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The nucleotide exchange factors of
Hsp70 molecular chaperones
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Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany

Molecular chaperones of the Hsp70 family form an important hub in the cellular protein

folding networks in bacteria and eukaryotes, connecting translation with the downstream

machineries of protein folding and degradation. The Hsp70 folding cycle is driven by two

types of cochaperones: J-domain proteins stimulate ATP hydrolysis by Hsp70, while

nucleotide exchange factors (NEFs) promote replacement of Hsp70-bound ADP with

ATP. Bacteria and organelles of bacterial origin have only one known NEF type for Hsp70,

GrpE. In contrast, a large diversity of Hsp70 NEFs has been discovered in the eukaryotic

cell. These NEFs belong to the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein

families. In this short review we compare the structures and molecular mechanisms of

nucleotide exchange factors for Hsp70 and discuss how these cochaperones contribute

to protein folding and quality control in the cell.

Keywords: BAG domain, cochaperone, GrpE, HspBP1/Sil1, Hsp110/Grp170, protein folding, proteostasis

Introduction

Molecular chaperones of theHsp70 family use a nucleotide-dependent conformational cycle to sup-
port protein folding. Hsp70 proteins comprise an N-terminal nucleotide binding domain (NBD)
and a substrate binding domain (SBD), which communicate by allosteric signals (reviewed in
Mayer, 2013). The nucleotide is bound at the center of a two-lobed structure, commonly divided
into subdomains IA, IB, IIA, and IIB. ATP binding favors a twist between the NBD lobes which
allows extensive contacts with the SBD. In this conformation interactions with misfolded proteins
are dynamic. In contrast, the ADP-bound state exhibits an extended structure with tight inter-
actions between the SBD of Hsp70 and exposed hydrophobic peptide segments. ATP hydrolysis
by Hsp70 thus induces stable substrate complex formation, and ATP re-binding triggers substrate
release from Hsp70. Hsp70 has however high affinity for ADP and its intrinsic ATP hydrolase
activity is low. Hence Hsp70 function critically depends on cochaperones, specifically J-domain
proteins (JDP) and nucleotide exchange factors (NEFs), which accelerate ATP hydrolysis and
ADP-ATP exchange, respectively. The great diversity of JDPs, especially in eukaryotes, suggests
that Hsp70 is recruited for specific tasks by forming ternary complexes with substrates and these
cochaperones. Eubacterial genomes encode only one NEF for Hsp70, GrpE. While in mitochon-
dria and chloroplasts GrpE homologs are preserved, the cytosol and endoplasmic reticulum (ER)
of eukaryotes contain three divergent families of NEFs: Hsp110/Grp170, HspBP1/Sil1 homologs
and BAG-domain proteins (Höhfeld and Jentsch, 1997; Kabani et al., 2002; Steel et al., 2004;
Dragovic et al., 2006; Raviol et al., 2006). The human genome encodes four Hsp110/Grp170 and
two HspBP1/Sil1 homologs in addition to five BAG-domain proteins and two mitochondrial GrpE
species (Figure 1). In addition, isoforms of NEFs resulting from alternative initiation sites and
splicing exist. This NEF diversity may contribute to the appropriate allocation of Hsp70 folding
capacity within the proteostasis network. Interestingly, metazoans, plants and some protists also
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FIGURE 1 | Domain compositions of human NEF homologs. Human

cells express two mitochondrial GrpE isoforms (mtGrpE1/GRPEL1 and

mtGrpE2/GRPEL2), three Hsp110 homologs (Hsp105/HSPH1,

Apg-1/HSPA4L, and Apg-2/HSPA4—the codes designate the gene names)

and five BAG-domain proteins. There is only one form of Grp170/HYOU1,

HspBP1, and Sil1, respectively. Isoforms arising from alternative initiation

sites and splicing were described for Hsp105, HspBP1, and Bag1 (not

shown). mtGrpE isoforms contain mitochondrial signal sequences (ss). The

α- and β-domains (orange and green, respectively) are conserved with GrpE

from E. coli. The Hsp110/Grp170 family proteins consist of an N-terminal

nucleotide binding domain (NBD, blue), a β-sandwich (β-Dom, green) and a

α-helix bundle domain (α-Dom, pale yellow). All isoforms contain long variable

insertions in the β-sandwich and at the C-terminus. SS indicates signal

sequences for ER import of Grp170 and Sil1. HspBP1 and Sil have

characteristic Armadillo repeat folds (orange). All members of the BAG family

in humans, Bag1-5, contain C-terminal Hsp70-binding BAG domains (red),

but have otherwise divergent domain composition. Bag1 contains an

Ubiquitin-like domain (Ubl, dark blue), which might associate with the

regulatory particle of the 26S proteasome, and a NLS sequences (purple) for

nuclear targeting. Bag2 contains a coiled-coil dimerization domain (CC,

orange) (Page et al., 2012). Bag3 comprises multiple N-terminal sequence

motifs including WW domains (WW, yellow), IPV sequence motifs (brown)

and PXXP repeats (pink), which mediate interactions with proline-rich motifs,

HspB8 and SH3 domains, respectively (Doong et al., 2000; Fuchs et al.,

2010; Iwasaki et al., 2010; Ulbricht et al., 2013). Bag5 has four additional

3-helix bundle domains of unknown function (Arakawa et al., 2010). Bag6 is

not shown because the original assignment as an NEF of Hsp70 was

incorrect (Mock et al., 2015).

harbor the additional cochaperone Hip (gene ST13), which
antagonizes NEF function by stalling Hsp70 cycling and stabi-
lizing Hsp70 complexes with specific substrates.

In this review we compare the structures and molecular
mechanisms of different NEF families and discuss how these
cochaperones contribute to protein remodeling, folding and
quality control in the cell. For a more comprehensive overview,
please see our earlier work (Bracher and Verghese, 2015).

GrpE, the Bacterial NEF

Protein folding by the eubacterial Hsp70 homolog DnaK in
Escherichia coli depends on GrpE, which is encoded by an essen-
tial gene (Ang and Georgopoulos, 1989). Together with the JDP

DnaJ, GrpE greatly accelerates ATP hydrolysis and thus confor-
mational cycling of DnaK (Liberek et al., 1991; Laufen et al.,
1999). However, it should be noted that E. coli also expresses
two specialized Hsp70 isoforms, HscA and HscC, which do not
depend on GrpE (Brehmer et al., 2001).

Structurally, GrpE is composed of an α-helical dimerization
domain and a β-domain that mediates most of the interac-
tions with DnaK (Harrison et al., 1997). The α-helical domains
form a stalk-like, coiled-coil structure with a four-helix bun-
dle at the C-terminal end; the β-domains protrude like wings
from the helix bundle (Figure 2). In the complex with the NBD
of DnaK, one β-domain inserts into the nucleotide binding
cleft, forcing the nucleotide binding pocket open by rotation of
subdomain IIB (Figure 2). This NBD conformation has greatly
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FIGURE 2 | Structure and mechanism of nucleotide exchange

factors. Exemplary structures of the four NEF families are shown

together with respective Hsp70 complexes. The NEF is always shown

in blue; the Hsp70 NBD in orange with subdomain IIB highlighted in

red. On the right the structure of the NBD in the complex is

superposed with the ADP-bound conformation, and the putative

nucleotide exchange mechanism indicated. The drawings are based on

the PDB coordinate sets 1DKG (GrpE•DnaK, Harrison et al., 1997),

2V7Y (DnaK•ADP, Chang et al., 2008), 3D2F (Sse1p•Hsp70, Polier

et al., 2008), 1HPM (Hsc70•ADP, Wilbanks and Mckay, 1995), 1XQS

(HspBP1•Hsp70-lobeII, Shomura et al., 2005) and 1HX1 (Bag1•Hsc70,

Sondermann et al., 2001).

diminished affinity for nucleotide. Simulations of the highly con-
served NBD suggest that subdomain IIB motion is facilitated
by a flexible hinge connection (Ung et al., 2013). GrpE thus

utilizes an in-built feature of Hsp70 for its function. In addition
to the β-domain, parts of the stalk and flexible N-terminus of
GrpE contribute to DnaK binding. The latter segment appears
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to compete with substrate binding to DnaK (Harrison et al.,
1997).

GrpE function in E. coli appears to be regulated by tempera-
ture (Grimshaw et al., 2001). At the optimal growth temperature,
GrpE is dimeric and active, enabling rapid DnaK cycling needed
for folding newly synthesized proteins. Under thermal stress, the
stalk of GrpE appears to unfold, which prevents the cochaper-
one from binding to DnaK•substrate complexes and thus lim-
its futile cycling and ATP expenditure. During thermal stress,
interactions with DnaK stabilize substrates against aggregation.
The transition in GrpE is fully reversible and the DnaK-DnaJ-
GrpE system begins to refold DnaK-stabilized substrates upon
recovery.

Eukaryotic GrpE Homologs

Mitochondria and chloroplasts, the eukaryotic organelles of
eubacterial origin preserve the bacterial Hsp70 system includ-
ing GrpE homologs. The most conspicuous function of this sys-
tem is the import of organellar proteins from the cytosol across
membranes (see accompanying reviews). This is essential because
most of the matrix/stroma proteins are encoded in the nucleus.
Moreover, protein folding within these organelles also depends
on GrpE function. The thermosensory function of GrpE appears
to be preserved in eukaryotes (Moro and Muga, 2006; Willmund
et al., 2007).

Evolution of Eukaryotic NEFs

In contrast to DnaK, authentic eukaryotic Hsp70 homologs have
weakened contacts across the nucleotide binding cleft. Prob-
ably the function of the eukaryotic Hsp70 ancestor did not
require NEFs. Dependence on NEFs apparently evolved only
later, and thus modern GrpE and the mammalian NEF Bag1
function only with their cognate Hsp70 partners (Brehmer et al.,
2001). In the presence of physiological phosphate concentra-
tions, the ADP dissociation rates of eukaryotic Hsp70 dimin-
ish to the levels similar to DnaK in E. coli, and thus NEFs
are required for efficient cycling in vivo (Gässler et al., 2001;
Arakawa et al., 2011). The most ancient and universal type of
eukaryotic NEF is Hsp110/Grp170, which shares its molecu-
lar architecture with canonical Hsp70 proteins (Figure 2). The
other two NEF families, HspBP1/Sil1 homologs and BAG-
domain proteins, have generic structural scaffolds, Armadillo
repeats and three-helix bundles, respectively, which are also
found in other functional contexts such as nuclear transport
and vesicle fusion (Figure 2). Interestingly, despite their con-
siderable structural diversity, all NEFs target subdomain IIB in
the NBD of Hsp70. This suggests convergent evolution toward
activating the molecular switch built into the Hsp70 NBD. It
appears that the structurally homologous NEFs HspBP1 and
Sil1p evolved independently, since their contact regions with
the cognate Hsp70 homolog differ markedly (Shomura et al.,
2005; Yan et al., 2011). Convergent evolution might also explain
the perplexing diversity in BAG-domain architecture, which
became only apparent when the individual structures were
determined.

Nucleotide Exchange Mechanism

All eukaryotic NEFs seem to capture open conformations of the
NBD. GrpE literally drives a molecular wedge into the nucleotide
binding cleft of DnaK, whereas the Hsp110 homolog in Saccha-
romyces cerevisiae, Sse1p, attaches to the flank of subdomain IIB
while anchoring itself onto the remainder of the NBD (Polier
et al., 2008). HspBP1/Sil1 homologs and BAG-domain proteins
use their bulk mass to fix Hsp70 in an open conformation.
HspBP1 binding even induces partial unfolding of the NBD.
Because their shapes vary considerably, the NBD subdomains are
displaced in different ways, as evidenced by cocrystal structures
with Hsp70 NBDs (Figure 2). ATP but not ADP binding subse-
quently displaces NEFs from eukaryotic Hsp70 for a new round
of substrate binding.

Hsp110/Grp170

Hsp110 and its ER-lumenal homolog Grp170 share their domain
architecture with canonical Hsp70 proteins, consisting of an N-
terminal NBD, followed by a β-sandwich and an α-helix bun-
dle domain, but have long insertions and C-terminal exten-
sions compared to Hsp70 (Figure 1). Their sequence conser-
vation is much lower than in canonical Hsp70. Crystal struc-
tures of the Hsp110 homolog Sse1p in complex with Hsp70
showed that the two NBDs face each other (Figure 2) (Polier
et al., 2008; Schuermann et al., 2008). The NBD of Hsp70 is
fixed in an open conformation by additional contacts with the
α-helix bundle domain of Sse1p. These contacts are highly con-
served in the Hsp110/Grp170 family, and presumably all mem-
bers employ the same binding mode (Andreasson et al., 2010;
Hale et al., 2010). To function, Sse1p requires ATP binding, which
induces a compact conformation, but not ATP hydrolysis (Shaner
et al., 2004; Raviol et al., 2006). Indeed, expression of ATP-
binding competent, but ATPase-deficient Sse1p mutants rescues
the lethal phenotype of the deletion of SSE1/SSE2. Because of low
sequence conservation in the β-sandwich domain, it is unclear
whether the substrate binding mode seen in DnaK·ADP is also
employed by Hsp110/Grp170. Hsp110 homologs seem to pre-
fer aromatic residues in target sequences, while canonical Hsp70
has a bias toward aliphatic hydrophobic and proline residues (Xu
et al., 2012). Mammalian and yeast Hsp110 homologs are potent
holdases for misfolded luciferase, preventing its aggregation until
refolding with Hsp70/Hsp40 commences (Oh et al., 1997, 1999).
Sse1p requires heat activation for this activity (Polier et al.,
2010).Whether nucleotide-dependent cycling of Hsp110/Grp170
is required for holdase activity is controversial.

HspBP1/Sil1

HspBP1 and Sil1 represent the cytosolic and ER-lumenal forms
of a NEF family with Armadillo repeat architecture, respec-
tively. Sil1 homologs can be identified in most eukaryotes;
Caenorhabditis elegans apparently lacks a cytosolic HspBP1
homolog. The C-terminal 260-residue NEF domain of human
HspBP1 consists of four Armadillo repeats capped at each end
with α-helix pairs. The short N-terminal regions are highly
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divergent and their function is unknown. The structure of the
human HspBP1 NEF domain in complex with a fragment of
Hsp70 showed that the concave face of the Armadillo repeat
structure wraps around subdomain IIB of the NBD (Figure 2)
(Shomura et al., 2005). Comparison with other structures of
the Hsp70 NBD suggests that the bulk of HspBP1 would clash
with subdomain IB. Protease sensitivity and tryptophan fluo-
rescence indicates that Hsp70 evades this through local unfold-
ing in the complex. Surprisingly, the yeast ER paralog Sil1p
employs different contacts and stops at mere opening of the
nucleotide binding cleft (Yan et al., 2011). Interestingly, the inter-
actions of metazoan Sil1 with the ER-Hsp70, BiP, seemmore sim-
ilar to HspBP1 than to the putative yeast ortholog Sil1p (Hale
et al., 2010; Howes et al., 2012). Whether ATP binding pre-
empts NBD unfolding under physiological conditions remains
unknown.

BAG Domain Proteins

The BAG domain-containing proteins represent the most
divergent group among eukaryotic NEFs. Human Bag1 was the
first eukaryotic NEF to be identified, after its initial character-
ization as the binding partner of anti-apoptotic protein Bcl-2
(Höhfeld and Jentsch, 1997). It contains a 3-helix bundle domain
of 110 residues having NEF activity (Figure 2) (Sondermann
et al., 2001). Subsequently four more homologs with putative Bag
domains were identified in humans, Bag2-Bag5 (Takayama and
Reed, 2001). All have distinct domain compositions (Figure 1).
Structural analysis of the respective Bag domains revealed a sur-
prising diversity of α-helix bundle architectures, but all share
a conserved sequence signature that targets subdomain IIB of
Hsp70. The Hsp70-binding BAG domains of Bag3, Bag4, and
Bag5 form shorter 3-helix bundles than Bag1 (Briknarova et al.,
2002; Brockmann et al., 2004; Arakawa et al., 2010). The “Brand
New Bag” (BNB) domain of Bag2 has a dimeric four-helix bun-
dle structure that can accommodate two Hsp70s (Xu et al., 2008).
This could help target complexes of multiple Hsp70 molecules
attached to one substrate molecule.

The diverse domains found together with the NEF domain
in BAG proteins probably allow recruitment of Hsp70 for spe-
cific purposes. However, only the domain compositions of Bag1
and Bag3 appear conserved among metazoans. Bag1 homologs
also seem to occur in plants (Kabbage and Dickman, 2008). Bag1
contains an Ubiquitin-like domain (Ubl) in addition to the NEF
domain, suggesting a role in targeting substrates for proteaso-
mal degradation. In murine Bag1, the Ubl domain also medi-
ates interactions with EGF-like growth factor (Hung et al., 2014).
Bag3 has multiple interaction motifs and connects Hsc70 with
the small heat shock protein HspB8 and the dynein adaptor pro-
tein 14-3-3γ in targeting protein aggregates for degradation by
autophagy via the microtubule network (Arndt et al., 2010; Fuchs
et al., 2010; Xu et al., 2013). Bag2 forms stable ternary complexes
with Hsc70 and the Hsp70-associated dimeric ubiquitin ligase
CHIP, inhibiting proteasome targeting of inducible Hsp70 and
substrate proteins (Arndt et al., 2005; Dai et al., 2005). The BNB
domain has also been implicated in binding to substrate directly
(Xu et al., 2008).

Antagonism between Hip and NEFFunction

The dimeric multi-domain protein Hip antagonizes the func-
tion of Bag1 and probably other NEFs (Kanelakis et al., 2000).
Hip slows the dissociation of ADP from Hsp70, thus stabilizing
substrate protein association in presence of ATP (Höhfeld et al.,
1995; Li et al., 2013). The crystal structure of the core complex
of Hip with Hsp70·ADP revealed that the binding interfaces of
Hip and NEFs overlap, resulting in mutually exclusive binding
(Li et al., 2013). The binding affinity of NEFs — with the excep-
tion of Bag2 — is however∼100 times higher, and stable binding
of Hip thus requires additional interactions. Simultaneous inter-
actions with twoHsp70molecules attached to a slow-folding sub-
strate or an aggregate would boost affinity toward the Hip dimer
through avidity. Hip might also directly recognize specific sub-
strates such as the Hsp90-client protein glucocorticoid receptor
via its DP domains (Nelson et al., 2004). Interaction of Hsp70-
substrate complexes with Hip might thus enable slow cycling and
limit futile energy expenditure by Hsp70 on ill-fated substrate
proteins and downstream chaperone clients. Concomitantly, Hip
binding might also prolong the time window for proteasomal tar-
geting, consistent with increased disposal of mutant androgen
receptor upon Hip overexpression (Wang et al., 2013).

Involvement of NEFs in Protein Folding and
Import

In themodel organism S. cerevisiae, Sse1p is by far themost abun-
dant cytosolic NEF, followed by its inducible isoform Sse2p and
the HspBP1 ortholog Fes1p. Together they constitute about 1/10
of the total concentration of cellular Hsp70 (Ghaemmaghami
et al., 2003; Kulak et al., 2014). The Bag protein Snl1p is only
present at low concentration and probably highly specialized
(Verghese andMorano, 2012). Sse1p collaborates with ribosome-
bound and cytosolic Hsp70 isoforms in folding and processing
a large proportion of newly made proteins (Yam et al., 2005).
Deletion of SSE1 causes a growth defect, which is only partially
rescued by Fes1p overexpression (Raviol et al., 2006). Overex-
pression of Sse1p impairs growth as well, suggesting that Sse1p
competes with ATP binding to Hsp70 under these conditions
(Liu et al., 1999). Well-balanced concentration ratios between
Hsp70 and NEFs seem essential for proper protein folding. Sse1p,
Sse2p, and Fes1p are upregulated together with Hsp70 under heat
stress. Deletion of FES1 causes a massive heat shock response in
the absence of thermal stress (Gowda et al., 2013; Abrams et al.,
2014), a folding defect of the reporter protein firefly luciferase
(FLuc) (Shomura et al., 2005) and a thermosensitivity phenotype
(Ahner et al., 2005). Besides their function in de novo protein
folding, Sse1p and Fes1p also contribute in distributing sub-
strates to downstream chaperones Hsp90 and TRiC and to clear
misfolded species (Goeckeler et al., 2002; Mcclellan et al., 2005;
Gowda et al., 2013).

The diversity of eukaryotic NEFs might enable adaptation
of the Hsp70 cycling rate to the folding needs of specific sub-
strate proteins. Consistent with this hypothesis, comparative
in vitro studies with mammalian homologs showed that certain
Hsp70/JDP/NEF combinations workmuch better in FLuc folding
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than others and some not at all (Tzankov et al., 2008; Rauch
and Gestwicki, 2014). How specific combinations select suitable
clients is unknown. NEF diversity might also allow differential
distribution of substrates to downstream chaperones via adaptor
proteins like HOP (Knapp et al., 2014). Functional redundancy
of mammalian NEFs is, however, considerable. While knockout
of the Hsp110 isoform Hsp105 causes no obvious defect (Naka-
mura et al., 2008), individual deletions of HspBP1 and Apg-2,
another Hsp110 isoform, severely affect spermatogenesis (Held
et al., 2011; Rogon et al., 2014). Only simultaneous knockout of
Apg-1 and Apg-2 is lethal (Mohamed et al., 2014).

The ER-lumenal NEFs Sil1 and Grp170 contribute substan-
tially to protein folding in the secretory pathway (Behnke et al.,
2015). In addition they function together with BiP and the pore-
associated JDP Sec63 in protein import, possibly by prevent-
ing substrate backsliding through BiP binding and release cycles
(Zimmermann et al., 2011). Deletions of the respective NEF
homologs in yeast, Sil1p and Lhs1p, activate the Unfolded Pro-
tein Response and cause import defects (Tyson and Stirling,
2000). Both Sil1 and Grp170 are upregulated under ER stress.
In mice, knockout of Grp170 is lethal (Kitao et al., 2004). Muta-
tions that inactivate Sil1 cause Marinesco-Sjögren syndrome in
humans (Anttonen et al., 2005; Senderek et al., 2005) and the
Woozy phenotype in mice (Zhao et al., 2005), respectively, con-
ditions characterized by neurodegeneration and myopathy, likely
because persistent ER stress induces apoptosis.

Role in Protein Quality Control

The folding of Cystic Fibrosis Transmembrane Conductance
Regulator (CFTR) may serve as a paradigm for the role of
NEFs in protein quality control involving proteasomal degrada-
tion. CFTR, a transmembrane protein, has inefficiently folding
cytoplasmic domains, which may explain why a large propor-
tion undergoes CHIP-mediated degradation before reaching the
epithelial membrane (Meacham et al., 2001). Hsp105 appears to
have a prominent role in CFTR folding at the ER and later at
the epithelial membrane, employing its holdase activity (Saxena
et al., 2012). Binding of HspBP1 to Hsc70 stimulates CFTRmatu-
ration (Alberti et al., 2004), whereas Bag1 collaborates with CHIP
in CFTR degradation (Demand et al., 2001).

The alternative to proteasomal degradation is disposal of
faulty proteins by the lysosome via autophagy. This route seems
especially important for muscle structure maintenance, which
requires the adaptor function of Bag3 (Arndt et al., 2010; Ulbricht
et al., 2013). Bag3 deletion in mice results in severe myopathy
(Homma et al., 2006). Similar phenotypes were reported for dele-
tions of the probable Drosophila melanogaster and C. elegans

orthologs, Starvin, and unc23, respectively (Arndt et al., 2010;
Papsdorf et al., 2014). Bag3 mutations in humans are associated
with autosomal dominant forms of myofibrillar myopathy and
dilated cardiomyopathy (Selcen et al., 2009; Norton et al., 2011).
Interestingly, Bag3 is the only stress-inducible BAG-domain pro-
tein (Franceschelli et al., 2008), and its increased abundance
might tip the balance from proteasomal to lysosomal degradation
(Gamerdinger et al., 2009).

Hsp110 proteins were found associated with aggregates of
misfolding-prone proteins that cause neurodegenerative disease,
including mutant SOD in Amyotrophic Lateral Sclerosis (Wang
et al., 2009) and poly-Q androgen receptor in Spinal and Bul-
bar Muscular Atrophy (Ishihara et al., 2003). Hsp105-knockout
mice accumulate hyper-phosphorylated tau similar to neurofib-
rillary tangles in Alzheimer’s disease (Eroglu et al., 2010). Hsp110,
together with Hsp70 and Hsp40, has been implicated in a meta-
zoan disaggregase activity analogous to ClpB/Hsp104 in bacteria
and fungi, which might resolubilize such aggregates for new fold-
ing attempts or proteasomal degradation (Shorter, 2011; Rampelt
et al., 2012). Hsp110 thus may be considered the ultimate pro-
folding NEF in eukaryotes, consistent with increased vulnerabil-
ity of fast-growing cancer cells with a dominant-negative allele of
this cochaperone (Dorard et al., 2011).

Outlook

How the different components in the Hsp70 system intersect
with other branches of the proteostasis network is only begin-
ning to emerge. Different expression levels of competing NEFs
and opposing factors like Hip may change the fate of specific
substrate proteins in individual cell types. The intracellular dis-
tribution of proteostasis components might furthermore alter the
dynamics of protein folding and degradation. Thus, informa-
tion on cellular dose and distribution in healthy and diseased
cells will be needed for an integrated picture of NEF roles in
Hsp70-dependent cellular processes.
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