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Parkinson’s Disease (PD) is a neurodegenerative disorder with highly

heterogeneous phenotypes. Accordingly, it has been challenging to robustly

identify genetic factors associated with disease risk, prognosis and therapy

response via genome-wide association studies (GWAS). In this review we first

provide an overview of existing statistical methods to detect associations

between genetic variants and the disease phenotypes in existing PD GWAS.

Secondly, we discuss the potential of machine learning approaches to better

quantify disease phenotypes and to move beyond disease understanding

towards a better-personalized treatment of the disease.
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1 Introduction

Parkinson’s Disease (PD) is a neurodegenerative disorder (NDD) affecting

7–10 Million patients worldwide. PD patients suffer from motor symptoms like

bradykinesia, rigidity, tremor, and postural instability. Speech impairments,

characterized by hypokinetic dysarthria, are among the first symptoms (including

disruptions in prosody, articulation and, phonation). In addition, non-motor

symptoms include cognitive impairment, sleep disorders as well as autonomic and

mood dysfunction. The cause of idiopathic PD is unknown, and all currently

available treatments (e.g. L-DOPA) are symptomatic. PD has a high subject-to-subject

variability of symptoms reflecting disease progression (Poewe et al., 2017).

In recent years, genome-wide association studies (GWAS) have shed light on the

polygenic nature of Parkinson’s Disease (PD) (Simón-Sánchez et al., 2009; Satake et al.,

2009; Kara et al., 2014; Siitonen et al., 2017; Bandres-Ciga et al., 2019; Nalls et al., 2019).

First GWAS aimed to identify mutations in coding regions that could be linked to each

neurodegenerative trait. Accordingly, variants associated with α-synuclein were detected
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(Mata et al., 2010), one of the hallmark proteins of the disease.

However, a meta-analysis of several studies found more variants

with smaller effects to be more common in patients than fully

penetrant variants (Tran et al., 2020). In addition, larger cohorts

now open the possibility to identify less frequent variants and

study the interaction with environmental factors. An example is

the 23andMe PD cohort, which was able to identify 17 new risk

loci for idiopathic PD (Chang et al., 2017; Nalls et al., 2014).

Another example is United Kingdom Biobank (UKB), where

other authors were able to demonstrate novel gene-environment

interactions (Jacobs et al., 2020).

Despite these successes, unraveling the genetic basis of PD,

specifically in its sporadic form, remains challenging:

• PD demonstrates a highly heterogeneous phenotype with

different long-term outcomes (Aasly, 2020). Accordingly,

it is difficult to find genetic associations. So far most

research has focused on risk factors for PD diagnosis,

but less attention has been paid to identifying genetic

variants associated with different long-term outcomes.

Notably, a few papers report on genetic risk factors for

cognitive impairment in idiopathic PD (Collins and

Williams-Gray, 2016; Amer et al., 2018; Planas-Ballvé

and Vilas, 2021).

• Sizes of existing cohorts still impose a statistical challenge

to identify rare variants.

• Many genetic variants jointly contribute to the phenotype,

possibly in a non-linear manner via gene-gene interactions.

Finding the true causal subset of variants is still difficult

due to the high dimensionality of the GWAS data, the

existence of linkage disequilibrium, and statistically low

contributions of rare genetic variants on the population

level.

• While in a recent meta-study more than 70 single-

nucleotide polymorphisms (SNPs) have been associated

with the risk to develop PD, most of them are located in

non-coding regions and thus difficult to interpret (Ho

et al., 2022).

In this context the goal of this review is two-fold: First, we

provide an overview of existing statistical methods that have been

employed to detect associations between genetic variants and the

disease phenotype as shown in Figure 1 and Table 1. The second

goal of this review is to discuss the potential of machine learning

approaches, which could allow to better quantify complex

phenotypes and to move beyond disease understanding

towards a better personalized treatment of PD in the future.

While previous reviews focused on the genetic architecture of PD

and discuss associated risk factors (Billingsley et al., 2018), gene-

specific polymorphisms (Jiménez-Jiménez et al., 2016), gene-

gene and gene-environment interactions (Singh et al., 2014;

Dunn et al., 2019), our review has thus a distinguishable

methodological focus.

2 Variant association tests

In 2011, Sun et al. (2011) considered rare variants as single-

nucleotide polymorphisms with minor allele frequencies (MAF)

less than 0.01, and have larger effects than common variants.

However, when combined, the number of low-frequency variants

makes them common. According to the multiple rare variant

FIGURE 1
Advantages and disadvantages of different association tests.
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(MRV) hypothesis, cases of common inherited diseases are due

to the combined effects of highly-penetrant variants (Bodmer

and Bonilla, 2008). The genetic composition of PD is often

described by two non-mutually exclusive hypotheses: the

common disease common variant (CDCV) hypothesis which

describes the genetic basis of PD as a result of a large number of

common variants with relatively small effects but combined

confer significant disease risk (Pritchard and Cox, 2002), and

the common disease rare variant (CDRV) hypothesis which

speculates that risk components for complex diseases will be

rare genetic variants of small or large effects where highly

functional or deleterious alleles may exist. This may be

noticeable in late-onset diseases like PD where selective

pressures are not profound (Billingsley et al., 2018).

Typically, GWA studies focus on variants with MAF greater

than 1–5%, and while they were able to identify several variants

with evidence of association to disease risk, these common

variants only explain 5%–10% of the disease heritability. This

led to the conclusion that disease risk is comprised of both

common and rare variants (Schork et al., 2009). Variants located

near SNCA, MAPT genes and low frequency coding variants in

GBA are validated by GWAS to be statistically significant signals

associated with PD (Spencer et al., 2011; Lill et al., 2012; Nalls

et al., 2014; Chang et al., 2017).

2.1 Single-marker tests

Single-marker testing involves the application of a univariate

test for each variant and assessing their significance while using a

scaled p-value threshold to account for multiple testing (Asimit

and Zeggini, 2010). These tests include X2, Fisher’s test, Cochran-

Armitage (CA) test for trend and regression analysis, be it logistic

regression for testing binary traits or linear regression for

quantitative traits. Since each variant is tested independently,

corrections for multiple testing should be accounted for to

control the family-wise error (FWE) which may result in a

loss of power. Instead, controlling the false-discovery rate

(FDR) by allowing a small proportion of incorrect null

hypotheses may result in a gain of power, especially at a

larger number of tests.

If we assume m number of variants within an n number of

samples, a regression model can be fit at each of them variants to

test their association with a trait. Assuming that yi is the

phenotype for sample i and xij is the minor allele count of

variant j for sample i, the relationship of variant i can be

explained by a linear regression model with the following

formula:

yi � αj + βjxij + ηjzji + εi

Where zj is a matrix of covariates that may be present, and εi
is an error term representing independent random variables with

a mean of 0. For that model, a value of βj = 0 represents the null

hypothesis of no association at variant j. For a logistic regression

model, yi is replaced by log( pi

1−pi
) where pi is the probability of the

trait’s presence.

The X2, Fisher’s test, and CA tests construct a 2 ×

3 contingency matrix to compare the genotype frequencies

between cases and controls, where rows represent disease

status and columns represent the three possible genotypes. For

X2 and Fisher’s tests, a null hypothesis of equal genotype

frequencies for both the cases and controls is considered.

Usually, Fisher’s test is preferred since it provides exact results

of significance, while X2 test approximates the results with an

accuracy that depends on the sample size, which is not ideal in

the case of small samples.

If we represent the genotypes as ordered categories AA, Aa,

and aa, the CA test is considered a modification of the X2 test to

introduce a suspected ordering of the genotype effects and aims

to test a linear effect of the minor allele’s copy counts (Slager and

Schaid, 2001), which is defined as follows:

CA � n2 n0Aan
1 − n1Aan

0( ) + 2 n0aan
1 − n1aan

0( )( )2
n0n1 nAa n − nAa( ) + 4naa n − naa( ) − 4nAanaa( )

As mentioned earlier, multiple testing needs to be corrected

to control the family-wise error (FWE). The Bonferroni

correction is used to test an m number of variants while

assuming the significance level for the m independent

hypothesis tests is α, using α/m to calculate the test-specific

significance level (Ranstam, 2016). To control the FDR for

independent tests, Benjamini & Hochberg (Benjamini and

Hochberg, 1995) developed a sequential Bonferroni procedure,

where the m p-values from the individual tests are first ranked:

p(1) ≤ p(2) ≤/ ≤ p(m). At FDR level q, assume k to be the largest i

such that P(i) ≤ i
m q, then the null-hypothesis is rejected for

p-values less than p(k).

A study by Mata et al. (2017) used linear regression to

identify genetic variants that may lead to a cognitive decline

in PD patients. Eighteen common variants in thirteen genomic

regions exceeded the significance threshold for one cognitive test

each. However, rare variant analysis did not yield any

significance. Another study by Simón-Sánchez et al. (2009)

used the Cochran-Armitage test for trend to test associations

with PD in European patients. Four SNPs at the SNCA locus and

three at the MAPT locus exceeded Bonferroni-corrected GWAS

significance thresholds. An overview about further PD studies

and employed statistical tests is provided in Table 2.

2.2 Multiple-marker tests

Multivariate methods can be used as an alternative to testing

variants individually by combining information across the

variants and testing the multiple variant sites simultaneously.
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In that case, a multiple-marker test’s power will be higher than

that of single-marker tests for multiple moderate SNP effects.

Such approaches include Fisher’s method, Hotelling’s T2 test, and

multiple logistic or linear regression. These tests may be less

powerful as they require multiple degrees of freedom.

Fisher’s test combines the results of allm single-marker tests,

and the test statistic can be represented by X2 � −2∑m
i�1 log(pi),

assuming pi are the p-values obtained from the m single-marker

tests. However, the test can be anti-conservative when there are

dependencies among the m single tests.

Multiple regression can be used to test for the association

between the variants and the phenotype in tandem instead of

fittingm regression models at each of the rare variants separately.

A simple regression model with no covariates for a binary trait

can be represented as follows:

yi � α +Xβi + εi

where X is an n × m matrix of the minor allele counts for n

subjects at m variants, and β is the m vector of regression

coefficients. By estimating the associations at each variant

collectively, the fit requires m degrees of freedom for the test

statistics of each null hypothesis with βj = 0 to have n −m degrees

of freedom rather than n − 1 as in single-marker tests.

Hotelling’s two-sample T2 is a multivariate generalization of

the Student’s t-test (Xiong et al., 2002) which can be used for

case-control studies. Assume we have NA affected and N �A

unaffected samples. To calculate the test statistic, consider Xij

and Yij as variables defined for the genotype of marker j for

individual i from the case and control groups. For NA we find

Xij �
1, if aa
0, if Aa
−1, if AA

⎧⎪⎨
⎪⎩

and Yij is defined similarly for N �A. Assume

Xi � (Xi1, . . . , Xim)T, i = 1, . . . , NA for the cases and

Yi � (Yi1, . . . , Yik)T, i � 1, . . . , N �A for controls, and after

establishing the Xi and Yi’s pooled-sample covariance matrix

S, Hotelling’s two-sample T2 test statistic can be expressed as

T2 � NAN �A

NA +N �A

�X − �Y( )TS �X − �Y( )

and under the null hypothesis, NA+N �A−m−1
m(NA+N �A−2)T

2 follows an Fm,NA +
N �A −m − 1 distribution.

A drawback to multiple-marker tests is their

sensitivity to allele frequencies. A simulation study on rare

variants by Li & Leal (Li and Leal, 2008) shows that

Hotelling’s T2 test is greatly affected by MAF, and shows a

reduction in power in cases of increased numbers of rare

causal variants.

Li et al. (2021) used multivariate linear regression to test

for variant association to age at onset of PD in the Asian

population. Results showed a significant effect of a novel

intergenic locus rs9783733 that could delay the age at onset

in patients by 2.43 years. Another study by Pankratz et al.

(2012) used logistic regression to identify genetic

variants associated with pD. Genome-wide significance

was reached for variants in SNCA, MAPT, GAK/DGKQ,

HLA region and RIT2. Additional tests can be found in

Table 2.

TABLE 1 Advantages and disadvantages of methods for variant association testing.

Method Advantages Disadvantages

Single-marker tests Standard method to test for association between variants and traits in
GWAS, useful for large sample sizes and common variants with large
effect sizes

Less powerful for rare variants with similar effect sizes to common
variants, leading to the need for stringent significance levels in scenarios
with more rare variants, further reducing its power

Multiple-marker tests Evaluates the effects of multiple variants in a gene or region, instead of
testing for each individually. Has higher power than single-marker
tests when variants in a group are associated to the same trait or
disease

Highly sensitive to allele frequencies

Burden tests Powerful in scenarios when a large number of variants are causal with
effects in the same direction

Lose power with small numbers of causal variants or in the presence of
variants with effects in opposite directions

Adaptive burden tests Uses fixed weights or thresholds to increase robustness Computationally intensive

Variance-component tests Powerful in scenarios with a small fraction of causal variants or in
presence of variants with effects in opposite directions

Less powerful with large numbers of causal variants or if their effects are
in the same direction

Linkage disequilibrium
score regression

Robust against confounders and can be used efficiently with large
sample sizes

Despite being computationally less intensive than other genetic
correlation methods, a practical setback is the need of processing
summary statistics from multiple GWAS which can be time consuming

Mendelian randomization Overcomes limitations of traditional randomized control trials
(RCTs) including proneness to confounders, reverse causation and
selection bias

Multiple limitations include pleiotropy where a single variant can
produce multiple effects, LD where two variants are statistically
associated and tend to be inherited together, and bias of precise
estimates of causal effects
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TABLE 2 Selected studies on risk variant association utilizing multiple techniques.

Author Method Objective Results

Mata et al. (2017) Single/Multiple-marker,
linear regression/SKAT-O

Identify genetic variants leading to cognitive decline in
PD patients

Eighteen common variants in thirteen genomic regions
exceeded significance threshold

Simón-Sánchez et al.
(2009)

Single-marker, Cochran-
Armitage trend test

Studying variant association to PD in European patients Four SNPs within the SNCA locus and three at theMAPT
locus exceeded Bonferroni corrected GWAS significance
threshold

Li et al. (2021) Multivariate linear
regression

Test for variant association to age at onset of PD in the
Asian population

Identification of a novel intergenic locus which could
delay age at onset of PD by 2.43 years

Tan et al. (2021) Single-marker, linear
regression

Identify genetic variants associated with PD progression Significant association of APOE ϵ4 tagging variant
rs429358 to composite and cognitive progression in PD

Foo et al. (2017) Multiple logistic regression Conduct the first Han Chinese GWAS for PD Presence of some genetic heterogeneity in PD risk
between European and East Asian patients

Hernandez et al.
(2012)

Multiple-marker, logistic
Regression

Identify genetic variants associated with young onset PD
in Finnish Patients

Thirteen SNPs that were previously linked to PD showed
high significance in the Finnish cohort. However, the
study failed to identify any single predominant
monogenic causes of the disease in the group

Loesch et al. (2021) Multiple-marker, logistic
regression

Identify PD risk variants in a Latino cohort and describe
overlap in genetic structure compared to European
ancestry

Genome wide significance shown by SNCA locus
demonstrating its importance in PD etiology in Latinos

Park et al. (2021) Multiple-marker, logistic
Regression

Identify genetic loci associated with cognitive impairment
in patients with sporadic PD

RYR2 and CASC17 loci were associated with cognitive
impairment based on clinical assessment scores, but none
of their SNPs based significance thresholds after
Bonferroni correction

Pankratz et al.
(2012)

Multiple-marker, logistic
Regression

Identification of risk variants associated with PD
susceptibility

GWAS significance was reached for previously reported
SNCA, MAPT and HLA regions, as well as a novel
susceptibility PD locus RIT2 on chromosome 8

Hill-Burns et al.
(2014)

Multiple-marker, logistic
regression

Identification of novel PD locus via stratified GWAS
study

Identification of a novel locus in chromosome 1p21 in
sporadic PD.

Chang et al. (2017) Multiple-marker, logistic
regression

Identification of novel loci associated with PD risk Identified 17 novel risk loci in a joint analysis of
26,035 cases and 403,190 controls

Hill-Burns et al.
(2016)

Multiple-marker, linear
regression/Cox regression

Conducting GWAS for age at onset Two variants, mapped to LHFPL2 and TPM1, were
strongly associated to earlier onset PD.

Liu et al. (2011) Multivariate logistic
regression

Identification of risk variants associated to PD in an
Ashkenazi Jewish population

The study identified 6 gene regions as candidates for PD
using an Ashkenazi Jewish case-control population as
discovery set and two other large dataset for replication

Hamza et al. (2010) Multiple-marker, logistic
regression

Conducting a GWAS to identify risk variants in
Caucasian population

The study confirmed association with SNCA and MAPT,
replicated GAK association and detected novel
association with HLA, which was replicated in two other
datasets

Ryu et al. (2020) Multiple logistic regression/
Cochran-Armitage trend test

Identify genomic variants associated with motor
fluctuations and levodopa-induced dyskinesia (LID)

FAM129B SNP rs10760490 was nominally associated
with motor fluctuations at 5 years after PD onset, while
GALNT14 SNP rs144125291 was significantly associated
to occurrence of LID

Rodrigo and Nyholt,
(2021)

Multiple-marker, logistic
regression

Reanalyzing an ExomeChip-based NeuroX dataset to
identify novel, conditional and joint genetic effects
associated with PD

Eleven association signals for PD were identified
including five novel signals, three of which are driven by
low frequencies and two by rare

Blauwendraat et al.
(2019)

Multiple-marker, linear
regression

Identification of genetic factors associated with age at
onset of PD

Results found two GWAS significant signals at known PD
risk loci SNCA and a protein-coding variant in
TMEM175, and Bonferroni corrected signals at other
known PD loci including GBA, INPP5F/BAG3, FAM47E/
SCARB2, and MCCC1

Spencer et al. (2011) Single/Multiple-marker,
logistic regression

Performing a GWAS United Kingdom patients to identify
novel risk factors associated to PD

Evidence found for PD independent association in 4q22/
SNCA, weak but consistent association in previously
published associated regions 4p15/BST1, 4p16/GAK and
1q32/PARK16 and no significant association for
previously reported SNP association in 12q12/LRRK2

Saad et al. (2011) Multiple-marker, logistic
regression

Performing a three-stage GWAS to identify common PD
risk variants in the European population

Significant association of SNCA to PD risk, converging
evidence of association with PD on 12q24 and confirming
associations on 4p15/BST1, previously reported in
Japanese data

(Continued on following page)
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2.3 Burden tests

Aggregation tests can be used to evaluate the combined

effects of multiple variants in a gene or region, rather than

testing each of them individually. One class of such tests is

called burden tests, which collapse information of multiple

variants into a single genetic score and test for its association

to a trait (Morgenthaler and Thilly, 2007; Li and Leal, 2008;

Zawistowski et al., 2010; Morris and Zeggini, 2010; Asimit et al.,

2012). By counting minor alleles across all variants in a set, we

can summarize the genotype information, and the statistic is

represented by:

Ci � ∑
m

j�1
wjGij

where Gij represents the allele counts of subject i at variant j, and

wj is the weight for variant j.

The summary genetic score Ci can adapt to different

assumptions about disease mechanisms. The MZ test (Morris

and Zeggini, 2010) utilizes a dominant genetic model instead of

an additive one to calculate Ci, which is the number of rare

variants for which individual i carries at least a single copy of the

minor allele. As for the cohort allelic sums test (CAST)

(Morgenthaler and Thilly, 2007), it assumes an increase in

disease risk with the presence of any rare variant, and sets the

genetic score Ci = 0 if there are no minor alleles in the region and

Ci = 1 otherwise.

We can focus on rare variants by assuming wj = 1 when the

MAF of the variant j MAFj is smaller than a preset threshold or

wj = 0 if otherwise. We can upweight rare variants by using a

continuous weight function. Madsen and Browning (Madsen and

Browning, 2009) proposed wj � 1/[MAFj(1 −MAFj)]1/2 and

Wu et al. (2011) proposed the family of Beta densities wj = beta

(MAFj, α1, α2) which includes the Madsen and Browning weight

as a special case. Information on the functional effects of variants

can also be used for weight construction.

Outside of the regression framework, several burden

approaches have been presented. The combined multivariate

and collapsing method (CMC) (Li and Leal, 2008) collapses

rare variants as in CAST, but in different MAF categories and

calculates the combined effects of the variants using Hoteling’s

t test. The Madsen and Browning weighted-sum test (WST)

(Madsen and Browning, 2009) uses Wilcoxon’s rank-sum test

and obtains the p-values by permutation.

All rare variants in a set are assumed to be causal and related

to a trait with the same direction and magnitude by burden

techniques. Breaking such assumptions can result in a significant

loss of power (Neale et al., 2011; Lee et al., 2012a).

Spataro et al. (2015) used different collapsing methods,

including the CMC and weighted sum tests, to study the

contribution of rare variants in the etiology of idiopathic pD.

The tests showed high significance in aMendelian group of genes

that comprise genes of dominant and recessive inheritance. In

dominant genes, the tests showed high significance only when

analyzing code-altering variants. As for recessive genes, the tests

showed significance for code-altering, putative code-damaging,

and putative splice-altering variants. Another study by Li et al.

(2020) used the weighted sum statistic (WSS) to study the

associations of the DNAJC proteins family by genetic analysis

TABLE 2 (Continued) Selected studies on risk variant association utilizing multiple techniques.

Author Method Objective Results

Blauwendraat et al.
(2020)

Multiple-marker, logistic/
linear regression

Understand whether genetic variants affect penetrance
and age at onset of GBA-associated PD and Lewy body
dementia (LBD)

Study shows PD and LBD cases with GBA variants often
carry other PD associated risk variants that modify
disease risk and age at onset

Spataro et al. (2015) Combined multivariate and
collapsing method (CMC)

Study the contribution of rare variants in the etiology of
idiopathic PD

The tests showed significance of dominant genes when
analyzing code-altering variants only, while they showed
significance of recessive genes when analyzing code-
altering, putative code-damaging and putative splice-
altering variants

Li et al. (2020) Weighted sum statistic
(WSS)/SKAT-O

Study the association of DnaJ homolog C DNAJCs in a
large Chinese early-onset PD cohort

Several risk variants showed significance in DNAJC26,
DNAJC13, DNAJC10 and DNAJC6, as well as a novel
compound heterozygous mutation in DNAJC6

Nalls et al. (2019) SKAT-O generate summary statistics of genes passing the inclusion
criteria of having at least two coding variants

Out of 113 genes, seven showed high significance
including LRRK2 and GBA

Siitonen et al. (2017) SKAT-O Identify genetic variants associated to early onset PD in
Finnish patients

Novel associations were found in the CEL region.
However, there is a high chance the finding is a false
positive as the CEL region has multiple indel mutations

Markopoulou et al.
(2021)

SKAT Understanding the contribution of genetic variants at PD
risk genes to individual phenotypic charactertistics of PD

Notable findings show association of LRRK2 with a prior
diagnosis of essential tremors, significant association of
NUCKS1 to Unified PD Risk Scale UPDRS-III motor
scores and UPDRS-V (H&Y stage) and association of PD
risk SNP rs823118 in the same gene to higher MMSE
scores
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to early onset PD in a large Chinese cohort. The study identified

61 rare variants, two of which showed significance after

Bonferroni correction in DNAJC26, two in DNAJC13, one in

DNAJC10 and onemore inDNAJC6, as well as a novel compound

heterozygous mutation in DNAJC6. An overview of further

studies using burden tests can be found in Table 2.

2.4 Adaptive burden tests

Adaptive methods were developed to address the limitations

posed by the traditional burden tests. These methods are robust

in presence of null variants and allow for train-increasing or trait-

decreasing variants. Han et al. (Han and Pan, 2010) developed a

data-adaptive sum test (aSum) that performs a burden test with

estimated directions after first estimating the direction of effect

for each variant in a marginal model. It assigns wj = −1 when βj is

likely to be negative and wj = 1 if not. This approach requires

permutation for the p-values to be calculated. This procedure is

improved in the step-up test (Hoffmann et al., 2010), which uses

a model-selection framework that assigns wj = 0 when a variant is

unlikely to be associated, removing it from consideration.

A more direct approach is utilized by the estimated regression

coefficient test (EREC) (Lin and Tang, 2011), which uses estimated

regression coefficients for each variant as weights. This is based on

the assumption that the true regression coefficient βj is an optimal

weight to maximize power. When minor allele counts (MAC) are

small, βj estimates are unstable, and hence the EREC test stabilizes

the estimates by adding a small constant to the estimated βj, which

might reduce the test’s optimality. The test uses parametric

bootstrap to estimate p-values because asymptotic approximation

of the test statistic is only accurate for very large samples.

The variable threshold (VT) (Price et al., 2010) is an adaptive

modification that chooses the best frequency thresholds for rare

variant burden testing and calculates p-values analytically or by

permutation. Using kernel-based adaptive weighting, the kernel-

based adaptive cluster (KBAC) (Liu and Leal, 2010) method

combines variant classification of non-risk and risk variants with

association tests.

As referenced in the previous section, Li et al. (2020) included

the aSUM and KBAC tests with the WSS test to study the

associations of the DNAJC proteins family to early onset pD.

Further information and results of the study can be found in

Table2.

2.5 Variance-component tests

This type of association tests uses a variance-component test

within a random-effects model and tests for the association of a

group of variants by evaluating the distribution of their genetic

effects. These tests include the C-alpha test (Neale et al., 2011),

the sequence kernel association test (SKAT) (Wu et al., 2010; Wu

et al., 2011), and the sum of squared score test (Pan, 2009). These

tests evaluate the distribution of aggregated score test statistics of

the individual variants.

SKAT is a non-burden test that uses mixed models and

includes the C-alpha test in special cases when covariates are

absent, and can also accommodate SNP-SNP interactions. SKAT

assumes the regression coefficients βj are independent and follow

a distribution with mean 0 and variance w2
jτ, and tests the

hypothesis H0: τ = 0 using a variance-component score test.

The SKAT test statistic can be represented as

QSKAT � ∑
m

j�1
w2

jS
2
j

which is a weighted sum of squares of the single-variant score

statistic Sj. Similar to burden tests, SKAT is robust to groups that

include variants with both positive and negative effects, as it

collapses S2j . When comparing burden and SKAT statistics, it is

noted that burden tests collapse the variants first before

performing the regression, while SKAT collapses individual

variant-test statistics, which explains its robustness to mixed

signs of β and large fractions of non-causal variants.

While burden tests are not powerful when the target region

has several noncausal variants or causal variants of different

associations, they can outperform SKAT in cases where a high

proportion of causal variants with effects in a similar direction

are present. Lee et al, (2012b) proposed a unified test that is

optimal in both scenarios and combines both burden tests and

SKAT in a single framework. The test statistic of the unified test is

Qρ � ρQB + 1 − ρ( )QS, 0≤ ρ≤ 1

which is a weighted average of SKAT and burden tests, which

reduces to SKAT when ρ = 0 or the burden test when ρ = 1.

In their meta genome-wide association study, Nalls et al.

(2019) used SKAT-O to generate summary statistics of genes

with rare coding variants which had an imputation quality larger

than 0.8%. 113 genes passed the inclusion criteria of having at

least two coding variants. After Bonferroni correction for the

113 genes, seven significant genes were identified including

LRRK2 and GBA. Siitonen et al. (2017) also used SKAT-O in

their study to analyze variants associated with early onset PD in

Finnish patients. The results showed significant associations to

PD in the CEL locus which were not previously identified.

However, the validity of the result is questioned by the fact

that the CEL region has several indel mutations (Taylor et al.,

1991; Siitonen et al., 2017).

2.6 Linkage disequilibrium score
regression

Linkage Disequilibrium score regression (LDSC) is a method

developed by Bulik-Sullivan et al. (2015) that determines if the
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distribution of a test statistic in GWAS is inflated due to

confounding biases or polygenicity. The idea behind LDSC is

that variants in linkage disequilibrium (LD) with a causal variant

in an association analysis will show elevated test statistics that are

proportional to the LD with the causal variant, while elevations

due to confounders like cryptic relatedness or population

stratification will not correlate with the LD score. LDSC

involves using regression techniques to study the relationship

between LD scores and test statistics of SNPs obtained from

GWAS studies.

Nalls et al. (2019) used LDSC in their GWAS to examine

correlations of PD genetics with that of other traits and

diseases using data obtained from GWAS available via LD

Hub (Zheng et al., 2017) and biomarker GWAS summary

statistics on c-reactive protein and cytokine measures.

p-values obtained from the LDSC were adjusted for FDR to

account for multiple testing. The authors found four

significant correlations, two of which were positive

correlations with intracranial volume and putamen volume,

and two negative correlations with tobacco use and

educational attainment.

Tirozzi et al. (2020) wanted to investigate the genetic overlap

between PD and platelet parameters since associations between

both have been established but not thoroughly investigated on a

genetic level. The authors applied LDSC to summary statistics of

a large independent GWAS conducted on Alzheimer’s disease

(AD), PD, and platelet parameters including mean platelet

volume (MPV), platelet count (PLT), and platelet distribution

width (PDW) (Jansen et al., 2019). The results showed a

significant correlation between PDW and PD risk suggesting

the existence of genetic overlap and presenting PDW as a new

potential biomarker for PD.

Another study by Andersen et al. (2021) investigates how

the immune system contributes to pathogenesis in PD, by

studying the enrichment of common variant heritability for

PD stratified by immune and brain cell types. The authors

performed a stratified LDSC (s-LDSC) analysis using full

summary statistics from the meta-analysis of PD GWAS by

Nalls et al. (2019) and an earlier meta-analysis by Chang et al.

(2017). The results found significant enrichment in open

chromatin regions of microglia, with further investigation of

expression quantitative locus (eQTL) databases showing the

P2RY12 locus to be the most interesting, suggesting it as a

microglial gene with PD association signal.

2.7 Mendelian randomization

Mendelian Randomization (MR) is a method that uses

measured variation in genes of known function to study the

causal effects of a modifiable exposure on disease or health-

related outcomes (Lawlor et al., 2008). MR studies use genetic

variants as instrumental variables (IV) which can be defined as

variables that are associated with an outcome only through their

robust association with an intermediary variable.

In this context, the aim of MR studies is not to identify

genetic variants that are directly associated with the disease but to

use the variants as IVs for the modifiable exposure of interest.

The genetic variants need to satisfy three assumptions to be

considered as IVs in MR studies:

• The variant is associated with the modifiable exposure

• The variant is independent of confounding factors that

confound the association of the modifiable exposure to the

outcome

• The variant is independent of the outcome given the

modifiable exposure and the confounding factors

Therefore, genetic variants that explain variations in an

exposure can be used as a proxy to explain how changes in

that exposure can influence the outcome of a disease of interest.

An illustration of the MR framework is shown in Figure 2.

MR was used by Simon et al. (2014) to investigate whether

genetic variants that can predict serum urate levels can predict

the rate of progression in patients with early PD, on the basis

that higher serum urate levels lower the risk of developing pD.

In this study, the authors used SLC2A9 gene as an IV, which

explains most of the genetically specified variability in serum

urate levels but does not have any known direct associations

with the central nervous system. The authors then estimated

the association between genetically determined urate levels

and PD progression using two-stage regression, where they

first fitted a generalized linear regression model with urate

levels as the dependent variable, and a SLC2A9 score based on

the number of minor alleles at three selected loci, along with

potential confounders, as independent variables. Then, a Cox

proportional hazards model used the predicted urate levels

from the first stage regression as a continuous independent

FIGURE 2
An illustration of Mendelian Randomization framework.
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variable to determine its association with PD progression. The

results showed that an increase in the number of SLC2A9

minor alleles is associated with a decreased serum urate level.

Also, the rate of PD progression increased with the number of

minor SLC2A9 alleles associated with lower serum urate levels.

Genetic variants other than SLC2A9 did not show any

significant association to lower serum urate levels or rapid

PD progression. The results suggest that high serum urate

levels are protective of rapid progression in early PD.

Similarly, a study by Domenighetti et al. (2022) uses MR

to investigate the association between genetically predicted

dairy intake and higher PD risk by using the LCT lactase

gene’s minor allele rs4988235 as an IV, where TT/TC

genotypes are associated with lactase persistence and the

ability to digest lactose and CC genotype with non-

persistence. The authors then used logistic regression to

compare the frequency of rs4988235-TC+TT genotypes in

patients and controls of European ancestry. Results showed

that rs4988235-TC+TT genotypes were more frequent in PD

patients than controls, suggesting that higher dairy intake

increases PD risk.

Another study by Storm et al. (2021) uses MR to

investigate several druggable genes and predict their

efficacy as PD drug targets. In this study, the authors

considered the expression levels of the druggable genes as

the modifiable exposure, while variants associated with

expression levels of the genes, called eQTLs, were used as

the IVs. The authors sought to use openly available eQTL data

for genes under investigation to mimic exposure to

corresponding medications (Finan et al., 2017). First, the

authors used the cohort collected for the meta-analysis by

Nalls et al. (2014). The causal estimates, known as the Wald

ratio, were calculated for each SNP, and the ratios were

weighted by inverse-variance (IVW) for genes with more

than one eQTL available. This identified 31 genes with

genetically-determined expression that is highly associated

with PD risk. The authors then attempted to replicate the

genes with significant association with PD risk in an

independent cohort that does not overlap with the original

cohort. The authors then used several meta-analysis methods

to look for pleiotropy due to confounders including IVW, the

MR-Egger intercept test, Cochran’s Q test, and the I2 test.

Based on the results, the authors propose the genes CTSB,

GPNMB, CD38, RHD, IRAK3 and LMAN1 as drug targets with

the strongest MR evidence.

As previously discussed, Nalls et al. (2019) identified

correlations of PD genetics with tobacco consumption,

educational attainment, and brain volumes using LDSC. The

authors used MR to assess the existence of a causal relationship

between PD and the traits. The results showed that cognitive

performance and educational attainment had a large causal effect

on PD risk, while smoking and brain volumes did not have any

significant causal relationship.

2.8 Multiple testing corrections

Multiple testing is one of the major concerns regarding high-

dimensional data which results from simultaneous testing of

multiple hypotheses, which if not taken into consideration, may

lead to rejecting a true null hypothesis by chance, known as a false

discovery. This can be accounted for by controlling an

appropriate error rate such as the family-wise error rate

(FWE) which is the probability of one or more false

discoveries. The classical method of controlling FWE is the

Bonferroni method (Bland and Altman, 1995), which is an

adjustment made to p-values when several tests are

performed. To perform a Bonferroni correction, assume the

critical p-value to be α, then divide it by the number of tests

made n. The new critical p-value would then be α/n, and the

statistical power of the study is then calculated based on the

newly modified p-value.

Another method is the Benjamini–Hochberg method which

controls the false discovery rate (FDR) (Benjamini and

Hochberg, 1995), known as the expected proportion of false

rejections out of all rejections. The Benjamini–Hochberg

procedure involves ordering all p-values from smallest to

largest then assigning a ranking to each one, then calculating

the critical p-value as (i/m)Q, where i is the rank of the p-value,m

is the total number of tests andQ is the chosen FDR. The method

then checks the largest p-value below the critical rate, and

considers any smaller values as significant.

3 Polygenic risk score

The risk of polygenic disorders such as PD cannot be assessed

by information conferred from a single variant, but the total set of

risk variants that comprise its genetic architecture is required to

provide enough information that can help identify individuals at

high-risk (Lewis and Vassos, 2020). An individual’s risk can be

assessed using polygenic risk scores (PRS), calculated as the sum

of risk alleles an individual carries, each weighted by their relative

effect sizes obtained from the GWAS summary statistics (Ibanez

et al., 2019), where the result is a score that represents the

individual’s genetic load for the disease or trait in question.

In this context linkage disequilibrium (LD) and p-values

thresholds for individual SNPs have to be considered. Simpler

approaches, such as PRSice (Choi and O’Reilly, 2019) and PLINK

(Purcell et al., 2007; Gaunt et al., 2007; Chang et al., 2015), only

use p-value thresholds (clumping + thresholding), whereas more

advanced methods, including LDPred (Vilhjálmsson et al., 2015),

PRS-CS (Ge et al., 2019), JAMPred (Newcombe et al., 2019), and

Lassosum (Mak et al., 2017) additionally take into account based

on reference data.

While PRS can provide a simple estimate of the genetic

architecture of complex disorders, its additive model generally

does not take into account gene-gene interactions (Aschard,
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2016). Moreover, the typically required pre-filtering of SNPs

implies a focus on more common genetic variants.

The largest meta-analysis was performed by Nalls et al.

(2014) and was considered the reference for PD-related PRS

before including more data from the 23andME (Chang et al.,

2017) meta-analysis. The included PRS were associated with PD

status, faster motor and cognitive decline (Paul et al., 2018) and

age at onset of disease. Another study by Escott-Price et al. (2015)

mentions that only PRS built from SNPs with p-values below the

significant thresholds were associated with PD, suggesting that

the genetic architecture of PD includes several common variants

with small effects. Another study by Ibanez et al. (2017) shows

that PRS from more significant SNPs are also associated with PD

risk. Furthermore, PRS were used to show a higher genetic

burden in early-onset PD than in late-onset PD (Escott-Price

et al., 2015). More studies with established PRS in the PD field

can be found in Table 3. A more detailed review of PRS in the PD

field can be found in (Dehestani et al., 2021).

4 The perspective of machine
learning

4.1 Multi-modal data integration

There is an increasing awareness that PD has to be

understood as a complex disease, in which aging, (epi-)genetic

variants, environmental pollutants/toxins, lifestyle, and

comorbidities jointly contribute to the observed phenotype

(Espay et al., 2017; Titova and Chaudhuri, 2017). Whereas

variants association tests and PRS have helped to gain a better

understanding of the genetic basis of PD, developing algorithms

for accurate disease risk assessment, diagnosis, prognosis, and

treatment response in the context of precision medicine require

combining PRS as well as relevant genetic variants with further

data modalities. Hence, predictive machine learning models are

needed, which can potentially also overcome one of the typical

limitations of PRS, namely lacking variant interactions and thus

non-linearities. A recent study shows the combined role of PRS,

rare high-impact variants, and family history in PD risk

(Hassanin et al., 2021). Cope et al. demonstrated that a non-

linear machine learning algorithm purely trained on genetic

variants can result in dramatically improved prediction

performances compared to a classical PRS (Cope et al., 2021).

Notably, analysis of the model allowed us to identify an

interaction between variants in TMEM175 (coding for a

potassium channel in late endosomes) and GAPDHP25

(glyceraldehyde-3 phosphate dehydrogenase pseudogene 25),

which have been linked to PD (Nalls et al., 2014). Another

study by Prashanth et al. (2016) used multimodal features to

classify early PD subjects from controls using machine learning

models. The authors used non-motor features of Rapid Eye

Movement (REM) sleep Behaviour Disorder (RBD) and

olfactory loss as well as cerebrospinal fluid (CSF)

measurements and dopaminergic imaging markers to classify

the patients using Naive Bayes, Support Vector Machine (SVM),

Boosted Trees and Random Forest classifiers, where SVM gave

the highest performance. Based on the results, the authors

suggest that the combination of non-motor, CSF, and imaging

features can help in the preclinical diagnosis of PD.

A further example is the use of non-linear unsupervised

machine learning algorithms by Emon et al. (2020) to identify

patient subgroups by exploring the genetic burden by SNPs in

genes that have been previously associated with AD and PD,

which allowed for a molecular mechanism based stratification of

AD and PD patient sub-types. The authors further investigated

clinical outcome measures of the patients to confirm whether the

patient clusters were disease-associated or reflected general

genetic variations in the population and found the clusters to

be associated with different clinical symptoms,

pathophysiological brain differences, and biological processes

that were enriched only in each of the clusters.

Experiences from neurological conditions other than PD

suggest that combinations of PRS, (non-linear) combinations

of genetic variants, pathway-level burden scores and a detailed

description of the clinical phenotype could allow for a rather

accurate prediction of disease risk (Khanna et al., 2018;

Birkenbihl et al., 2020) and even clinical drug response (de

TABLE 3 Polygenic Risk Scores listed in the Polygenic Score Catalog (Lambert et al., 2021).

Author Reported traits Ancestry Distribution Number of variants

Pihlstrøm et al. (2016) Parkinson’s disease, motor decline European 19

Ibanez et al. (2017) Parkinson’s disease, age at onset European 16

Paul et al. (2018) Parkinson’s disease, cognitive decline, motor decline European 23

Nalls et al. (2019) Parkinson’s disease Multi-ancestry 90, 1805

Bobbili et al. (2020) Parkinson’s disease European 43

Liu et al. (2021) Parkinson’s disease dementia Multi-ancestry 3

Sia et al. (2021) Parkinson’s disease East Asian 6

Chairta et al. (2021) Parkinson’s disease European 12
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Jong et al., 2021). Interestingly, in both cases, genetic factors

played a comparably small role in the prediction of the clinical

outcome. In another study, Makarious et al. (2022) demonstrate

the benefits of using multiple data modalities by integrating

clinical, genetic, and transcriptomic data in a predictive

machine learning framework. Their results showed that

integrating multiple data modalities improved PD prediction

in mixed populations of cases and controls. They also

demonstrated the benefits of using machine learning

approaches and the ability to tune the models’ parameters and

accommodate nonlinearities, as well as identifying important

features that contributed the most to the models’ predictive

performance using model explanation methods such as

SHAPley Additive exPlanations (SHAP).

4.2 Deep phenotyping

A few studies have started to focus on genetic risk factors

associated to symptoms of idiopathic PD, including cognitive

impairment (Collins andWilliams-Gray, 2016; Amer et al., 2018;

Planas-Ballvé and Vilas, 2021). In this context, it has to be re-

emphasized that PD patients suffer from a whole spectrum of

motor and non-motor symptoms. Traditionally, these symptoms

are assessed via questionnaires, such as the Unified Parkinson’s

Disease Rating Scale (UPDRS), during a patient’s visit to a

medical specialist center. The assessment is dependent on the

experience of the individual examiner and can thus be

subjectively biased. Therefore, during the last years, there has

been a strongly growing interest in remote monitoring

techniques (RMTs), including wearable sensors and devices

(measuring e.g. gait) and smartphone apps (measuring e.g.

cognitive abilities). Compared to established questionnaire-

based assessments, RMTs offer several potential benefits:

1) They are patient-centric and not biased by a rater’s

experience.

2) They allow for monitoring disease symptoms within a

patient’s natural at-home environment, potentially 24/7,

hence considering the fact that PD symptoms are variable

over the daytime. RMT signals can thus be viewed as real-

world data.

3) Digital sensing techniques provide an objective measure of a

clinical symptom.

Notably, processing of RMT signals requires advanced data

analytical techniques, including machine learning (Fröhlich et al.,

2022). The outcome is an abstract set of features representing a

patient’s phenotype. Following sufficient validation, within

clinical studies, these features can result in digital biomarkers,

which provide an accurate and quantitative description of PD

symptoms. The combination with genetic data thus opens

completely new opportunities to identify risk factors for

specific PD symptoms, such as cognitive impairment or sleep

disturbances. Moreover, machine learning algorithms could

potentially be used to combine digital biomarkers with genetic

features and other data modalities, including electronic health

records, to predict disease risk, prognosis, and response to

treatment.

4.3 Parkinson’s disease prediction

Multiple studies have used machine learning models to

predict PD using different data modalities, analyzing hidden

information in data that cannot be interpreted in clinical

diagnosis. Wang et al. (2020) investigated the diagnosis of PD

based on vowel phonation. Features were obtained from the

mPower dataset and improved with additional novel features

using a Bayesian correlated t-test. The features were then used as

input for an SVM model which performed with moderate

accuracy. Bhurane et al. (2022) used SVM with a cubic kernel

to classify PD patients and healthy controls. Using features

extracted from Electroencephalography (ECG) signals, the

proposed approach performed with high accuracy.

Chakraborty et al. (2020) used features extracted from 3T T1-

MRI scans to detect neurodegeneration in pD. Using atlas-based

segmentation, eight subcortical structures were segmented from

the MRI scans, on which feature extraction was performed to

extract textural, morphological, and statistical features. The

features were then used to train four different machine

learning algorithms: an artificial neural network (ANN),

XGBoost model, random forest classifier, and an SVM, where

the ANNmodel performed with the highest accuracy. In another

study, Ali et al. (2019) used neural networks to detect PD using

features obtained from acoustic analysis of voice signals. Linear

discriminant analysis (LDA) was used for dimensionality

reduction, and a genetic algorithm (GA) to optimize the

hyperparameters of the neural network. Initially, the model

performed with accuracy which falls after excluding gender-

dependent features to eliminate bias.

Peng et al. (2019) used a three-step method for PD gene

prediction. The method, called N2A-SVM, uses the Node2vec

algorithm to extract vector representations of each gene in the

protein-protein interaction (PPI) network. Then it uses an

autoencoder to reduce the dimensions of the obtained vector,

and an SVM for classification. The performance of N2A-SVM

was tested in comparison to the other methods: random walk

with restart (RWR) (Li and Patra, 2010), shortest path length

(SPL) (Krauthammer et al., 2004) and Euclidean distance (ED)

(Díaz-Uriarte and Alvarez de Andrés, 2006), where N2A-SVM

showed the highest performance.

Another study by Rastegar et al. (Ahmadi Rastegar et al.,

2019) used machine learning models to assess if serum cytokine

levels can be used to predict PD progression. The authors used

data from the Michael J Fox Foundation LRRK2 clinical cohort
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consortium to assess the variability of inflammatory cytokine

levels in patients over a one-year period. Then, the authors used

the cytokine measurements with elastic net and random forest

models to predict longitudinal clinical outcomes. Using baseline

cytokine measurements, random forest models of motor severity

showed the best predictive performance, with cytokines MIP1α

and MCP1 contributing the most to the predictive model.

5 Discussion

The heterogeneous nature of PD imposes specific challenges

for finding the underlying genetic causes. We briefly discussed

several association tests that were used to identify genetic variants

associated with disease risk. Single-marker tests are the simplest

approach to studying associations by applying a univariate test to

each variant and assessing their significance. However, their

statistical power is low for small datasets and requires

corrections for multiple testing. These issues were addressed

by developing statistical methods that evaluate the associations of

multiple variants in specific regions or genes. They are used as a

standard method to test for variant association in GWAS, and

helped identify several variants associated with PD including

SNCA, MAPT, GBA and HLA loci as well as others associated

with cognitive decline in PD including APOEϵ4, RYR2 and

CASC17 loci.

Burden tests collapse multiple genetic variants into a

single genetic score, which is used to test the association to

a trait. Since these tests assume all collapsed rare variants to be

causal and associated with the trait under study in a similar

direction and magnitude of effect, any changes in said

assumptions lead to a loss in their statistical power.

Adaptive burden tests address these limitations as they

require fewer assumptions about the genetic architecture at

each locus, and hence they are suitable in the presence of null

variants and trait-increasing or decreasing variants. However,

adaptive tests are two-step procedures that may require

regression coefficient estimation of individual variants as a

first step and can be unstable for rare variants. They also

estimate p-values by computationally intensive permutation.

The use of burden tests helped us understand the role of

different variant types in the etiology of idiopathic PD, and the

identified four mendelian mutations of LRRK2 and PARK2

loci in idiopathic PD cases (Spataro et al., 2015). Adaptive

tests were also used to study the associations of DNAJC

proteins family with early onset PD (Li et al., 2020).

Variance-component tests evaluate the distribution of

genetic effects for groups of variants to test for their

association. Instead of aggregating the variants, they assess the

distribution of each of the variants’ aggregated score test

statistics. Variance-component tests are more powerful than

burden tests if the genetic region under study has many non-

causal variants or variants with different directions of association,

while burden tests are more powerful when there are more causal

variants with the same direction of association. SKAT-O

combines both burden tests and SKAT in a single framework

but can be less powerful than any of its components if their

underlying assumptions are largely true. Nalls et al. (2019) used

SKAT-O in their meta GWAS to identify genes with two or more

rare coding variants, and 7 significant genes: LRRK2, GBA,

CATSPER3, LAMB2, LOC442028, NFKB2 and SCARB2. SKAT

has also been used to study the association of genetic variants to

individual phenotypic characteristics of PD, including motor and

cognitive functions (Markopoulou et al., 2021).

LD score regression helped researchers distinguish whether

inflated GWAS test statistic distributions are due to variants in

LD with a causal variant or due to confounding bias or

polygenicity. LDSC has been used to examine correlations of

PD genetics with different traits, including brain measurements,

blood measurements, habitual behaviors, and immune system

activity in different cell types (Nalls et al., 2019; Tirozzi et al.,

2020; Andersen et al., 2021).

Mendelian Randomization helped understand the causal

effects of modifiable exposures on pD. The method uses the

genetic variants as instrumental variables in statistical analysis

to describe the relationship between the disease and the

modifiable exposure of interest. MR was used to investigate

the relationship between PD and serum urate levels,

suggesting that elevated urate levels are protective of rapid

progression in early PD (Simon et al., 2014). MR was used as

well to investigate the relationship with lactose tolerance in

different PD patient populations, suggesting that high

tolerance and increased dairy intake elevate PD risk

(Domenighetti et al., 2022). MR also helped propose

druggable targets by investigating the expression levels of

druggable genes and using them as the modifiable exposure

of interest (Storm et al., 2021).

PRS have opened the possibility to assess disease risk on an

individual basis rather than purely on the average population

level. Limitations of PRS include their additive nature, which

neglects gene-gene interactions, and the focus on more

common genetic variants. Machine learning models can

mitigate this limitation and additionally include further

data modalities, such as other molecular and phenotypic

data. In this context, electronic health records, as well as

digital biomarkers, could help to longitudinally and more

objectively characterize disease symptoms. The main

challenge with the use of machine learning models is,

however, their difficult interpretation, specifically in the

case of neural networks. Novel approaches coming from

the field of Explainable AI (XAI) could here provide a

solution (Linardatos et al., 2020; Arrieta et al., 2020).

In summary, novel methodological developments are

necessary to deepen the understanding of the genetic basis of

PD and to transfer these insights into better individualized

treatment of PD in the future.
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