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Protein structures are valuable tools to understand protein function. Nonetheless,

proteins are often considered as rigid macromolecules while their structures exhibit

specific flexibility, which is essential to complete their functions. Analyses of protein

structures and dynamics are often performed with a simplified three-state description,

i.e., the classical secondary structures. More precise and complete description of protein

backbone conformation can be obtained using libraries of small protein fragments that

are able to approximate every part of protein structures. These libraries, called structural

alphabets (SAs), have been widely used in structure analysis field, from definition of

ligand binding sites to superimposition of protein structures. SAs are also well suited

to analyze the dynamics of protein structures. Here, we review innovative approaches

that investigate protein flexibility based on SAs description. Coupled to various sources

of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular

Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics,

e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify

order/disorder transition. SAs were also shown to be quite efficient to predict protein

flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of

SAs for studying flexibility with different cases of proteins implicated in pathologies and

diseases.

Keywords: protein structures, disorder, secondary structure, structural alphabet, protein folding, allostery, protein
complexes, protein—DNA interactions
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Introduction

Analysis of protein structures is crucial to understand protein
dynamics and functions. X-ray crystallography, the gold-
standard method for solving 3D structures at atomic resolution,
is impeded by protein dynamics. Hence, tricks are frequently
used to restrict motions. It is why proteins have been often
considered as static macromolecules, composed of rigid repetitive
secondary structures and less rigid random coils. However, more
and more emerging evidences show that protein structures
are more complex with their internal dynamics being a key
determinant of their function. Analyses of protein structures
are often performed with a simplified three-state description
known as α-helix, β-strand and coil which constitutes the classical
secondary structures (Corey and Pauling, 1953; Kabsch and
Sander, 1983). A more precise and complete description of
protein backbone conformation exists based on the definition
of libraries of small protein fragments, namely the structural
alphabets (SAs) (Unger et al., 1989; Fetrow et al., 1997; Camproux
et al., 1999; Offmann et al., 2007; Tyagi et al., 2007; Joseph et al.,
2010a,b). SAs are designed to approximate every part of the
local protein structures providing conformational detail. They
have performed remarkably well spanning various problems in
structural bioinformatics, from the characterization of ligand
binding sites to the superimposition of protein structures (Joseph
et al., 2010b). Furthermore, SAs are also very well suited to
analyze the internal dynamics of protein structures. SAs have
been used at three different levels to comprehend protein
flexibility: (i) for studying specific fundamental biological and
biomedical problems, (ii) to analyze changes associated with
protein complexation and allostery, and (iii) to predict protein
flexibility.

Here, we present state-of-the-art of developments in the
study of protein flexibility using SAs based approximation. The
backbone conformational variations can be described as changes
in the pattern of SAs, which acts as fingerprints of the dynamics
involved. These innovative approaches are useful, customizable,
and deal with specific proteins involved in pathologies and
diseases. They are also powerful to evaluate generalized principles
from large biological complex structures. Thus, SAs provide new
vision for detailed analysis and prediction flexibility of proteins.

The Different Views of Protein Structures

The primary sequence of the protein—the succession of amino
acids—is assumed to encompass all the information necessary
for its function. The protein structures resolved from X-ray
crystallography or Nuclear Magnetic Resonance (NMR) (see
Figures 1A,B) can be obtained in the Protein DataBank format
(PDB, Bernstein et al., 1977; Berman et al., 2000). From the very
beginning, theoreticians or experimentalists have described local
protein structures by using three states (see Figure 1C, Corey and
Pauling, 1953; Kabsch and Sander, 1983; Eisenberg, 2003). Two
of them are repetitive structures stabilized by hydrogen bond
patterns, namely the α-helices and the β-sheets (composed of
β-strands). These structures are connected with more variable
structures, i.e., random coil or loops. Later studies have identified

spotted small repetitive and regular structures such as the β-
hairpins or different kinds of turns in several protein structures
(Richardson, 1981). These simplified descriptions were nicely
represented with 3D visualization software (e.g., arrows for β-
sheets, springs for α-helix) and accompanying the emergence
of macromolecular crystallography. However these simplistic
representations also contributed to the static and rigid views of
these structures (Chavent et al., 2011).

In fact, growing evidence shows that proteins are highly
dynamic macromolecules and that this dynamics is crucial
in many biological processes. Thus, recent studies have
demonstrated that conformational transitions in folded states of
many proteins are essential to accomplish their functions, e.g.,
enzyme catalysis, activity regulation (Goh et al., 2004; Grunberg
et al., 2004; Lensink and Mendez, 2008). Flexibility also allows
interactions with different partners, with ligands by induced-
fit interaction, with other proteins, or nucleic acids to form
complex structures. NMR based methods and computational
experiments such as Molecular Dynamic (MD) simulations, have
largely contributed to gain valuable insights into the observation,
understanding, and analyses of flexibility (Hirst et al., 2014).
Flexibility can be versatile and covers a large range of timescales
and amplitudes of structural modifications. It encompasses
different kinds of conformational changes corresponding to (i)
mobility of rigid part of the protein, e.g., domain motions (ii)
deformability of the protein backbone, e.g., crankshaftmotions or
(iii) both. These different transitions are shown by analyzing and
comparing protein structures (see Figure 1D). At a local level,
the flexibility can be identified by the information contained
in diffraction images of X-ray crystallography experiments and
quantified along the refinement process through the Debye-
Waller factors (expressed as surface units) also known as “B-
factors” or temperature (displacement) factors. These so-called
B-factors reflect atom mobility due to thermal vibration and
measure the static disorder. They allow quantifying different
levels of flexibility in proteins (see Figure 1E, Marsh, 2013). This
criterion is also used by majority of flexibility prediction methods
(from the sequence) (Schlessinger and Rost, 2005).

In this context, missing coordinates of whole residues in
X-ray protein structures (usually labeled as missing residues,
see Figure 1F) and several dedicated biochemical analyses
have suggested these protein segments should be considered
as disordered regions (see Figure 1G, Uversky et al., 2000;
Dunker et al., 2001). From few years, beside the paradigm
of a well-defined 3D folded state, new visions of protein
structure and dynamics have emerged, namely the Intrinsically
Disordered Proteins (IDP) or disordered regions. IDP may
exhibit large structural rearrangements like the formation
(then the loss) of secondary structures depending on the
environment or the interacting partners. The impressive amount
of research in this field is motivated by the implication of IDP
in multiple crucial biological functions (Dunker et al., 2000;
Dunker and Obradovic, 2001), for e.g., 14-3-3 proteins (Uhart
and Bustos, 2014) or the Innate Antiviral Immunity (Xue
and Uversky, 2014). Nevertheless, the regions with missing
residues can be found resolved in other PDB structures of
the same (or highly homologous) protein (see Figure 1I) (see
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FIGURE 1 | Classical views of protein structures. (A) The protein

structure is a file in PDB format (Bernstein et al., 1977; Berman et al.,

2000), containing the 3D atomic coordinates. (B) The atoms are bound

to build the protein backbone and side-chain residues. (C) From this

information, secondary structures are performed (Kabsch and Sander,

1983). (D) From crystallographic data, B-factors are analyzed underlining

(E) rigid to flexible residues. (F) More precise analyses shows missing

residues revealing. (G) disorder regions (Uversky et al., 2000; Dunker

et al., 2001). (H) Interestingly same or similar proteins can be found in

the PDB (Berman et al., 2000), and (I) in numerous times with the

missing regions resolved, leading to (J) a more complex definition and

an ambiguity between flexibility and disorder. Protein visualization was

created by the program PyMOL (http://www.pymol.org, Delano, 2013).

The proteins used are two proteases (PDB codes 1dbi chain A, and

1wmd chain A, for this last only residues 1–306 are shown for more

clarity).

Figure 1H, Berman et al., 2000). These ambiguous regions,
termed Dual Personality Fragments (DPFs, see Dunker, 2007;
Zhang et al., 2007), complicate the distinction and per se
the definition of disorder versus flexibility (see Figure 1J).
In Figure 1, we show a protease (PDB code 1dbi chain A),
the corresponding DPF found (with a good resolution) in
another protease (PDB code 1wmd chain A). Correlation
between B-factors (representing flexibility) and disorder
predictor outputs has been explored and shows a good
agreement (Jin and Dunbrack, 2005; Schlessinger et al.,
2009).

In the light of the above observations, the classic
representation of protein structure as a succession of repetitive
ordered secondary structures and random coil does not allow
understanding of the complexity associated with structural
flexibility. Actually, the coarseness of the secondary structure

assignment may prevent from identifying conformational
changes. Therefore distinction between flexible loops and rigid
loops, for example, cannot be made on the sole basis of a
three-state secondary structure assignment. A more precise and
local description of protein structure is needed. In this regard,
Structural Alphabet (SAs), allow to investigate primarily the
complexity of the protein conformations, and consequently of
their associated dynamics.

A SA is a library of N structural prototypes (the letters). Each
prototype is representative of a backbone local structure of l-
residues length. The combination of those structural prototypes
is assumed to approximate any given protein structure. Many
different libraries have been developed, (e.g., Unger et al., 1989;
Fetrow et al., 1997; Camproux et al., 1999; Tung et al., 2007).
Depending on the targeted accuracy, the length l and the number
N can vary significantly. The length l typically ranges between 4
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FIGURE 2 | The Protein Blocks structural alphabet. The

conformation of each 16 pentapeptides is presented with ball and

stick (left) and cartoon representation (right). The N-ter and C-ter

extremity are respectively colored in blue and red. Visualization was

created by the program PyMOL (http://www.pymol.org, Delano,

2013).

and 9 while can vary, the most frequent value being close to 20
(see Offmann et al., 2007; Joseph et al., 2010a,b for more details).
The various structural alphabets also differ by the description
parameters of the protein backbone. The description can be
based on Cα coordinates, Cα-Cα distances, α or dihedral angles.
The classification and learning methods that were used, are also
various, e.g., hierarchical clustering, empirical function, Kohonen
Maps, neural network or Hidden Markov Model Besides their
interest to provide a finer description, They SA have been also
designed for prediction purpose, which requires to decipher the
sequence—structure relationship.

As example, in their respective work, Park and Levitt (1995)
and Kolodny et al. (2002) aimed at finding representations based
on smallest libraries of protein fragments to accurately construct
protein structures. Fragments of four to seven residues long
were considered in a library of 25–300 fragments. Micheletti
et al. (2000) did similar studies and constructed a library that
encompassed from 28 to 2561 recurrent local structures.

To date, one of the most developed and comprehensive SA is
the Protein Blocks approach (PBs, de Brevern et al., 2000). This
SA is composed by 16 local structure prototypes of 5 residues
fragments (see Figure 2). It was shown to efficiently approximate
every part of the protein structure. The PBs m and d can be
roughly described as prototypes for the central region of α-helix
and β-strand, respectively. PBs a-c primarily represent the N-
cap of β-strand while e and f correspond to C-caps; PBs g -j
are specific to coils, PBs k and l correspond to N cap of α -helix
while PBs n-p to C-caps. PBs have been used to address various
problems, including protein superimposition (Gelly et al., 2011;
Joseph et al., 2012), general analyses of flexibility (Dudev and
Lim, 2007; Wu et al., 2010) or and prediction of structure and
flexibility (Zimmermann and Hansmann, 2008; Rangwala et al.,
2009; Suresh et al., 2013; Joseph and de Brevern, 2014).

The assignment algorithm (see Figure 3A, de Brevern et al.,
2000) runs through the 3D structure of the target protein, from

the N to the C-ter of the sequence. The algorithm is iterative
and uses 5 residues long overlapping windows over the entire
sequence to assign a PB to every position. For each “nth” position
of the structure, 8 dihedralsψ (n− 2), ϕ (n− 1),ψ (n− 1), ϕ (n),
ψ (n), ϕ (n + 1), ψ (n + 1), ϕ (n + 2) are compared to each of
the 16 PBs. The comparison is made by a least squares approach
to match the RMSDA criteria (Root mean square Deviation on
Angular Values) (Schuchhardt et al., 1996):

RMSDA (V1,V2) =

√

√

√

√

1

2(M − 1)

i=M−1
∑

i=1

[ψi(V1)− ψi(V2)]2

+ [ϕi+1(V1)− ϕi+1(V2)]
2 (1)

RMSDA formula

where V1 is the vector of 8 dihedral angles extracted from the
5 residues long window, and V2 is the 8 vector of dihedral
corresponding to the individual PB type. The PB with the lowest
RMSDA, is assigned to the corresponding position for that
window. This PB captures the overall local conformation
and approximates the transition along the main-chain
smoothly.

PB assignments can be done using the Python PBxplore
tool (https://github.com/pierrepo/PBxplore, in preparation). The
result is a translation of a 3D structure into a 1D sequence of PBs.

Interestingly, the subtle differences between protein
conformations can be captured by the assignment of the
PB sequences. By analyzing the variation of PBs assigned at a
given position for multiple conformers, the local conformational
properties and corresponding changes can be easily identified.
Moreover, a quantification of the flexibility at a given position
n can be obtained by calculating, the average number of PBs
across a set of conformers in this position or the “equivalent
number” of PBs (Neq). Neq is based on a statistical metric similar

Frontiers in Molecular Biosciences | www.frontiersin.org 4 May 2015 | Volume 2 | Article 20

http://www.pymol.org
https://github.com/pierrepo/PBxplore
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Craveur et al. Protein flexibility and structural alphabets

FIGURE 3 | Neq and local flexibility. (A) For each conformation extracted

from MD simulation, a PB sequence is assigned. (B) Neq profile provides direct

identification of protein fragments in which local conformational change is

observed. Here, in green, is indicated a flexible loop. The protein 3D structure

representation is generated using PyMOL software (http://www.pymol.org,

Delano, 2013).

to Shannon entropy (de Brevern et al., 2000) and is calculated as
follows:

Neq = exp(−
16

∑

x= 1

fx ln (fx)) (2)

Neqformula

where fx is the frequency of PB x (x takes values from a to p). A
Neq value of 1 indicates that only one type of PB is observed, while
a value of 16 is equivalent to a random distribution. For example
Neq value equal to 6, could mean that 6 different PBs are observed
in equal proportions (1/6), or that more than 6 PBs are observed
in different proportions. By plotting the computed value for each
residue position (see Figure 3B), it is possible to easily localize
which protein regions present local conformation change, or in
other words, which regions represent local flexibility.

This PB derived-entropy index is an interesting feature of PBs,
which can be used to analyze PB prediction (de Brevern et al.,
2000) or an ensemble of structures, corresponding to the same
protein solved in different experiments, or to several structures
extracted from MD simulation (Jallu et al., 2012). Note that
PBxplore can be used to calculate Neq, and to visualize in various
ways the PB variation for each position from a collection of
models or through a MD trajectory (de Brevern et al., 2005).

Other interesting SAs used in the flexibility context. We have
proposed an extension of our SA through a novel library
consisting of 120 overlapping structural classes of 11-residues
fragments, firstly defined as PBs series (Benros et al., 2006).
This library was constructed with an original unsupervised

structural clustering method called the Hybrid Protein Model
(de Brevern and Hazout, 2003). For each class, a mean
representative fragment, or “local structure prototype” (LSP),
correctly approximate the local structures with an average Cα

RMSD of 1.61 Å. LSPs capture both the continuity between the
identified recurrent local structures and long-range interactions.
From this description, two methodologies were developed to
predict flexibility. The first one was based on simple logistic
functions and supervised with a system of experts (Benros et al.,
2006). The second one was a combination of Support Vector
Machines (SVMs) and evolutionary information (Bornot et al.,
2009).

Pandini and co-workers developed their own SA; it is derived
from the notion of attractors in conformational space, a more
complex approach than PBs (Pandini et al., 2010). Pandini and
co-workers developed their own SA; it is derived from the notion
of attractors in conformational space, a more complex approach
than PBs (Pandini et al., 2010). They focused on four-residue long
fragments, the conformation of each being defined by internal
angles between Cα atoms, i.e., two pseudo-bond angles and one
pseudo torsion angle. All protein fragments were mapped as
points in a three-dimensional space of these internal angles.
The optimal number of clusters, i.e., structural prototypes, was
assessed by the quality of the reconstructed protein structures
and by information content. They ended with an alphabet of
25 letters, called M32K25. The alphabet starts from extended
structures (e.g., A letter) and ends with turns (e.g., Y letter),
passing through loops (e.g., P letter) and helical structures (e.g.,
U letter). The authors compared their approach with other
SAs of four-residue fragments and showed the superiority of
their method (Camproux et al., 2004; Tung et al., 2007). An
interesting point was the analysis of the correlation between
local flexibility and variability in the assignment. Thereafter,
they have developed GSATools, (http://mathbio.nimr.mrc.ac.
uk/wiki/GSATools, Pandini et al., 2013), composed of a set
of programs, that encode ensembles of protein conformations
into alignments of structural strings using their Structural
Alphabet. This software package is particularly well suited for the
investigation of the conformational dynamics of local structures,
the analysis of functional correlations between local and global
motions, and the mechanisms of allosteric communication. It
performs a wide range of statistical analyses using a various set
of external tools, mainly from R (Ihaka and Gentleman, 1996)
and Python (Python Software Foundation, 2015). The software
has been integrated into the GROMACS environment (Lindahl
et al., 2001; Van Der Spoel et al., 2005). The user must compile it
specifically.

GSATools was used to finely analyse the NtrC receiver
domain and its homologs CheY and FixJ. For this purpose,
different conformations of the protein extracted from a MDs
simulation were encoded. The distributions of SA strings were
used to compute different mutual information matrices using
information theory. Remarkably, they were able to detect
allosteric signal transmission from protein dynamics (Pandini
et al., 2012). They also applied this methodology to a larger set
of related proteins to show how evolutionary conservation and
binding promiscuity have opposite effects on intrinsic protein
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dynamics (Fornili et al., 2013). Other examples are provided in
Section 4.

These innovative approaches have been useful to study
specific proteins implicated in pathologies and diseases. They
are also sufficiently powerful to analyze large datasets of
protein structures using automated pipelines. To summarize, SAs
provide new visions for the analyses and prediction of protein
structure flexibility. Different examples will be detailed in the
following sections.

Duffy Antigen/Chemokine Receptor
(DARC) Protein

Using the approaches described above, we analyzed
conformations of different proteins implicated in pathologies. A
very first study was done on predicting flexibility of loops in the
Duffy antigen/receptor for chemokine (DARC) protein (Cutbush
and Mollison, 1950; Compton and Haber, 1960). DARC is a
transmembrane protein localized in the plasma membrane of red
blood cells. It is a non-specific receptor for several chemokines
(Allen et al., 2007); it is also named atypical chemokine receptor
1, Fy glycoprotein (FY), or CD234 (Cluster of Differentiation
234). The transmembrane chemokine receptors comprise two
main families, defined by differences in their ligands. Indeed,
chemokines can contain either two consecutive Cysteines (the
CC chemokines) or two adjacent Cysteines with one amino
acid in-between (the CXC chemokines). Furthermore, the
two families of chemokine receptors have a specific linear
sequence motif in their C-terminus region that enables signal
transduction. In contrast, DARC lacks the specific motif, thus
showing a specific difference coming probably from a distinct
evolution.

This protein is also known as the receptor for the human
malarial parasites Plasmodium vivax and Plasmodium knowlesi
(Miller et al., 1975, 1976). Polymorphisms of DARC are the basis
of the Duffy blood group system. While malaria is the most
important sickness associated with DARC (Guerra et al., 2006;
Cutts et al., 2014), DARC plays also a role in numerous other
diseases, such as HIV and cancer, and risk factor associated with
many other diseases is emerging (Liu et al., 1999; Horne and
Woolley, 2009).

Likemost transmembrane proteins, no experimental structure
of DARC is currently available (de Brevern et al., 2005). We
designed a structural model based on a comparative modeling
approach. Using rhodopsin (the only available related structure
at this time) as a structural template (a simple alignment showed
a very low sequence identity value of 12%, e.g., close to a
random value), we carefully built different structural models,
based on a hierarchical and iterative procedure. A first step was
to predict using more than 10 methods the positions of the
7 transmembrane helices along the sequence. From this initial
and rough model, helices of DARC were aligned with rhodopsin
helices assigned from the 3D structure. The same methodology
was used for the loops, a complete alignment was generated using
helices and connecting loops. A specific treatment was done for
N- and C-termini region, combining Protein Blocks prediction

FIGURE 4 | Duffy Antigen/Receptor for Chemokines structural models.
(A) Are shown the two best structural models obtained (de Brevern et al.,

2005), in blue the compact one, in green the located far away. They are near

identical on transmembrane domains. (B) The different regions with significant

local conformational tendencies are shown in other colors. The most important

ones are within the first 15 residues (predicted as disordered), with two

β-stands (in orange) connected by a short turn (in yellow), later two long

regions show some local conformational tendencies to be in extended

conformation (in gray color) while the end of this N-terminus is packed in

helical conformation (in pink and in violet). Visualization was created by the

program PyMOL (http://www.pymol.org, Delano, 2013).

(de Brevern et al., 2004; Etchebest et al., 2005) with threading
approaches.

Experimentally, 40 Alanine mutants had been produced and
associations binding constants with CXC-L8 were evaluated
(Tournamille et al., 2003, 2005). We used these experiments to
assess the quality of our best refined models. From the results,
we generated new models by manually changing the positions
of helices (and the alignments). Building and refinements were
done 10 times until a proper set of characteristics were obtained.
In regards to these experiments, in silico analysis of protein
flexibility has underlined specific characteristics of different
epitopes and interaction regions.

Interestingly, we obtained two different conformations (see
Figure 4A) that were both as compatible with experimental data
and similarly scored by the few assessment approaches available
for transmembrane structural models. Interestingly five years
later, an attempt to generate better models with the best available
methods was not crowned with success (de Brevern et al., 2009;
Smolarek et al., 2010).

It took us one year to build such models (models are available
at Model Archive website (http://modelarchive.org/, Schwede
et al., 2009). The Nterminus is particularly important in the
infection by Plasmodium vivax (Batchelor et al., 2014). It is nearly
55 residues long and different disorder prediction methods (i.e.,
DisEMBL, Linding et al., 2003 or PrDOS, Ishida and Kinoshita,
2007), predicted as partially disordered, with the beginning of the
sequence as fully disordered.

To evaluate the different conformational states of the Duffy
protein, we carried out numerous MDs simulated annealing
simulations with the GROMACS software (Lindahl et al., 2001;
Van Der Spoel et al., 2005). MD simulated annealing allows a
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harsh sampling of the conformational space by crossing energetic
barriers in an efficient and fast way. Many runs were performed
and the different conformations obtained at room temperature
were analyzed using Protein Blocks. In practice, we encoded
each 3D protein structural model conformation into a 1D string
(the length of the protein sequence) using Protein Blocks. Then,
we computed, the number of times each PB was observed for
each position. Positions with a high frequency of a single PB
exhibit no local change, while some others positions exhibit
local deformations that require a more in-depth analyses. Few
variations could be observed in the helical regions (PB m and
encompassing PBs) that were weakly restrained with harmonic
forces. Instead, loops sampled large regions of the conformational
space. A very interesting result was observed for the Nterminus

region, and especially the distal region. In contrast to what was
suggested by disorder predictors, this region was not a random
coil region, but in fact a small β-sheet composed of two β-strands
(PBs d and encompassing PBs, seen in orange on Figure 4B),
connected by a short turns (in yellow). In the β-sheets, some
positions, e.g., 12 and 13, were invariant. Likewise, the closest
region to the first helix was more constrained than expected and
not disordered (in pink and violet). Even the central regions (in
gray) showed some tendencies to be structured. It was a striking
example of a complex series of conformations which cannot
be analyzed for instance through classical secondary structure
(Kabsch and Sander, 1983).

A second example on DARC loops was the last extra-cellular
loops for which a specific and constrained loop conformation was
observed. Remarkably, this unexpected conformation explains a
“lethal” mutation for the binding of CXCL8. It was the first time a
structural alphabet was used to analyze the dynamics of a protein
structures or structural model.

Human Integrin α2bβ3

In another project, we were interested in integrins, a large
family of cell surface receptors involved in cell—cell or cell—
matrix adhesion. Integrins are type I membrane glycoproteins
composed of two distinct α and β subunits. Each subunit has
a large extracellular region (composed of multiple structural
domains), a trans-membrane segment and a short intracellular
domain. Integrins interact with cell cytoskeleton and mediate bi-
directional trans-membrane signal transduction. These receptors
are expressed in vertebrate, but also in lower metazoans
including sponges, nematode Caeorhabditis elegans and fruitfly
Drosophila Melanogaster. In mammals, 18 α and 8 β subunits
assemble in 24 distinct integrin complexes. Integrins play critical
roles in many physiological processes like hemostasis, immune
response, leukocyte trafficking, development and angiogenesis
or in pathology like cancer. In human, they are responsible
for many diseases from genetic or immune origins. They also
make effective targets for drug therapies in thrombosis and
inflammation. Furthermore, integrins are binding sites for many
viruses and bacteria (Hynes, 2002; Takada et al., 2007).

In regard to these various characteristics, integrins have
been extensively studied over the past decades. Especially,
structural analyses have provided substantial insights to explain

functional mechanism(s). In 2004, the first structure of the
extracellular domain of αVβ3 integrin, a vitronectin receptor
found in platelets, was proposed (Xiao et al., 2004). Then, several
structures of αVβ3 but also of αIIbβ3 integrin (Zhu et al.,
2008), a fibrinogen receptor involved in platelet aggregation, were
resolved in different activation states. Molecular models for both
trans-membrane and cytoplasmic domains were also proposed.
Thus, it opens the way to investigate impact of mutant using in
silicomutagenesis.

Hence, we examined the effect of the β3-Leu253Met
substitution of αIIbβ3 complex in patients with Glanzmann
thrombasthenia (Jallu et al., 2010), a rare bleeding disorder
characterized by an impaired platelet aggregation (George et al.,
1990). For the first time, we showed that residue Leu253—
localized at the interface of the complex—is playing a major
role in the stability of αIIbβ3. Nonetheless, structural models
reflecting static specific states do not depict structural dynamics
accompanying the various aspects of integrin functions. For
instance, when integrins are activated by substrates, large
conformational changes are observed. Analyses of static
structures (e.g., B-factor, electrostatics), give only a limited view
of the protein complex behavior, contrary to MDs simulations
which are able to some extent, to reproduce the inner dynamics
of protein structures.

α and β subunits of integrins are associated to rigid, flexible
and even disorder properties (such as Duffy protein presented
in the section above). We ran independent MDs simulations on
different systems, i.e., the wild type but also variants andmutants,
using GROMACS MDs package (Van Der Spoel et al., 2005)
to examine specific regions of αIIbβ3. We observed different
opposite behaviors depending on the region andmutants studied.

Hence, we studied the Cab3a+ alloantigen resulting from a
Leu841Met substitution in the αIIb chain. This polymorphism
might result in severe life-threatening thrombocytopenias.
Cab3a+ corresponds to a Leu841Met mutation. We evaluated the
flexibility by using Neq index and found that this polymorphism
locates in a very flexible sequence in the wild type (with a Neq >

4), but the mutation did not modify theNeq behaviors (Jallu et al.,
2013). Moreover, no change in the secondary structure content,
neither the PBs adopted by residues of encompassing sequences
change. Hence, intriguingly, this substitution would have little
effect, if any, on the backbone structure of the peptide 829–
853. It must be noticed that disorder prediction does not show
this region has flexible property, i.e., prediction with IUPred
(Dosztanyi et al., 2005) or DisEMBL (Linding et al., 2003).

In Caucasian population, the Human Platelet Alloantigenic
(HPA) system 1 is involved in most neonatal thrombocytopenias
(NAITP) and post-transfusion purpura (PTP) (Espinoza et al.,
2013). The HPA-1 system results from a Leucine to Proline
substitution in position 33 of the β3 chain (alleles HPA-1a
and HPA-1b, respectively) in platelet αIIbβ3 integrin (Jallu
et al., 2012). Alloantibodies to the HPA-1a variant can induce
very severe immune thrombocytopenia (Espinoza et al., 2013).
Furthermore, the Pro33 allelic variant of β3 is considered as a risk
factor of thrombosis in patients with cardiovascular diseases.

To compare the HPA-1a and -1b variants, we have proposed
for the first time to use a combination of standard analysis of
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flexibility (namely Root Mean Square Fluctuation, RMSF) and
Protein Blocks analyses. MD simulations have revealed that (i)
the Leu33Pro substitution of the β3 knee (a domain of β3 integrin
chain) leads to adverse structural effects not highlighted by static
models; and (ii) that these alterations can explain the increased
adhesion potential of HPA-1b platelets to fibrinogen and the
possible thrombotic risk associated with the HPA-1b phenotype
(Jallu et al., 2012). These molecular simulations also support a
novel structural explanation for the epitope complexity of the
HPA-1 antigen (Jallu et al., 2012).

Although not yet known to be involved in an alloimmune
response, a third variant discovered more recently and
characterized by a Valine in position 33 of β3, was also examined.
Analyses of the protein flexibility properties can mainly explain
the variable reactivity of anti-HPA-1a alloantibodies. This result
suggests that dynamics plays a key role in the binding of these
alloantibodies. Unlike the L33P substitution which increases the
local structure flexibility, the L33V transition would not affect
the local structure flexibility, and consequently the functions of
αIIbβ3 (Jallu et al., 2014). Although, this region is considered as
rigid by disorder prediction, both RMSF and PBs analysis shows a
high mobility. This behavior may be explained by a local rigidity,
surrounded by deformable regions.

Figure 5 represents another MDs simulation focusing here
only on the Calf-1 domain (a domain of α2b integrin chain),
using same parameters as before. Simulations were analyzed
through PB approaches underlining its interest for flexibility
studies using PBxplore. Figures 5A,B show the superimposition
of two distinct snapshots (in red and in yellow) extracted from the
MDs simulation. Figure 5C shows the frequency of PBs at each
position, calculated along the MD trajectory, and represented as
aWebLogo graphic (Crooks et al., 2004) obtained with PBxplore.
WebLogo (Crooks et al., 2004) summarizes this information
with an entropy of every PBs at each position. Figure 5D is the
superimposition of Neq and RMSF. Interestingly, even though
some regions show similar tendencies, namely large RMSF
associated with largeNeq, other regions exhibit different and even
opposite tendencies. For example, focusing on the residues near
position 66 of Calf-1, the RMSF given Figure 5G, is the highest
one (in blue on Figure 5E) as highly flexible, but it is not the case
as the Neq-values for this residue is not high. Therefore, these
residues appear to be a mobile region between two deformable
regions. This example confirms the interest to examineNeq index
beside RMSF because each measure brings related but different
information on flexibility.

Figure 6 shows the structural alphabet distribution during the
simulation obtained with GSATools (see Section The Different
Views of Protein Structures). The most frequent letters seen (in
black) are from the beginning of the alphabet, underlining its all-
β composition (Figure 6A). The decomposition by this SA shows
a large number of conformational changes at each position of the
sequence. Only few positions, e.g., 10, 131, and 44 represented
by B, H, and X letters, respectively, remained unchanged
during the Calf-1 simulations. The transition probability matrix
calculated between SA letters (Figure 6B) reflects how the local
structure changes occur. Along the diagonal, high values are
found, the highest ones being for letters N and X while the

lowest ones being for letters U and Y The Mutual Information
(MI) matrix presented in Figure 6C describes the correlation
of local conformational changes among the protein fragments.
Significant off-diagonal values are found but actually they
correspond to strands forming β-sheets. Hence, in contrast to
the examples detailed in (Pandini et al., 2012, 2013), the all-
β conformation of the protein impedes to enlighten long-range
correlations, except between β–strands close in 3D and found all
along the protein sequences. The Shannon entropy per position
shows quite similar profile between β –strands (mainly between
1.0 and 2.5 bits). All the lowest values correspond to residues
inside loops. One of the most interesting features of GSATools
is the graph representation of the correlated local motions from
the MI matrix; it describes the relative importance of the nodes
in the network useful to analyze allosteric behaviors. Figure 6F is
a visualization of the two most important peaks underlined, they
are found far away from the rigid β -sheet region.

Protein Complexes and Allostery

It is well documented that protein–protein interactions are
often guided by flexibility (Jones and Thornton, 1996; Salwinski
et al., 2004) and that alternative conformations can have a
significant influence on the binding process. It is why predicting
the structure of a complex using the unbound structures of
the partners remains highly challenging, despite a scrutinizing
examination of the amino acid composition of the interface
(Janin et al., 2008). Thus, in most cases, protein structures
change during the formation of the complex. The changes can
be limited to few side chains motions but can also correspond
to major reorganization in the fold. Therefore, we undertook
the analysis of the protein–protein complexes in the light of
structural alphabet. We compared proteins 3D structures in free
form, and as part of larger macromolecular complexes.

The building of the protein dataset was quite strict leaving
only 76 high quality complexes representing very different
configurations with free and bound forms (Swapna et al., 2012).
Accordingly, structural changes occurring between the free and
bound forms of the protein were analyzed using three different
measures: the Cα root mean square deviation, the percentage of
PB change and a specific PB substitution score. This last score
relies on a PB structural substitution matrix that quantifies the
cost to replace a given PB by another PB. The more similar the
PBs, the more favorable the substitution score. Consequently,
this score permits to quantify the conformational change by
distinguishing similar PBs from to the most distinct ones.
Comparison between unbound and bound forms shows that
significant structural rearrangement occurs at the interface but
also in regions away from the interface upon the formation
of a highly specific, stable and functional complex. For 50%
of them, which correspond to signaling proteins, the major
changes correspond to allosteric ones, localized far away from
the interface. These sites could be associated to mutations
known to be involved in multiple diseases such as cancer. PB
allows distinguishing here also between large movements, from
mobility to deformability or flexibility. Normal Mode Analysis
was also performed to gain deeper insights (Swapna et al.,

Frontiers in Molecular Biosciences | www.frontiersin.org 8 May 2015 | Volume 2 | Article 20

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Craveur et al. Protein flexibility and structural alphabets

FIGURE 5 | Integrin Calf-1 domain simulation using PBxplore.
(A,B) show the superimposition of two distinct snapshots (in red and

in yellow) extracted from a molecular dynamics. (C) Shows the PB

distribution in terms of WebLogo (Crooks et al., 2004) obtained thanks

to PBxplore, and (D) represents the superimposition of Neq and RMSF

for the whole domain. (E) Zoom on the loop containing the residue

66 of Cab-1 domain (blue) which shows a dedicated (F) PB pattern i
with a (G) low Neq and high RMSF, i.e., a mobile position in a

“flexible” region. Visualization was created by the program PyMOL

(http://www.pymol.org, Delano, 2013).

2012). The results obtained for signaling complexes underline the
importance of allostery-like structural changes much more than
appreciated before (see Figure 7).

Flexibility becomes a critical issue in complexes especially
the ones involving intrinsically disordered protein. Fine analyses
have shown that disordered proteins can also adopt well-defined
conformations in their bound form; their inherently dynamic
nature is cast into their complexes (Meszaros et al., 2011).
Protein families with more diverse interactions exhibit less
average disorder over all members of the family (Fong and
Panchenko, 2010). Inter-domain linkers are evolutionarily well
conserved and are constrained by the domain-domain interface
interactions (Bhaskara et al., 2013). An interesting resource is
the ComSin database which provides a collection of structures
of proteins solved in unbound and bound form, targeted toward
disorder–order transitions (Lobanov et al., 2010).

Protein/DNA Interfaces

Beside protein-protein interactions, which govern many
biological functions, fundamental biological processes like
transcription also require complex formation, i.e., between
protein and DNA. As for protein-protein interaction,
complexation can change structures of both partners, but
most studies focused on the protein side. Most of protein/DNA
interfaces only extend the classical approaches to analyze
protein/protein interfaces or protein/ligands interface. For
instance, in PDIdb (Ferrada and Melo, 2009) or Biswas and
coworkers studies, the interface is classified into core and rim
regions, the first one being more sequentially conserved. Biswas
and coworkers proposed a new classification scheme for the
interfaces based on the composition of secondary structures
(Biswas et al., 2009). Beyond this description in terms of
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FIGURE 6 | Integrin Calf-1 domain simulation analyses using
GSATools. (A) shows the structural alphabet distribution during the

simulation, i.e., the sequence profile of the alignment, (B) the transition

probability matrix for the transitions between SA letters, which reflect

local conformational changes, (C) the Mutual Information (MI) matrix

describing the correlation of local conformational changes among the

protein’s fragments, (D) the Shannon entropy per position, and (E) the

graph representation of the correlated local motions from the MI matrix,

with the eigenvector centrality, which describes the relative importance

of the nodes in the network. (F) Is a visualization created by the

program PyMOL (http://www.pymol.org, Delano, 2013) of the two most

important peaks underlined by (E).

regular local structures, Sunami and Kono (2013) conducted a
quantitative analysis to understand the conformational changes
in proteins when they bind to DNA. They compared DNA-free
and DNA-bound forms of proteins and used structural alphabets
to describe conformational changes in 4-residue fragments.
They found that (i) three specific alphabets appeared in the
DNA interfaces, (ii) conformational changes in DNA interfaces
are more frequent than in non-interfaces and importantly, (iii)
regions involved in DNA interfaces have more conformational
variations in the DNA-free form. This study underlines also the
importance of intrinsic flexibility of interacting regions to fit into
DNA structure.

Another recent analysis has explored an extensive set of
protein/DNA complexes and looked at conformational changes
occurring in proteins but also in DNA. Importantly, for both
molecules, structural alphabets were used. The alphabet used

for describing protein backbone is the Protein Blocks. For
DNA, a structural alphabet was obtained using a new approach
of registering torsion angles of a dinucleotide unit combined
with Fourier averaging and clustering (http://www.dnatco.org/,
Svozil et al., 2008; Cech et al., 2013). These structural alphabets
describe biopolymer conformations at greater detail than the
3-state protein secondary structure and basic DNA structural
types such as A, BI and BII. Figure 8 shows an example
of different conformations. This study compared structural
features of the protein/DNA interface with the features of
non-interacting parts of protein and DNA molecules. Clear
differences in preferences for occurrences of local protein and
DNA conformations were observed. Specific preferences were
underlined between complexes containing various types of
proteins such as transcription factors and nucleases. Minor DNA
conformers are often significantly enriched at the interface so that
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FIGURE 7 | Normal mode analysis of structural changes in regions
of low B-factor far from interface. The protein containing the region of

interest is depicted as cartoon and the interface of the other protein in

ribbon. Unbound and bound forms of the protein of interest are in pale

cyan and marine blue, respectively. The partner protein’s unbound and

bound forms are in light orange and yellow, respectively. Interacting

residues are in red and non-interacting residues with PB change in green.

All regions of interest are marked with a black circle, irrespective of

whether they are intrinsically mobile or rigid. Regions identified to be

intrinsically mobile according to NMA are in violet. Regions of interest

occurring within the intrinsically mobile segments are in dark green. The

complexes shown are (A) α-actin and Vitamin D - binding protein (PDB

code 1KXP, Otterbein et al., 2002) (B) Ubiquitin Carboxyl-terminal esterase

L3 protein and Ubiquitin complex (PDB code 1XD3, Misaghi et al., 2005).

These figures show that non-interacting regions observed to undergo

conformational changes upon complexation are usually intrinsically mobile,

which is a characteristic of a functional site. Visualization was created by

the program PyMOL (http://www.pymol.org, Delano, 2013).

the ability of DNA to adopt non-canonical conformers, rare in
naked DNA, is clearly essential for the recognition by proteins.
Rare DNA conformations introduce significant deformations to
the DNA regular structure. The occurrence of these rare forms
was estimated and characterized enabling a better understanding
of the role of non-B-DNA structures. A critical feature was
the distinct interaction patterns for the DNA minor groove
relative to the major groove and phosphate, and the importance
of water-mediated contacts. Indeed, water molecules mediate a
proportionally largest number of contacts in the minor groove
and form the largest proportion of contacts in complexes of
transcription factors (Schneider et al., 2014). It corroborates to
previous researches on the importance of mobility of such water
molecules (Luo et al., 2011; Russo et al., 2011).

The above-discussed analyses pointed to some remarkable
features about the protein/DNA interfaces, so that we performed
a more specific analysis of the protein and DNA dynamics based
on crystal structures. The analysis of B-factors (Schneider et al.,
2014) showed that the dynamics of biopolymer residues, amino
acids and nucleotides, as well as ordered water molecules is first
of all a function of their neighborhood: amino acids in the interior
of proteins have the tightest distribution of their displacements,
residues forming the biopolymer interfaces (protein/protein or
protein/DNA) intermediate, and residues exposed to the solvent
the widest distribution (Figure 9). This general picture is best
pronounced for structures with the highest crystallographic
resolution since discrimination of different types of residues
in structures becomes unclear with lower crystallographic
resolution. Besides, amino acid residues in the protein core
display a unique feature: their backbone and side chain atoms

have virtually identical B-factor distributions. The protein core
is therefore extremely well packed leaving minimum free space
for atomic movements. B-factors of water molecules bridging
protein and DNA molecules were surprisingly significantly
lower than B-factors of DNA phosphates; in opposite, solvent-
accessible phosphates were extremely flexible. An unexpected
conclusion of this analysis is that a part of the observed trends
could be due to improper refinement protocols that may need
slight modifications (Schneider et al., 2014). Hence, the B-factors
of high-resolution structures reflect the expected dynamics of
residues in protein–DNA complexes but the B factors of lower
resolution structures should be treated cautiously. Based on such
kinds of ideas, Vriend proposed a dedicated dataset of refined
B-factors (http://www.cmbi.umcn.nl/bdb/, Touw and Vriend,
2014).

PTMs

As seen in the previous sections, protein flexibility is essential
for interactions between proteins and ligand, nucleic acid, or
protein partners. Apart from interaction with partners, chemical
modifications like formation or breaking of covalent bonds, can
impact structural and dynamics properties. One of the most
spectacular examples is depicted by the serpin family members
when they interact with the protease (see Figure 10, Huntington
et al., 2000; Kim et al., 2001). An initial large conformational
change, consecutive to the cleavage of the reactive center of
the serpin by the protease, occurs. The loop involved in the
cleavage moves, folds as a β-strand that inserts between the other
strands of the β-sheet composing the serpin protein core. The two
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FIGURE 8 | Examples of protein/DNA interactions. (A) Structure of

human centromere protein B (CENP-B) binding to DNA CENP-B box

(PDB code 1HLV, Tanaka et al., 2001). The image highlights contacts

between arginine 125 (chain A, green) in PB m (regular helix) and

cytosine 15 (chain B, red) in ntC 41. (B) Details of methionine

repressor protein (MetJ) binding to DNA metbox (PDB code 1MJQ,

Garvie and Phillips, 2000). The same PB m and amino acid residue

(arginine 40 in chain H, green) is in contact with guanine 2 (chain K,

red) in NtC 13. Visualization was created by the program PyMOL

(http://www.pymol.org, Delano, 2013).

FIGURE 9 | Distributions of B-factors in the group of
protein-DNA complexes (165 structures with crystallographic
resolution 1.9 Å and better). Smooth plot (A) compared buried

amino acid (left in purple) vs. exposed aa (right in green); (B)

protein-protein aa vs. protein-DNA aa; (C) DNA-protein nucleotide

vs. exposed nt; (D) bridge water vs. surface w. Black boxes

show the second and third quartiles; the white spot indicates

the median.

proteins are tightly linked, which significantly affects the protease
that looses more than 30% of its structure.

Among chemical modifications, post-translational
modifications (PTMs), like phosphorylation, play a major
role in many biology processes. Integrins, for example, can be
activated consecutive to phosphorylation. The impact of these
modifications on the structure and the dynamics of proteins is
thus of particular interest.

Recent studies have shown that PTMs have significant effects
on the protein conformations and on their flexibility. Hence
Xin and Radivojac used 3D structures from the PDB and
studied the conformational heterogeneity of protein structures
corresponding to identical sequences in their unmodified and
modified forms (Xin and Radivojac, 2012). They demonstrated

that PTMs induce conformational changes at both local and
global level, but with a limited impact. Accordingly PTMs would
affect regulatory and signaling pathways (Nussinov et al., 2012;
Xin and Radivojac, 2012) by subtle but common mechanisms
of allostery. Some prediction approaches and are included into
dedicated databases (Matlock et al., 2015), but few analyzed
precisely the whole PTMome.

This led us to conduct a deep analysis of structures of
the same protein with or without PTMs. As an example, we
selected 157 PDB chains of the human Cyclin-dependent kinase
2 (UniProt AC: P24941) in complex form, and 222 PDB chains
of unbound monomer. Based on data from PTM-SD (Craveur
et al., 2014), a database of structurally solved and annotated
post-translational modifications, 112 chains among the 157
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FIGURE 10 | Structure of the alpha 1 antitrypsin. (A) The cleaved form

after complexation with protease (PDB code 1EZX, Huntington et al., 2000)

showing the strand inserted in the β-sheet after cleavage, (B) the uncleaved

form (PDB code 1HP7, Kim et al., 2001) showing the wild whole loop.

complexes, present a phosphorylated threonine at position
160 in the structure of the kinase. As described in Table 1,
we compared the backbone flexibility of three different cases:
unbound kinase, kinase complex, and phospho-Thr160 kinase in
complex.

Comparison of the three Neq profiles, shown in Figure 11,
highlights significant differences in local flexibility of the kinase
structures. Figure 11A shows that, when kinase is in unbound
form, the polypeptide chain presents a flexible fragment (colored
in green), which corresponds to a large loop. When complex
is formed (Figure 11B), this loop is placed at the interface
and leads to stiffening of its edges and higher flexibility in
the neighborhood of Thr-160. This change is characterized
by a diminution and an increase of Neq-values, respectively.
Finally, when the Thr-160 is phosphorylated (Figure 11C), the
green region becomes comparatively rigid, which results to
limited flexibility (Neq ≤ 3.16). However, another region in
kinase (position 8 to 18) is associated with increasing flexibility.
When the complex is forming, the Neq range in this area
increases from (1;2.77) to (1;3.76), and secondly, when the
phosphorylation is in place, the range increases to (1;5.91).
Interestingly, this region corresponds to the neighboring
positions of two other phosphorylation sites, at Thr-14 and
Tyr-15. It is important to note that these phosphorylations
were absent in the structures used here for the Neq

computation.
In a functional point of view, the phosphorylation in position

160 is known to promote the activation of the kinase, while the
phosphorylation of position 14 and 15 slightly reduce its activity
(Gu et al., 1992). Thereby, the changes in flexibility observed
at these 3 phosphorylation sites, could reflect that the activity
of the kinase is regulated by a mechanism of complementary
rigidity/flexibility of local protein backbone, which could be
related to allosteric effects.

The red line plotted in Figure 11 represents the number of
available structural data for each position. Interestingly, the green
region in Figure 11 is proportionally less resolved when kinase
is in monomer than when it is in complex, and even more
solved when the Thr-160 is phosphorylated. This observation
emphasizes that the decrease of flexibility in this region facilitates
the resolution of the structures. Several structures of the same
protein present specific regions that are disordered in some
crystals and ordered in others. These regions were defined by
Zhang and collaborators as “Dual Personality Fragments” (Zhang
et al., 2007), and the corresponding fragment of the green region
in Cyclin dependent kinase was the emblematic example used by
Zhang et al. (2007) to defined DPF. In the same way, the region
between positions 35 to 45 were also identify as DP fragments.

Prediction of Protein Flexibility

The growing gap between the number of protein sequences and
the number of atomic structures imposes to resort to alternative
approaches to gain structural and dynamics information. They
are mainly based on crystallographic B-factor analyses. It is
often seen that crystallographic B-factors are a mix of properties,
dynamics being one of them. Recent approaches show that NMR
spectroscopy provides an ever increasing amount of dynamics
data, going well beyond the simple thermal vibrations (Powers
et al., 1993; Palmer, 2001; Olsson et al., 2014). None of them can
describe all the important flexible movement or even disorder.
Hence, it must be taken into account that everything in protein
dynamics cannot be assessed based on a single view Prediction
methods are therefore of particular importance. Flexibility
prediction from sequences started as a Boolean prediction,
i.e., rigid or flexible, using simple statistical analyses of B-
factor values (Karplus and Schulz, 1985; Vihinen et al., 1994).
Following developments combined evolutionary information to
different machine learning methods, such as Artificial Neural
Networks (Schlessinger et al., 2006), support vector regression
coupled with random forest (Pan and Shen, 2009), and support
vector machines (Kuznetsov, 2008; Kuznetsov and McDuffie,
2008). Additional sources of information were progressively
take into account, rather than X-ray B-factors, as Nuclear
magnetic resonance data (NMR) (Trott et al., 2008; Zhang et al.,
2010), dihedral angles and accessibility (Hwang et al., 2011), or
computational data from Normal Mode Analysis (Hirose et al.,
2010). At last, some methodology, dedicated to predict protein
disorder were also developed and designed to high flexibility
prediction (Galzitskaya et al., 2006; Mamonova et al., 2010; Jones
and Cozzetto, 2015). Recent approaches are quite complex like
(i) the DynaMine webserver (http://dynamine.ibsquare.be/, Cilia
et al., 2013, 2014), DynaMine predicts backbone flexibility at the
residue-level in the form of backbone N-H S2 order parameter
values learnt from NMR data, or (ii) as a predictor which
used relative solvent accessibility (RSA) and custom-derived
amino acid (AA) alphabets. The prediction is done in two-stage
linear regression model that uses RSA-based space in a local
sequence window in the first stage and a reduced AA pair-based
space in the second stage as the inputs (Zhang and Kurgan,
2014).

Frontiers in Molecular Biosciences | www.frontiersin.org 13 May 2015 | Volume 2 | Article 20

http://dynamine.ibsquare.be/
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Craveur et al. Protein flexibility and structural alphabets

TABLE 1 | Composition of structural complexes involving the Cyclin-dependent kinase 2.

UniProt AC in complex Nbr of complex Protein name and organism

COMPLEX WITH PHOSPHORYLATION ON Thr 160 IN P24941

P24941

Cyclin-dependent kinase 2

Homo sapiens (Human)

P14635 1 G2/mitotic-specific cyclin-B1 Homo sapiens (Humain)

P20248 74 Cyclin-A2 Homo sapiens (Humain)

P24864 1 G1/S-specific cyclin-E1 Homo sapiens (Humain)

P30274 22 Cyclin-A2 Bos taurus (Bovin)

P51943 8 Cyclin-A2 Mus musculus (Souris)

Q16667 1 Cyclin-dependent kinase inhibitor 3 Homo sapiens (Humain)

P20248 + Q99741 4 Cyclin-A2 Homo sapiens (Humain) + Cell division control protein 6

homolog Homo sapiens (Humain)

P20248 + P46527 1 Cyclin-A2 Homo sapiens (Humain) + Cyclin-dependent kinase inhibitor 1B

Homo sapiens (Humain)

Total 112

COMPLEX WITHOUT PHOSPHORYLATION ON Thr 160 IN P24941

P20248 42 Cyclin-A2 Homo sapiens (Humain)

P61024 1 Cyclin-dependent kinases regulatory subunit 1 Homo sapiens (Humain)

P89883 2 V-cyclin of Murid herpesvirus 4

Total 45

We also proposed prediction of protein flexibility of an
amino acid sequence using the potentialities of SA prediction.
The approach is not only innovative through the use of local
protein conformations, but also with specific definition of
flexibility. Flexibility is often defined based on α-carbon B-
factor values obtained from X-ray experiments. As mentioned
above, these data reflect protein flexibility, but may also
be prone to experimental and systematic biases. Hence,
flexibility was considered with X-ray B-factor descriptors and
the RMSF observed in MDs simulations, which is calculated
from the amplitude of atom motions during simulation. Both
descriptors were combined to define and to examine flexibility
classes of SA.

This dedicated prediction method is divided in two steps:
first an SA prediction from sequence, and second a flexibility
prediction from the SA predicted. The SA used in this method is
the LSP (see Section The Different Views of Protein Structures).
They consist of 120 overlapping structural classes of 11-residue
long fragments (Benros et al., 2006), which encompass all
known local protein structures and ensure good quality 3D local
approximation. The major advantage of this library is its capacity
to capture the continuity between the identified recurrent local
structures (Benros et al., 2009). We can notice that is quite
difficult to have a good correlation between theoretical results to
actual experiments. With LSPs, we have shown that they have on
average a correlation> 0.9 with B-factors.

Relevant sequence–structure relationships were also observed
and further used for prediction. Briefly, LSP prediction is based
on SVM training. With the LSP prediction, a Confidence Index
(CI) that is based on the discriminative power of the SVMs is
provided. The higher CI, the better the prediction rate is. The
prediction rate reaches 63.1%, a rather high value given the high
number of structural classes (Bornot et al., 2009).

In a second step, we considered the two descriptors for
quantifying protein dynamics, X-ray B-factors and RMSF. They
were combined to define 3 flexibility classes of LSPs: rigid,
intermediate and flexible. Then for each 11-residue long target
sequences, the SA prediction provided a list of five possible LSP
candidates. Based on the previously defined flexibility classes of
these structural candidates, the prediction of target flexibility is
made. Interestingly, the prediction rate is slightly better than the
one of PROFbval (Schlessinger et al., 2006) that was optimized
for only two classes.

Hence, the originality of the method lies (i) in the use of
a combination of B-factors and RMSF for quantifying protein
dynamics, (ii) in prediction of flexibility through SA prediction
of LSPs, and (iii) in prediction of three classes of flexibility, which
are usually limited to two. The method is implemented in a web
server named PredyFlexy (http://www.dsimb.inserm.fr/dsimb_
tools/predyflexy, de Brevern et al., 2012), in which the users have
access to a confidence index (CI) for assessing the quality of the
prediction rate.

Conclusion

The protein structure organization is characterized by a
conformational arrangement of repetitive structures (secondary
structures, i.e., α-helices, β-sheets and coils/loops). Static
observation of protein organization has revealed some of their
essential properties, i.e., active sites are generally found at the
protein core in which residues are well packed and mainly
hydrophobic, while the surface residues, exposed to solvent or
to another partner(s) (protein, DNA), are more flexible because
less constrained than the core. The function of proteins and
their interaction mechanism need some flexible properties that
are considerably more complex than this simplistic binary view.
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FIGURE 11 | Neq profile of Cyclin-dependent kinase 2. The Neq profile

is given in each case: (A) for structure of kinase found in monomer, (B) found
as part of a complex, (C) found in complex with a phosphorylation solved in

the Thr-160. (D) The superposition of the 112 PDB chains used to compute

the Neq profile in (C) is shown. The corresponding green region is

highlighted, and positions 14 and 15 are, respectively, indicated in yellow and

orange. Protein visualization was created by the program PyMOL

(http://www.pymol.org, Delano, 2013).

By exploiting various structural data sources and by developing
different computational methods (B-factor, NMR data, MDs
Simulation, NMA, . . . ) dynamics of proteins turn out to cover
a large spectrum of conformational changes (combined by
mobility of rigid fragment and deformability of backbone), by the
existence of intrinsic disorder region, by allosteric effect. . . Some

of these flexible mechanisms need structural reorganization at
a local level. Thus investigation of protein flexibility requires a
more local and complex description of protein structures than
the classic representation.

In this review we have illustrated using numerous examples
(DARC protein, Human integrins, Protein Complexes,
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Protein/DNA interfaces, Proteins with Post-Translational
Modifications) how the approaches, based on Structural
Alphabets, are a valuable tool to study flexibility at this
level.

From our experiences with these examples, we can state that
the use of SAs allows to tackle and address the important problem
of the comparison of an ensemble of protein conformations.
Indeed, in a recent paper, Scott and Strauss (Scott and Straus,
2015) underlines the bias related to the use of RMSD, which needs
beforehand an optimally superimposed approach often remains
as rigid bodies. They proposed an elegant method, fleximatch,
of protein structure comparison that tries to take flexibility
into account. As it was done for protein superimposition
methods (Yang and Tung, 2006; Tung et al., 2007; Tung
and Yang, 2007; Le et al., 2009; Budowski-Tal et al., 2010;
Gelly et al., 2011; Leonard et al., 2014), SA is an efficient
approach, not considering proteins as rigid bodies. We underline
the interest of our approach based on Protein Blocks with
the PBxplore tools (https://github.com/pierrepo/PBxplore, in
preparation) or GSAtools (http://mathbio.nimr.mrc.ac.uk/wiki/
GSATools, Pandini et al., 2013) in other cases. The use of
SAs and the development of associated metrics such as Neq

is required to study the details and begin to understand
the complexity of protein flexibility. It allows discriminating
flexibility frommobility and deformability, which is not currently
considered by other available methods. Nonetheless, it also had
drawbacks as no simple threshold will guide the researcher
to point out that certain segment is THE highly flexible
part and not the other, same as for RMSF. In the same
way, use of information theory with GSATools also requires
expertise. Moreover, as SA represents a simplification of the
3D description, its results can be compared to the Normal
Mode Analysis based on Elastic Network Model (Suhre and
Sanejouand, 2004; Tiwari et al., 2014; Eyal et al., 2015) that
are efficient to define large movement. However, changes at a
finer level such as side chain rotameric states or minor changes
in the backbone (but essential for the biological functions) are
more difficult to handle. Here as always, a good knowledge
of the biological system is essential as a correct definition
of the scientific question and its scale (Buehler and Yung,
2009).

To conclude, we can find that all these approaches are suitable
for highlighting both flexible and rigid parts of a protein from

structures derived from NMR, X-ray diffraction or molecular
simulation.
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