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INTRODUCTION
Biochemistry, the field that studies
biomolecules and their relation to life,
is a primary beneficiary of the flood
of data that is emerging from the new
technologies that allow us to observe
biological systems at spatial and tem-
poral scales never achieved before. It
remains extraordinarily difficult to grasp
the implications and to develop experi-
mentally testable predictions from such
complex data. Most of the data are frag-
mented and only pertain to either a static
vision of biology, or provide informa-
tion on dynamics over a limited time
scale. However, the dynamics of biomolec-
ular systems occurs over a large range
of time scales. Thermal fluctuations for
example occur in the femtosecond (fs)-to-
picosecond (ps) time scale, while tumbling
occurs in the nano second (ns) time range.
Global molecular rearrangements such
as those observed in allosteric regula-
tion take place in the microsecond (µs)
to millisecond (ms) time range while
folding, binding, diffusion, motility and
translocation befall in the ms-s-min time
range. Macromolecular synthesis and
supramolecular processes are even slower
processes occurring in the seconds-to-
hours time frame. Furthermore, even
simple observations of biomolecular sys-
tems can require quantitative analyses that
are beyond the repertoire of traditional
methods available to experimentalists. The
scarcity of comprehensive methods is even
more acute with regard to answering fun-
damental questions of the chemistry and
physics underlying the multitude of phe-
nomena that define biomolecular systems
and their interactions. The current views
of the relationship between biomolecular

structure and function for example remain
fragmented. We know of their sequences,
more and more about their structures, and
we have information on their biological
activities, but we have difficulties con-
necting these dots into a knowledgeable
whole. Thus, biochemistry requires new
theoretical and computational approaches
toward organizing data into quantitative
models. Mathematics (broadly defined)
is well positioned to play a major role
in these efforts, by working collabora-
tively with bench biologists, chemists and
physicists.

Mathematics has always played an
important role in biology, including bio-
chemistry. There is indeed a field of
research named “mathematical biology”
whose aims are to provide quantitative
representations, treatments and model-
ing of biological processes, using a vari-
ety of applied mathematical techniques
and tools. By describing biomolecular
systems in a quantitative manner, their
behavior can be better simulated, and
hence properties can be predicted that
might not be accessible to the exper-
imenter. Mathematical disciplines such
as probability theory, statistics, combina-
torics, dynamical systems, and the study
of differential equation have tradition-
ally provided the tools for such quantita-
tive analyses. The ongoing transformation
of biology into a quantitative science is
increasing the need, however, for new
tools and new theories. As a conse-
quence, I expect that mathematical areas
such as calculus, linear algebra, abstract
algebra, graph theory, algebraic geome-
try, topology, and coding theory will play
an increasing role in the new era for
biology.

To get a better understanding of the
challenges that lie ahead of us, it is worth
considering a simple example with sig-
nificant consequences for human health.
Dengue virus is a positive sense RNA
virus responsible for dengue fever, a trop-
ical infectious disease whose incidence
has increased drastically over the last
decades. There are currently no prophylac-
tic treatments against dengue fever, with
the exception of eliminating the vector
mosquitoes. The genome of dengue virus
encodes for 10 different proteins. A per-
haps surprising idea that has crystallized
from years of studies of dengue virus is
that its biology is deeply encoded in the
dynamics of these proteins. For exam-
ple, the envelope protein E on the sur-
face of dengue viruses undergoes a change
in conformation upon entering the endo-
some following the infection of a cell. This
structural change is ultimately responsi-
ble for the release of the virus genome
in the cell (Bressanelli et al., 2004; Modis
et al., 2004). The surface of dengue virus
is also known to be dynamic (Lok et al.,
2008). An antibody that locks the virus
surface in a static state blocks infection
by preventing attachment of dengue virus
to cells (Teoh et al., 2012). These are all
key indicators that the dynamic move-
ment of dengue surface proteins is impor-
tant for cell attachment and ultimately
its virulence. Our experimental knowledge
of this dynamics that occurs at different
time scales, however, is limited. How are
structure and dynamics connected for the
dengue virus? How do we connect dynam-
ics to the biology of viral entry into cells?
What is the connection between dynam-
ics and to the inhibition of dengue virus
with antibodies? These are key questions
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that are vital to the design of vaccines as
well as to the identification of prophylactic
antibodies.

Deciphering the relationships between
the structure, function, and dynamics
of biomolecules is the grand challenge
faced by biochemists in their attempt
to unravel the mysteries of life. There
are many facets of this challenge that
remain unsolved. Of particular interest,
the subjects of biomolecular structure
prediction and folding remain key chal-
lenges for the community of computa-
tional and theoretical structural biologists.
Interestingly, these areas define a treasure
trove of problems where mathematics can
prove useful. In the following two sec-
tions, I outline some of the mathemati-
cal challenges featured in these research
areas. Hopefully some of these chal-
lenges will be met and discussed in the
new Frontiers section, “Mathematics and
Biomolecules.”

GRAND CHALLENGE I: THE
MATHEMATICS OF BIOMOLECULAR
SHAPES
Molecular structure, or shape is highly
correlated to chemical reactivity as the
latter depends on the positions of the
nuclei and electrons within the molecule.
Indeed, chemists have long used three-
dimensional plastic and metal models to
understand the many subtle effects of
structure on reactivity and have invested
in experimentally determining the struc-
ture of important molecules. The same
applies to biochemistry, where struc-
tural genomics projects are based on the
premise that the structure of biomolecules
implies their function. As finding the high-
resolution structure of a biomolecule by
experimental methods remains a chal-
lenge, it is natural to turn to modeling.
One would like to infer the geometry of
a biomolecule from its primary sequence.
This is the structure prediction challenge,
nicknamed the “holy grail” of computa-
tional structural biology. A perhaps sur-
prising finding from decades of research
is that geometric reasoning plays a major
role in attempts to solve this challenge,
hinting at a more significant role for math-
ematics in this field. Figure 1 illustrates
some possible contributions of geometry
and topology for RNA structure predic-
tion. Namely,

FIGURE 1 | Topology and Geometry of RNA molecules. From a pure chemical point of view, a
RNA molecule is a polymer of nucleotide residues, The cartoon on the left illustrates the backbone
of the P4-P6 group I rybozyme of tetrahymena thermophila (Cate et al., 1996). Each nucleotide
includes one base. There are four main types of bases, A, U, G, and C that may form pairs, with a
strong preference for the pairs A-U and G-C. (A) a diagram representing the RNA as an open circle,
with edges representing the base pairs. The presence of crossing edges indicates topological
constraints in the RNA. (B) The shape of the RNA may be characterized as a union of balls, with
one ball per atom, whose geometry can be characterized using the alpha shape theory
(Edelsbrunner and Koehl, 2005) . (C) The atomic displacements corresponding to the normal mode
with lowest frequency are shown as (blue) line segments. Panel (A) was drawn using RNA 3D Hub
(http://rna.bgsu.edu/rna3dhub), and panels (B,C) are drawn with Pymol (http://www.pymol.org).

(1) Topology and RNA structure (panel
A). It is well established that topology
plays an important role in defining
the three dimensional conformations
of RNA molecules (Bailor et al., 2010).
To visualize RNA topology, a graph is
constructed by representing the RNA
backbone as a line and joining base
pairs by edges. The arrangement of the
base pairs determines the structure of
this graph, which is related to “simple”
secondary structures (helices, loops)
and also to configurations known as
pseudoknots (when two edges cross).
While the latter are not common,
they are functionally important. It is
therefore important to address the

problem of their prediction. The pres-
ence and number of pseudoknots
are reflected in the genus, a numer-
ical invariant associated to the RNA
graph. This genus is related to, but
not identical to, what graph theo-
rists call the genus of a graph. It
is straightforward to compute and
implies topological constraints on the
conformation of the RNA it repre-
sents (Bon et al., 2008; Bon and
Orland, 2011; Reidys et al., 2011).
Much remains to be done, however,
on which invariants to use to quan-
tify genus, and on how to include this
information in structure prediction
algorithms.
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(2) Geometry and RNA structure (panel
B). A common model represents a
biomolecule as a union of balls, in
which each ball corresponds to an
atom. Properties of the biomolecule
are then expressed in terms of prop-
erties of the union (Edelsbrunner and
Koehl, 2005). For example, the poten-
tial ligand sites are detected as cavities
(Edelsbrunner et al., 1998) while the
interaction of the biomolecule with
its environment is quantified through
the surface area and/or volume of
the union of balls (Eisenberg and
McLachlan, 1986; Ooi et al., 1987).
Even with this simple representa-
tion, many mathematical challenges
remain. How do we define a metric
on the space of biomolecular struc-
tures? What are good (geometric)
measures of similarity, or comple-
mentarity between two biomolecules?
Answers to these questions will help to
understand biomolecular interactions
in normal cellular functions and in
host-pathogen interactions, as well as
support research on therapeutic drug
developments.

GRAND CHALLENGE II: THE
MATHEMATICS OF BIOMOLECULAR
DYNAMICS
The functions of many biomolecules
strongly correlate with conformational
changes in their structure space, a process
usually referred to as their activation. This
process for example is very much at the
core of enzymatic activity, as an enzyme
and its substrate usually go through struc-
tural transitions that favor the chemi-
cal reaction (Henzler-Widman and Kern,
2007; Henzler-Widman et al., 2007). The
structures of these transition states are of
great interest, especially for drug design.
Many enzyme inhibitors have been engi-
neered to be transition state analogs, i.e.,
to resemble the transition state of the
enzyme substrate; this design is only pos-
sible if the transition state of the enzyme
itself is known. The transition state, how-
ever, is very short lived and its structure
cannot be studied by standard experi-
mental methods from structural biology.
Computational “morphing” is then a valu-
able alternative, where the word mor-
phing may relate to simple geometric

morphing techniques or to more com-
plex transformations that account for
the physics of the system. Given two
conformations for a bio-molecule, the
problem is to find a plausible path along
its energy surface, where plausible usu-
ally refers to a path with minimal frus-
tration, also referred to as the Minimum
Energy Path (MEP) (Weinan and Vanden-
Eijnden, 2010). In principle, a brute
force molecular dynamics (MD) simula-
tion would solve the Minimum Energy
Path problem (Hartmann et al., 2014), as
it is designed to simulate the dynamics of
the system with atomistic details. However,
the timescales required for pushing a sys-
tem over an energy barrier scale exponen-
tially with the barrier height. As a result,
traditional MD has difficulty surmount-
ing even small barriers in times that are
computationally accessible (Vendruscolo
and Dobson, 2011). Recently, a technique
for spatial discretization of the molec-
ular structure space designed to help
overcome such problems, the so-called
Markov State Models (MSMs) (Chodera
et al., 2007; Pan and Roux, 2008; Metzner
et al., 2009; Noé et al., 2009) has
attracted a lot of attention; this technique
remains computational costly and cur-
rently limited to studying small molecular
systems.

How can we generate alternate
approaches to these MD techniques for
morphing a bio-molecule from one state
into another? How smooth is the morph-
ing? If the actual morphing is not smooth,
can we approximate it with a smooth
diffeomorphic mapping? To solve these
problems, we will need better methods for
sampling the energy surface in the space of
conformations for the molecule of inter-
est, as well as better mathematical models
of what defines a MEP, especially when the
energy surface is rugged. This calls for col-
laborations between mathematicians and
theoretical physicists.

I believe that in the next 10 years we
will see more and more collaborations
between mathematicians, physicists and
biologists with hopes to decipher the roles
of biomolecules in life. I foresee that new
theories and new models will be created
to better address the challenges mentioned
above. This is truly an exciting time for
biochemistry.
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