various types of gene

regulatory networks (GRNs), including transcription regulation
networks, protein interaction networks, metabolic networks or
signalling networks (Emmert-Streib and Dehmer, 2018). Each of
these provide useful information about molecular interactions on
the cellular level (Emmert-Streib et al., 2014). However, in order to
obtain a full systems biology understanding an integration of such
networks is needed. Hence, multi-scale network studies are needed to
provide us with comprehensive blue-prints about the hierarchical
molecular organization pattern (Yu andGerstein, 2006; Ravasz, 2009).

A field that is dedicated for utilizing such approaches is
network medicine (Barabási, 2007). A particular example for
the utility of networks is to study the relations between disorders
and genes (Goh et al., 2007; Emmert-Streib et al., 2013).
Importantly, instead of focusing on individual disorders or
genes at a time, network medicine aims at providing insights
into the intricate interrelations among all such entities. This
allows not only the exploitation of common biological
processes or pathways but also to make predictions, e.g., about
the drug repurposing (AY et al., 2007; Pushpakom et al., 2019).
Hence, networks provide efficient means for studying basic
molecular biological questions of disorders and
pharmacogenomic problems to gain insights into treatment
options for patients.

FIGURE 1 | The iterative process of scientific discovery utilizing artificial intelligence and machine learning to enhance our knowledge about molecular medicine.
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4 PREDICTIONS: DEEP LEARNING
MODELS

A good example to show that machine learning and artificial
intelligence are dynamical fields with constant innovations is deep
learning (LeCun et al., 2015). Methods of this type came to the
awareness of the general community around 2012 and have since then
contributed to enhance our understanding in many domains. One
particular reason contributing to the success of deep learningmethods
is the flexibility they offer for building neural networks of different
tasks. As a result, nowadays a large number of network architectures is
known, e.g., Convolutional Neural Networks (CNN), Long Short-
TermMemory networks (LSTM) or Deep Belief Networks, that have
been applied in a large variety of application domains (Schmidhuber,
2015; Emmert-Streib et al., 2020a).

One particular deep learning model for the analysis of text data
that received considerable attention is BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al., 2019). BERT is an
autoencoding language model trained using stacked encoder blocks
from transformers with a masked language modeling (MLM) to learn
word-embeddings bidirectionally. Part of the success of this model is
its flexibility to be utilized for a number of different prediction tasks,
including named entity recognition, question answering and relation
detection (Perera et al., 2020). Hence, this model is of great relevance
for analyzing, e.g., electronic Health Records (eHR) from hospitals
(Lee et al., 2019; Li et al., 2019).

5 DECISIONS: CLINICAL RELEVANCE

Of particular practical relevance for molecular medicine are studies
investigating diagnostic, predictive, prognostic or therapeutic
signatures of biomarkers. The reason for this it that such studies
have the potential to inform clinical decision making by influencing
the diagnosis or treatment of patients in profound ways. The surge of
genomics data provides ample opportunities for such studies and one
key issue of these is feature selection. Specifically, while the number of
molecular entities, e.g., about genes or mRNAs, is in the tens of
thousands, interpretable models aim to limit this number to the
smallest possible number.

Another interesting topic in this context is the utility of
network biomarkers. In contrast to traditional approaches that
are based on, e.g., sets of genes or proteins, network biomarkers
utilize structural features from gene regulatory networks (Chen
et al., 2012; Zeng et al., 2013). This converts a structureless set of
genes (sometimes called gene bag) into a complex entity
conveying more predictive and interpretable information. As a
side-note we would like to mention that this could be also
beneficial for the visualization of results and the doctor-patient
communication in order to explain therapeutic measures.

6 UNDERSTANDING: EXPLAINING
MOLECULAR SEMANTICS

A common goal of all above approaches is to enhance our
understanding of the molecular bases of disorders. In order to

see that this is a non-trivial endeavour let’s discuss some
examples. Deep learning models have been criticized for being
black-box models (Adadi and Berrada, 2018). That means such
models are good for making predictions but defy a straight-
forward interpretation making the models non-explainable
(Emmert-Streib et al., 2020b). This is particularly problematic
in a medical context involving humans because this utimately
means that clinical decisions, e.g., based on the analysis of
personal genomics data, cannot be explained to the patient.

Another example is given by biomarkers. In general,
biomarkers are used for diagnostic, prognostic, predictive or
therapeutic purposes to make decisions about the care of a
patient (Califf, 2018). It is widely believed that aside from this
clinical utility based on the predictive capabilities of such
signatures, biomarkers are also offering insights into the
molecular functioning of biological processes and their causal
involvement in disorders (Van De Vijver et al., 2002; Cuzick et al.,
2011). However, for prognostic signatures of breast cancer it has
been demonstrated that this is not the case (Venet et al., 2011;
Manjang et al., 2021). This implies that also the prognostic
signatures are black-box models with sensible predictions of
breast cancer outcome but no value for revealing causal
connections. Hence, such models have a predictive utility, e.g.,
for applications in the clinical practice but no biological utility for
enhancing our understanding of breast cancer biology. If similar
results are observed for other cancer types or different disorders
remains to be seen.

From these examples one can see that establishing a good
prediction model does not impliy that we also obtain immediately
an understanding of the molecular semantics offered by
disorders. Hence, ideally, causal prediction models are
required that provide prediction capabilities along with an
interpretable structure for giving causal explanations of
molecular activities (Holzinger et al., 2019). In case such ideal
models are unachievable one needs measures for quantifying
these deficiencies.

7 ROBUSTNESS: STATISTICAL THINKING

An aspect that does not receive enough appreciation is the fact
that any type of the analysis of data from molecular medicine
requires statistical considerations. That means even modern
developments in AI and ML do not make a statistical
understanding obsolete but are built upon it. This includes, for
instance, ensuring the reproducability of studies (Peng, 2011;
Begley and Ioannidis, 2015), multiple testing corrections of
hypotheses (Noble, 2009) or the regularization of regression
models (Tibshirani, 1996). Of particular interest are studies
that clarify the understanding of problems of widely used
methods or approaches (Ioannidis, 2005; Tripathi et al., 2013;
Wasserstein and Lazar, 2016). Hence, investigations that enhance
our understanding of molecular medicine by applying any form
of statistical thinking are welcome to advance bioinformatics
because only such approaches lead to the robustness of
findings that are of biological and clinical significance
(Vingron, 2001).
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8 EMERGENCE: FROM GENOTYPE TO
PHENOTYPE

Finally, we would like to emphasize that molecular medicine
aims to study the connection between genotype and
phenotype (Ginsburg and Willard, 2009; Collins and
Varmus, 2015). That means, while aberrant molecular
processes give rise to various forms of disorders, those
molecular processes should not be studied in isolation but
their phenotypic consequences need to be systematically
documented. However, this requires to bridge from
genotype to phenotype (Noble, 2008a; Gjuvsland et al.,
2013; Ritchie et al., 2015). For practical approaches
’networks’ have been suggested to capture relevant
information as an intermediate layer (Emmert-Streib and
Glazko, 2011; Carter et al., 2013; Kim and Przytycka,
2013), however, further instigations are needed, e.g., to
merge such approaches with predictive models.

On a theoretical note, we would like to highlight that the
above problem is actually severe because it requires an
understanding of emergence (Noble, 2008b; Pigliucci,
2010). Hence, reductionist approaches are prone to fail in
molecular medicine which possesses major challenges for
conceptual approaches provided by AI or ML to overcome
such limitations (Mazzocchi, 2012). Hence, even
personalized medicine or precision medicine depend on
our theoretical understanding of the biological complexity

of emergent features arising from the transition between the
genotype to the phenotype.

9 CONCLUSION

The Bioinformatics and AI Specialty Section of Frontiers inMolecular
Medicine will provide a venue for world-class interdisciplinary
research addressing the above, and many more challenges arising
in the future. In order to provide a forum for the exchange of ideas and
growth of innovations for a multi-disciplinary research community,
the journal does not only publish Original Research and Review
articles but a number of additional paper types. For instance, the
journal welcomes submissions for the following article types:
Hypothesis and Theory, Perspective, Opinion and General
Commentary. This will allow to express the perspectives and
opinions of the community and to discuss recent developments
critically. Furthermore, the journal publishes also Technology and
Code articles which present 1) new software, 2) new applications of
software or 3) implementations of existing algorithms under novel
settings.
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