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Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in
the homogentisate 1,2-dioxygenase gene. One of the main obstacles in studying AKU and
other ultra-rare diseases, is the lack of a standardized methodology to assess disease
severity or response to treatment. Based on that, a multi-purpose digital platform, called
ApreciseKUre, was implemented to facilitate data collection, integration and analysis for
patients affected by AKU. It includes genetic, biochemical, histopathological, clinical,
therapeutic resources and Quality of Life (QoL) scores that can be shared among
registered researchers and clinicians to create a Precision Medicine Ecosystem. The
combination of machine learning applications to analyse and re-interpret data available in
the ApreciseKUre clearly indicated the potential direct benefits to achieve patients’
stratification and the consequent tailoring of care and treatments to a specific
subgroup of patients. In order to generate a comprehensive patient profile,
computational modeling and database construction support the identification of
potential new biomarkers, paving the way for more personalized therapy to maximize
the benefit-risk ratio. In this work, different Machine Learning implemented approaches
were described:
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• Predictive model for the estimation of oxidative status trend of each AKU patient based on
different biochemical predictors (Cicaloni et al., 2019).

• Prediction of QoL scores based on clinical AKU patients’ clinical data to perform
patients’stratification (Spiga et al., 2020).

• A tool able to investigate the most suitable treatment in accordance with AKU patients’ QoL
scores (Spiga et al., 2021a).
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• The comparison of different algorithms to explore the
phenotype–genotype relationships unknown in AKU so
far (Spiga et al., 2021b).

We also implemented an ApreciseKUre plugin, called
AKUImg (Rossi et al., 2020), dedicated to the storage and
analysis of AKU histopathological slides, where images can be
shared to extend the AKU knowledge network. The outcomes of
these predictions highlight the necessity of development
databases for rare diseases like ApreciseKUre. We believe this
is not limited to the study of AKU, but it could be applied to other
rare diseases, allowing data management, analysis, and
interpretation.

INTRODUCTION

Although evidence-based medicine (EBM) has been the main guide
for medical treatment over the last decades, this approach does not
consider the individual molecular characteristics of the patients,
which are of great importance for the efficacy and safety of therapies.
Indeed, the decision-making process in medical practice that
considers only the most reliable scientific information combined
with the individual expertise of the clinician (Bereczki, 2012), cannot
be generalized for all patients. It is well known that not all people
respond to therapies and drugs in the same way (Hafen et al., 2014;
Lehrach, 2015; Roden, 2015) for their differences in genomic,
epigenomic and metabolomic profile (Leyens et al., 2014) and
other several factors including diet, comorbidities, age and weight
(Haga, 2017). In fact, it is possible that patients do not improve their
condition after taking the drugs recognized as the “best” for that
pathology, or even suffer frommore serious complications due to the
accompanying side effects such as adverse drug reactions (ADRs).
To maximize the benefit/risk ratio, pharmaceutical interventions
and dosage should be specifically tailored for individual patients on
their disease risk and expected response.

To address this problem, a new approach called Precision
Medicine (PM) has become a reality in recent years. This recent
technique focuses on different individual parameters, such as genes
variability, environment, lifestyle, and various biological markers
(www.nih.gov/precision-medicine-initiative-cohortprogram) for
the prevention and treatment of diseases. Biomarkers, for
example, are biological indicators that could have a specific
molecular, anatomic, physiologic, or biochemical character,
which can be accurately detected and evaluated (Biomarkers
Definition Working Group, 2001). They play a key role as
indicators of an ordinary or pathogenic biological process, having
a specific physical characteristic or biological change produced.
Thanks to PM it is possible primarily to promote research and
understanding a wide range of diseases, but also to identify the
causes of the different responses to drugs commonly used to treat
different patients. Patients can be “stratified” (Laifenfeld et al., 2012)
according to their susceptibility to a particular disease or their
response to a specific treatment. The PM approach is already
profitably applied in various health areas such as oncology,
cardiology, nutrition, and in particular rare diseases (Schee
Genannt Halfmann et al., 2017; Trusheim et al., 2011).

PRECISION MEDICINE IN AN ULTRA-RARE
DISEASE

While the PM has focused on large amounts of data to study more
common diseases, the data obtained from rare diseases are often
limited and sparse. This lack of information makes the ability to
collect, integrate and analyze data an extremely difficult but
necessary effort. Therefore, to overcome this obstacle, PM in
rare diseases focuses on creating patients’ registries, leveraging
the largest amounts of data available to discover potential
connections and including patients as active partners in this
research (Trusheim et al., 2011). A process of data
harmonization in rare disease registries allows to conduct
clinical studies to understand the complexity of diseases,
allowing a more accurate classification based on their genetic
characteristics (Ogino et al., 2012).

An obstacle in the creation of such registers is that they are
often created at the national or local level, to map rare diseases in
certain areas and to gather information on their incidence and
prevalence in those selected areas. Data for such disease registries
are mostly obtained on a voluntary basis, observational studies,
and clinical data. It would be desirable that such registers could be
also strengthened by expanding data thanks to the
implementation of PM in health systems across the EU (Schee
Genannt Halfmann et al., 2017).

In this review, we focused our attention on the application of
Artificial Intelligence techniques to analyze and re-interpret data
on Alkaptonuria (AKU), an ultra-rare disease characterized by no
apparent genotype-phenotype relationship and no prognosis.
Our overall goal was to advance research on rare orphan AKU
disease towards a PM approach that addresses disease complexity
while considering individual variability.

From a PM perspective, a digital platform dedicated to AKU
called ApreciseKUre was created (www.bio.unisi.it/
aprecisekure/; www.bio.unisi.it/aku-db/), containing data
collected from all over the world from different information
levels. The ApreciseKUre platform was not created as a simple
registry, but rather as a Precision Medicine Ecosystem (PME)
in which genetic, biochemical, and clinical resources are
shared between researchers, clinicians, and patients
(Aronson and Rehm, 2015) in order to promote a better
understanding of the pathophysiological mechanisms of
AKU and related comorbidities.

ALKAPTONURIA

AKU in an ultra-rare autosomal recessive disease caused by the
mutations of the Homogentisate 1,2- dioxygenase (HGD) gene
which leads to a deficiency of the HGD enzyme (Ascher et al.,
2019; La Du et al., 1958) producing accumulation of the
unprocessed toxic catabolite homogentisic acid (HGA),
especially in connective tissues. AKU was the first disorder to
conform with the principles of Mendelian recessive inheritance
(Garrod, 1908) with an estimated incidence of 1 case in
250.000–1.000.000 births in most ethnic groups (Phornphutkul
et al., 2002) and around 1300 patients around the world (Zatkova
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et al., 2020; Ascher et al., 2019). At a structural level, the active
form of the HGD enzyme is a complex hexamer (Titus et al.,
2000) with low tolerance to mutations, including missense
variants, which can damage protein folding stability and alter
HGA accumulation (Nemethova et al., 2016). While the excess
HGA is mostly eliminated through urine, the remaining portion
contributes to the production of an ocronotic pigment deposited
in cartilage (Milch, 1961; Braconi et al., 2015; Bernardini et al.,
2019; Bernini et al., 2021; Braconi et al., 2020), which contributes
in arthropathy early onset, responsible for reducing patients’
quality of life and causing severe pain and deficit in
locomotion (Milch, 1961; Braconi et al., 2015; Spiga et al.,
2020). Oxidative stress and chronic inflammation are also
triggered by the HGA accumulation (Braconi et al., 2015;
Braconi et al., 2010; Braconi et al., 2011; Millucci et al., 2014)
in different organs, making AKU a complex multisystemic
disease. Lately, AKU has been classified as a secondary
amyloidosis (Millucci et al., 2014; Millucci et al., 2012;
Millucci et al., 2015), characterized by the deposition of serum
amyloid A (SAA) fibers, a circulating protein produced at high
levels in chronic inflammation, making SAA a sensitive
biomarker (Gabay and Kushner, 1999), confirmed by elevated
SAA plasma levels also in AKU patients (Millucci et al., 2014,
Millucci et al., 2012, Millucci et al., 2015, Braconi et al., 2016,
Braconi et al., 2018). Moreover, both ochronotic pigment and
SAA-amyloid share the same location in human cartilage and
other tissues (Millucci et al., 2012). In addition to SAA, another
marker of chronic inflammation is chitotriosidase (CHIT1) (Cho
et al., 2014). CHIT1 can be considered a biomarker of AKU as it is
linked to other diseases such as sarcoidosis, rheumatoid arthritis,
and ankylosing spondylitis (Cho et al., 2014; Braconi et al., 2018).
In AKU, in addition to inflammation, patients also suffer from
significant oxidative stress caused by high systemic levels of HGA
showing interesting similarities with other rheumatic diseases
(Braconi et al., 2016). In this context, Protein Thiolation index
(PTI) interestingly denotes and summarizes the oxidative status
of AKU patients, as revealed by ApreciseKUre tools and
experimentally confirmed (Cicaloni et al., 2019). The lack of a
standardized methodology to assess disease severity and response
to treatment, which is highly variable from individual to
individual, appears to be a critical issue in AKU (Vilboux
et al., 2009; Ranganath and Cox, 2011; Ascher et al., 2019)
requiring a reliable way to monitor patients’ clinical conditions
and overall health status. A way to help to identify health needs
and to evaluate the impact of the disease is represented by the
measure of Quality of Life (QoL) (Braconi et al., 2018) whose
correlation with the clinical data deposited in the ApreciseKUre
database may help to effectively face AKU complexity (Spiga
et al., 2020).

APRECISEKURE DIGITAL ECOSYSTEM
PLATFORM

The aim was of ApreciseKUre is to develop an AKU-PME in
which patient-derived information (QoL), clinician-derived
information, and mutational analysis can be collected,

integrated and shared between scientists, clinicians and
patients (Spiga et al., 2017 and Spiga et al., 2018), to build a
worldwide easily consultable reference point for AKU (Figure 1).

In detail, AKU patients’ data have been collected and divided
into different levels such as genetic, protein, biochemical,
histopathologic, clinical, lifestyle and habitual, as shown in
Figure 2.

Currently, ApreciseKUre (Spiga et al., 2021a and Spiga et al.,
2021b) incorporates data of over 210 subjects with AKU, 119
more than its original version (Cicaloni et al., 2016; Spiga et al.,
2017; Spiga et al., 2018) which is an exceptional result considering
the rarity of AKU. The total number of fields making up each
record is 110, with 82 numeric attributes and 8 Booleans; the
remaining fields are categorical values (for the complete list see
supplementary material by Spiga et al., 2021a and Spiga et al.,
2021b).

Different data mining techniques were implemented to
discover potential biomarkers, opening new opportunities to
match therapy to patients, possibly single therapy to a single
group of patients, thus leading to a more personalized medicine
for maximizing the benefit to risk ratio. The outcomes obtained
from these models could be useful not only to advance the
treatment of AKU, but also to serve as a model for other rare
diseases. In Figure 3, all the data analysis techniques are
summarized, ranging from more common statistical data
mining to deeper ML models.

Data Analysis by a Refreshable Correlation
Matrix
The first analytical method developed is based on a statistical
analysis (Pearson correlation) in which numerical data included
in ApreciseKUre are correlated with the consequent creation of a
refreshable correlation matrix. The modeling correlations offer
significant support for early diagnosis, monitoring and treatment
in AKU by revealing that some clinically used biomarkers may
not be suitable in AKU.

One of the most interesting results obtained is the inverse
correlation between CystatinC (CysC) and Cathepsin D (CatD).
CysC is a marker for monitoring renal function: if the glomerular
filtration rate (GFR) decreases, blood levels of CysC increase
(Randers et al., 1998; Croda-Todd et al., 2007) indicating
dysfunctionality. Levels of CatD, a protease capable of
degrading proteins such as CysC (Lenarčič et al., 1991), are
particularly elevated in rheumatic diseases (Khalkhali-Ellis and
Hendrix Mary, 2014) such as AKU. Ochronotic manifestations in
AKU gradually lead to kidney stones and nephrolithiasis (Faria
et al., 2012). Even though patients with AKU often suffer from
renal dysfunction, a subset of AKU patients showed high values of
CatD while CysC levels did not increase (Braconi et al., 2018).
Starting from a statistical observation, it was possible to
biologically suggest that CysC might not be a suitable marker
to measure GFR in AKU, since overexpression of CatD in AKU
might lead to degradation of CysC, making it no longer
detectable.

This first data-mining approach revealed the amount of
hidden information which can be extrapolated from
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computational models, in order to acquire a deeper knowledge of
the AKU and to identify prognostic biomarkers that can be
exploited for a reliable clinical monitoring. In addition, given
the chronic nature of AKU, clinical monitoring of patients’ health
status becomes necessary as well as the implementation of a
correlation system capable of comparing biomarkers at different
times with follow-up studies.

Predictive Model for the Estimation
Oxidative Status
After this preliminary model, a prognostic method based on
linear regression able to investigate oxidative stress status of AKU
patients, starting from easily measurable clinical parameters
(Cicaloni et al., 2019) was integrated in ApreciseKUre. This
predictive system could help clinicians to easily monitor the

FIGURE 1 | ApreciseKUre digital ecosystem. AKU dedicated Precision Medicine Ecosystem (PME).

FIGURE 2 | ApreciseKUre structure. Data stratification into various -omics levels and different types of data mining that support biomedical research and clinical
medicine.
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oxidative stress evolution in single patients, with the consequent
most appropriate antioxidant treatment prescription for each of
them. It has already emerged from the correlation matrix that PTI
is a reliable biomarker to monitor oxidative stress in AKU
(Giustarini et al., 2017). A linear regression model was then
implemented, revealing the most influential biomarkers for PTI
prediction, and consequently, for oxidative stress estimation.
Such biomarkers are parameters easily measured in AKU
clinical analysis and they are related to inflammation,
amyloidosis, and lifestyle. They are Body Mass Index (BMI),
SAA, HGA, cholesterol, and CTH1. The outcome obtained, not
only could help clinicians and researchers to monitor the trend of
oxidative stress in an AKU-affected individual, but also could be
used as a model for other research groups for improving the
AKU-knowledge network.

Prediction of QoL Scores Based on Clinical
AKU Patients’ Clinical Data to Perform
Patients’ Stratification
Patients’ stratification is one of the main goals that
computational modelling together with databases can
achieve. To achieve a first patients stratification in
ApreciseKUre, a K-nearest neighbors algorithm (k-NN) was
implemented to predict QoL scores starting from selected
clinical biomarkers (Spiga et al., 2020). The innovative
finding of this work is that, for the first time, we have
found an ensemble of multiple complementary biomarkers
whose combination produces better k-NN prediction of QoL

scores than any single one. Moreover, due to the limited
number of data available in a rare disease, it is essential to
develop methods that would cope with the limited data size.
The model has been therefore validated using surrogate data,
because small dataset conditions and the associated random
effects make validation of ML models for regression tasks
impractical. Conventional methods, such as cross-validation,
may become unreliable when the number of independent test
samples is limited. The surrogate data method consists in the
generation of a so-called “surrogate dataset” generated from
random numbers and able to mimic the distribution of the
original dataset in terms of their mean, standard deviation and
range but they do not maintain the complex relationships
between the variables of the real dataset.

Therefore, real-data models are consistent if they perform
significantly better than the surrogate data models. In conclusion,
this framework allowed ML algorithms to successfully predict
clinical and QoL scores outcomes despite small datasets. The
prediction of QoL score leads to a patient stratification making it
addressable to several open issues in AKU with a strong clinical
impact on early diagnosis, prediction of disease and of treatment
outcome.

A Tool Able to Investigate the Most Suitable
Treatment in Accordance with AKU
Patients’ QoL Scores
It has been already studied that QoL scores could identify health
needs and to evaluate the impact of disease.

FIGURE 3 | Data mining techniques. All the outcomes derived from statistical and computational approaches included in ApreciseKUre are displayed.
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QoL of AKU patients was assessed through the following
validated questionnaires (Braconi et al., 2010):

• Knee injury and Osteoarthritis Outcome Score (KOOS)
(Roos and Lohmander, 2003), evaluating both short- and
long-term consequences of knee injury. It contains 5
subscales: pain, other symptoms, function in daily living,
function in sport and recreation, and knee-related QoL.
Scores are normalized to a “0–100” scale, from extreme knee
problems to no knee problems.

• Health Assessment Questionnaire (HAQ), including a
disability index (haqDI) and a global pain visual analog
scale (hapVAS). Scores are normalized to a “0–3” scale, from
no difficulties to extreme ones.

• AKUSSI, incorporating clinically meaningful AKU
outcomes combined with medical photography imaging
investigations, and detailed questionnaires into a
single score.

In this study (Spiga et al., 2021a), starting from the idea that
there is a correlation between QoL and the clinical data deposited
in the ApreciseKUre database, we have developed a ML model
that performs a prediction of the QoL scores based on both
personal, biochemical and clinical patients data. In this analysis,
we considered the following QoL scores: AKUSSI joint pain,
AKUSSI spinal pain, KOOS pain, KOOS symptoms, KOOS daily
living, KOOS sport, KOOSQOL, HAQ-DI and hapVAS. All these
QoL scores were standardized into three categorical variables (0, 1
and 2) corresponding to decreasing severity of health conditions
(i.e., 0 is the worst condition and 2 is the best condition), to face
the problem of data scarcity.

The classification was carried out using the Random Forest
algorithm which suggests that KOOS indicator could be a useful
factor to better understand symptoms and difficulties experienced by
AKU patients (Spiga et al., 2020). KOOS prediction could be
fundamental to assess consequences of primary osteoarthritis
(OA), to identify the main important prognostic biomarkers, to
help the clarification of physio-pathological mechanisms of AKU
and ochronosis, and to assess the efficacy of future pharmacological
treatments. Similarly, tomost rare genetic diseases, the existing state-
of-the-art treatment for AKU is unsatisfactory. With the only
exception of Nitisinone, that resulted in reducing urinary
excretion of HGA, in decreasing ochronosis and in improving
clinical signs with a slower disease progression, there is still no
other licensed therapy (Ranganath et al., 2020). Symptomatic
treatments with anti inflammatories and painkillers are generally
taken by AKU patients. The idea of personalizing the treatment
according to “personal” and pathological features, as well as to
special conditions could be the right approach to follow. For that
reason, it has been looked for a correlation between the values of the
QoL scores and the drugs the patients take. Fisher’s exact test was
applied on all the combinations QoL score vs drug, employing the
Benjamini–Hochberg procedure to deal with multiple comparisons.
Antiarrhythmic and antihypertensive agents, as well as anti-
inflammatories and opioid, resulted to be particularly effective in
reducing AKU pain as suggested by a high correlation with KOOS
scores, HAQ-DI, hap-VAS. Also, common drugs not related to

specific AKU symptoms, such as cholesterol lowering and proton
pomp inhibitors, showed a correlation with some QoL scores. In
conclusion, vitamins resulted to be effective in the only case of KOOS
pain evaluation.

Comparison of Different Algorithms to
Explore the Phenotype–Genotype
Relationship
In order to obtain a first genotype/phenotype stratification of
patients with AKU, our contribution (Spiga et al., 2021b) started
from a preliminary statistical analysis based on Pearson’s correlation
coefficient to evaluate the relationship between pairs of clinical data,
biochemical parameters, and QoL scores. This correlation showed
that biomarkers of chronic inflammation and amyloidosis, such as
CHIT1 and SAA, did not strongly correlate with disease severity. In
contrast, PTI showed a correlation with KOOS scores and age. Then,
a stratification of patients into subgroups was performed using both
K-means and Hierarchical Clustering. Three different stratification
sizes (2, 3 and 4) were considered and the resulting clusters were
grouped according to disease severity. Cluster assessment was
performed by applying the nonparametric Kruskall-Wallis test. In
addition, we calculated the Silhouette Score in order to test for
consistency within items that were assigned to the same cluster.
Finally, the distribution of HGD mutations in the obtained clusters
was evaluated, with particular attention to the G161R, M368V, and
A122 V mutations. G161R mutation, responsible for a dramatic
reduction of HGD activity (Rodríguez et al., 2000), occurred in
higher percentage in the most phenotypically severe clusters, while
M368 andA122 Vmutations, in which enzymatic activity of HGD is
conserved for more than 30% (Rodríguez et al., 2000), occurred in
higher percentage in less severe phenotypic sub-groups.

AKUImg
Starting from the assumption that bio-imaging technologies are
increasingly impacting on life sciences and sharing of image data
is required to enable innovative future research, an ApreciseKUre
plugin, called AKUImg (Rossi et al., 2020), was created. AKUImg
is the first AKU-dedicated image repository. It is dedicated to the
storage and analysis of AKU histopathological slides where
images can be shared among registered researchers and
clinicians to extend the AKU knowledge network. It allows to
extend the recognition and reading of slides in the scientific
community for an ultra-rare disease, like AKU by supporting
clinicians and researchers with a user-friendly online tool able to
distinguish between AKU or control cartilage slides. As a matter
of fact, the plugin is also integrated with an accurate predictive
model based on a standard image processing approach, namely
histogram comparison, able to discriminate the presence of AKU
by comparing histopathological images. Deep learning (DL) and
convolutional neural networks (CNNs) have shown impressive
results in many image-processing tasks. However, despite their
popularity, they generally require huge datasets to reach good
performance. Although we could divide each acquired image in
patches, our dataset was not that big. To overcome the obstacle of
the paucity of images available, the model we created has been a
simple but effective binary classification of the knee cartilage. It
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performs a comparative analysis of the color histograms of the
three channels revealing that AKU and healthy cartilages are
easily distinguishable. Therefore, it has been calculated and stored
color histograms for all the images in the dataset. For each new
image to be classified, it has been evaluated the intersection region
between the related histogram and all the histograms in the
dataset. Finally, the test image has been assigned to the class
with the largest intersection region. In conclusion, the algorithm
can perform image classification with a high accuracy, making it a
useful guide for non-AKU researchers and clinicians.

CONCLUSION

Bioinformatics is an interdisciplinary field combining biology,
computer science, information engineering, mathematics and
statistics that develops methods and software tools to analyze
and interpret biological data. Bioinformatics is taking a key role in
big data analysis especially in healthcare, public health and in PM
for a new understanding of the complexity of diseases and for
tailoring the most appropriate treatment. PM is an innovative
approach which aims to build a knowledge based network that
can better guide individualized patient care, giving benefits in
terms of health and quality of life. In this review, we focused on its
application to an ultra-rare disease named AKU, characterized by
no apparent genotype-phenotype relationship, no prognosis, and
no therapy.

To develop an AKU-dedicated PME, clinical and experimental
data have been collected and integrated in ApreciseKUre, a multi-
purpose digital platform containing information of more than
200 AKU subjects, uniquely identified based on an anonymous
key. Including updated case-data and samples from clinicians and

patients, the researchers benefit from new information sources
and can contribute to get a deeper knowledge of AKU.

However, ApreciseKUre is more than a data storage, as it also
integrates computational predictive models able to map highly
non-linear input and output and to investigate the health status of
AKU patient patterns even when mechanistic relationships
between model variables could not be determined. The main
ML goal are listed below:

• Estimation of oxidative status trend of each AKU patient
based on different biochemical predictors.

• Patients’ stratification based on QoL scores and clinical data
• Investigation of the most suitable treatment in accordance
with AKU patients’ QoL scores

• Exploration of the phenotype–genotype relationships
unknown in AKU

In conclusion, the application of computational algorithms
together with the creation of digital databases will offer an
opportunity to translate new data into actionable information.
ApreciseKUre represents a guide applicable to other diseases,
enabling data management, analysis and interpretation. Our
sufficiently populated and standardized dataset allows for the
achievement for the first time to extensively explore the
phenotype-genotype distribution from a typical PM perspective.
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