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Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically

Disordered Regions (IDRs), display high flexibility as the result of their amino acid

composition. They can adopt multiple roles. In globular proteins, IDRs are usually found

as loops and linkers between secondary structure elements. However, not all disordered

fragments are loops: some proteins bear an intrinsically disordered extension at their

C- or N-terminus, and this flexibility can affect the protein as a whole. In this review,

we focus on the disordered N- and C-terminal extensions of globular proteins from

photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco

activase isoform, we show that intrinsically disordered extensions can help regulate their

“host” protein in response to changes in light, thereby participating in photosynthesis

regulation. As IDPs are famous for their large number of protein partners, we used the

examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the

fact that intrinsically disordered extremities can allow a protein to have an increased

number of partners, which directly affects its regulation. Finally, for proteins from the

cryptochrome light receptor family, we describe how a new role for the photolyase

proteins may emerge by the addition of an intrinsically disordered extension, while

still allowing the protein to absorb blue light. This review has highlighted the diverse

repercussions of the disordered extension on the regulation and function of their host

protein and outlined possible future research avenues.

Keywords: intrinsically disordered proteins, GAPDH, CP12, Rubisco activase, cryptochromes, transcription factors

Introduction

Proteins occupy a central position in the architecture and functioning of living matter. A major
objective of protein biochemistry consists in explaining the physiological functions of these
molecules by means of structural studies, also known as the “structure-function” relationship.
Among others, X-ray crystallography is a powerful tool to solve macromolecular three-dimensional
3D structures. However, some proteins cannot be crystallized because they are fully disordered
or possess disordered parts that are missing in the electron density map of the crystals. In the
1990s, Sedzik and Kirschner (1992) attempted to crystallize the myelin basic protein (MBP), the
predominant extrinsic protein in both central and nervous system myelins. After several attempts,
the authors concluded that MBP adopts a random coil conformation and that as long as its
flexibility was not suppressed, it was not possible to obtain crystals (Sedzik and Kirschner, 1992).
MBP was one of the first examples of many other “un-crystallizable” proteins. These proteins,
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originally named Intrinsically Unstructured Proteins (IUPs),
are nowadays termed Intrinsically Disordered Proteins (IDPs)
(Wright and Dyson, 1999; Dunker et al., 2001, 2008a,b). In
1998, Romero et al. showed that 15 000 proteins from the
Swiss-Prot database contain one or more Intrinsically disordered
regions (IDRs) comprising more than 40 amino acid residues
(Romero et al., 1998). It was shown later that despite their
lack of well-defined 3D structure, many partially or completely
disordered proteins are functional (Wright and Dyson, 1999;
Dunker et al., 2001, 2008a,b; Tompa, 2002). In the late 1990s,
studies of disordered yet functional proteins emerged as a new
research field, extending the traditional paradigm to include a
more comprehensive view of protein structure-function (Wright
andDyson, 1999; Dunker et al., 2001; Tompa, 2002; Dunker et al.,
2008a,b). In the past, different models have been proposed to
explain protein functioning, and protein flexibility has appeared
as a key point (Fersht, 1998). Among these models, the “induced-
fit” model (Koshland et al., 1966) introduced the idea that
protein conformational changes could be triggered upon ligand
binding. These notions were applied to IDPs, and many of them
were shown to undergo an “induced-folding” upon binding to
their partners (Dunker et al., 2002). Short motifs called MoREs
(Molecular Recognition Elements) are often involved in the
interaction, involving disorder to order transitions (Fuxreiter
et al., 2004, 2007; Oldfield et al., 2005; Mohan et al., 2006;
Vacic et al., 2007; Hazy and Tompa, 2009). However, the idea
that preformed binding elements exist before the binding, and
even in the absence of a partner, led to the “conformational
selection” model. In some cases, the IDP is not fully structured
in the presence of its partner and the term “fuzziness” was
coined by Fuxreiter and Tompa to describe such complexes
(Tompa and Fuxreiter, 2008; Hazy and Tompa, 2009; Fuxreiter
and Tompa, 2012). The flexibility of IDPs increases the chance
of their polypeptide chains adopting the right conformations
in the presence of their partners. Furthermore, the high ratio
of hydrophilic residues in IDPs facilitates initial contacts with
their partners. The interactions are also stronger with IDPs: their
lack of structure or absence of rigidity increasing association
constants (Dunker et al., 2001; Meszaros et al., 2007; Chouard,
2011). The ability of the IDPs to adopt multiple conformations
allows the same region to adapt to different binding sites in
many “induced-fits” and thus to have multiple partners (Uversky
et al., 2000; Tompa, 2002; Uversky, 2002, 2011; Meszaros et al.,
2007; Carmo-Silva and Salvucci, 2013). The discovery of IDPs
and their singular lack of definite structure brought nuances to
the “structure-function” dogma, showing that the same structure,
or lack of one, could have multiple partners and thus multiple
functions (Wright and Dyson, 1999; Dunker et al., 2001; Tompa,
2002; Uversky, 2002, 2011; Meszaros et al., 2007; Sun et al., 2013).
In this regard, IDPs could be seen as the “master keys” of the
protein-protein interaction network.

The ability of IDPs to bind to multiple partners makes
them naturally good regulators, as they can modulate the
activity of several proteins in a coordinated way (Dunker
et al., 2001, 2002, 2005; Gavin et al., 2002, 2006; Haynes
et al., 2006; Patil and Nakamura, 2006; Mittag et al., 2010;
Uversky, 2010; Pancsa and Tompa, 2012). Therefore, multiple

areas of the cellular response can be affected by a single signal
allowing IDPs to play a major role in regulatory pathways
(Tompa, 2002; Dunker et al., 2005; Haynes et al., 2006; Uversky,
2010; Pancsa and Tompa, 2012). The flexibility of IDPs can
also be modified by the cellular environment or by post-
translational modifications. IDPs and IDRs are often targets
of different post-translational modifications (the most common
being phosphorylation, methylation and ubiquitination) which
can radically affect their affinity for their partners and their
stability, thus multiplying the possibilities for a fine-tuned
regulation (Tompa, 2002; Dunker et al., 2005; Haynes et al., 2006;
Uversky, 2010; Pancsa and Tompa, 2012). These particularities
make IDPs the hubs in a vast net of protein-protein interactions
(Gavin et al., 2002, 2006). They carry out basic functions such
as regulation of metabolic pathways, transcription, translation or
cellular signal transduction; they can act as scavengers of toxic
molecules and they play a key role in the assembly of multi-
protein complexes (Uversky, 2011). Moreover, their roles in
several diseases of major medical interest, such as cancer (Castillo
et al., 2014; Saha et al., 2014; Xue et al., 2014), Alzheimer’s disease
(Uversky, 2009; Kovacech and Novak, 2010; Salminen et al.,
2011; Karagoz and Rudiger, 2015) prion disease (Tompa, 2009;
Uversky, 2009; Breydo and Uversky, 2011) or Parkinson’s disease
(Uversky, 2009; Hazy et al., 2011; Breydo et al., 2012; Alderson
and Markley, 2013) have been extensively studied (Babu et al.,
2011).

While the discovery and characterization of IDPs and IDRs
is a rapidly growing, and an increasingly recognized, area of
protein science, (Tompa, 2002; Uversky, 2010; Uversky and
Dunker, 2010; Chouard, 2011), little information is available
photosynthetic organisms, where IDPs have been described as
central players in many responses such as biotic and abiotic
stress, development, metabolism regulation, or adaptation to
oxic atmosphere (Kragelund et al., 2012; Pancsa and Tompa,
2012; Yruela and Contreras-Moreira, 2012, 2013; Pietrosemoli
et al., 2013; Sun et al., 2013; Panda and Ghosh, 2014). Published
data mainly concern Arabidopsis thaliana, a higher plant model
with one of the best-annotated sequenced genomes (Arabidopsis
Genome Initiative, 2000). Yet, the recent analysis of 12 plant
genomes revealed that the occurrence of disorder in plants is
similar to the one found in other eukaryotes (Bracken et al., 1999;
Yruela and Contreras-Moreira, 2012, 2013; Sun et al., 2013). An
in silico analysis of plant nuclear proteomes suggested a higher
disorder in the internal part of nuclear-encoded plant proteins
rather than at their extremities, in contrast to the chloroplast-
and mitochondrion-encoded proteomes (Yruela and Contreras-
Moreira, 2012). This is also pointed by studies on prokaryotes
showing that the IDRs may be more frequent at the extremities
of the proteins that act as “molecular shields” such as chaperones
(Krisko et al., 2010; Chakrabortee et al., 2012).

In this review, we describe several globular proteins with
N- or C-terminal IDR extensions in photsynthetic organisms,
as opposed to entirely disordered proteins or globular proteins
containing one or more IDRs in the middle of their sequences.
The aim of this work is not to give an exhaustive list of the
roles undertaken by such disordered extensions, as this has
recently been reviewed (Uversky, 2013). Instead, we focus on
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globular proteins or domains that acquired their disordered
tails during evolution, using examples from photosynthetic
organisms. The addition of a disordered extension to a globular
protein created new regulation opportunities, making these
proteins responsive to environmental factors through self-
regulation, post-translational modifications or new protein-
protein interactions. We illustrate the impact of disordered

extensions by describing proteins involved in photosynthetic
metabolism and regulation of gene expression (Table 1).

GAPDH and CP12

As knowledge about proteins progressed, new results appeared
showing that some enzymes were able to carry out more than

TABLE 1 | Summary of the characteristics of the Intrinsically disordered extensions presented in this review.

Protein/Protein

family

Protein role Position of the

extension

Role (or possible

role) of the

disordered extension

Particularities of the

disordered

extension*

References

Metabolism

regulation

GAPDH GapB Enzyme from the

Benson-Calvin cycle

C-terminus Autonomous redox

regulation of the

GAPDH activity

Pair of redox-sensitive

cysteine residues

Cerff, 1979; Brinkmann

et al., 1989; Baalmann

et al., 1996; Li and

Anderson, 1997;

Scagliarini et al., 1998;

Sparla et al., 2002;

Petersen et al., 2006

Rubisco Actlvase

(α isoform)

Activator of the

Rubisco enzyme

C-terminus Possible redox

regulation of the RCA

activity

Pair of redox-sensitive

cysteine residues

Werneke et al., 1989;

Shen and Ogren,

1992; Zhang and

Portis, 1999; Portis,

2003; Henderson

et al., 2011; Stotz

et al., 2011;

Carmo-Silva and

Salvucci, 2013;

Gontero and Salvucci,

2014

Gene

regulation

NAC family (No Apical

Meristem, ATAF, Cup

Shaped Cotyledon)

Transcription factors C-terminus Regulation of the NAC

transcription factor

domain through

protein-protein

interactions

Presence of multiple

MoREs (conserved

within a subfamily)

Ooka et al., 2003;

Olsen et al., 2005;

Jensen et al., 2010a,b;

Kjaersgaard et al.,

2011

bZIP family (basic

Leucine Zipper)

Transcription factors N-terminus Regulation of the bZIP

transcription factor

domain and its stability

through protein-protein

interactions and

post-translational

modifications

Presence of multiple

MoREs (conserved

within a subfamily)

Phosphorylation sites

Ang et al., 1998;

Campbell et al., 2000;

Hardtke et al., 2000;

Moreau et al., 2004;

Yoon et al., 2006; Sun

et al., 2013

TCP family [Teosinte

branched 1 (tbl),

Cycloidea (cyc) and

Proliferating Cell

Factor

Transcription factors N-terminus and

C-terminus

N-terminus: Binding of

target DNA C-tenninus:

TCP self-association

and regulation

N-terminus: Induced-fit

binding of DNA

C-terminus: Coiled-coil

self association

Viola et al., 2011,

2012; Steiner et al.,

2012; Valsecchi et al.,

2013

Signaling GRAS family

[Gibberellic Acid

Insensitive (GAI).

Repressor of Gai

(RGA) and Scarecrow

(SCR)]

Transcriptional

co-activator

N-terminus Regulation of the

GRAS activator domain

and its stability through

protein-protein

interactions and

post-translational

modifications

Presence of multiple

MoREs (conserved

within a subfamily)

Phosphorylation sites

Triezenberg, 1995;

Czikkel and Maxwell,

2007; Sun et al., 2010,

2011, 2012, 2013

Cryptochiomes Light-signaling Control

of circadian and annual

cyles

C-terminus Protein-protein

interaction upon

captation of blue light:

Initiation of

developpemental

responses

Presence of MoREs

Multiple

phosphorylation sites

Lin and Shalitin, 2003;

Green, 2004; Partch

et al., 2005; Yu et al.,

2010; Chaves et al.,

2011; Liu et al.,

2011a,b

*All the extensions present features of “disorder”: enrichment in hydrophylic charged amino acids and few hydrophobic residues.
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one function in a single polypeptide chain and were classified
as multifunctional proteins (Kirschner and Bisswanger, 1976).
In many cases, the dual function resulted from the fusion of
two genes that initially encoded different proteins. Later on,
the term “moonlighting” (Jeffery, 1999) categorized proteins
that have different functions. The glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) is a well-known moonlighting
enzyme and has at least ten distinct, confirmed non-enzymatic
activities apart from its enzymatic function (Sirover, 1999,
2011; Hildebrandt et al., 2015). The GAPDHs constitute
a large and diverse family of dehydrogenases universally
represented in living organisms. They catalyze the reductive
dephosphorylation of 1, 3-bisphosphoglyceric acid (BPGA)
producing glyceraldehyde-3-phosphate (GAP) and inorganic
phosphate using NAD(P)H as a cofactor (Trost et al., 2006).
Glycolytic GAPDHs(also named GapC) are NAD-specific
and mainly found in the cytosol, but in land plants a second
type of glycolytic GAPDH named GapCp is targeted to the
chloroplast(Petersen et al., 2003; Marri et al., 2005; Munoz-
Bertomeu et al., 2010). Both GapC and GapCp are NAD-specific
and form homotetramers in vivo that are not subject to complex

regulatory mechanisms. However, in photosynthetic organisms,
another GAPDH catalyzes the unique reductive step of the
Benson-Calvin cycle is present and uses both NADH and
NADPH with a marked preference for NADPH (Falini et al.,
2003).

Like all GAPDHs, the NADPH-dependent GAPDH is made
up of two functional domains, one corresponding to the catalytic
domain (residues 148–313 in spinach GAPDH) and the other one
being the cofactor-binding domain, or Rossman fold (residues
1–147 and 313–334, respectively). The latter contains a flexible,
arginine-rich region called the S-loop (Fermani et al., 2001).
In higher plants, this GAPDH exists in different forms such
as a heterotetramer made up of two GapA and two GapB
subunits (A2B2), a homotetramer made up of four GapA
subunits, and as a hexadecamer (A8B8) (Baalmann et al.,
1994, 1995; Scheibe et al., 2002; Howard et al., 2011a,b). The
GapB subunit is similar to the GapA subunit but bears a C-
terminal extension which has a regulatory function (Cerff, 1979;
Brinkmann et al., 1989; Baalmann et al., 1996; Li and Anderson,
1997; Scagliarini et al., 1998; Sparla et al., 2002) (Figure 1A).
This subunit is thought to derive from a gene duplication

FIGURE 1 | Model of the function of the C-terminal extension of the

GAPDH subunit GapB. (A) Schematic organization of the GapB from

higher plants and O. tauri (Robbens et al., 2007) subunit compared to the

GapA and CP12 proteins. The C-terminal extension of GapB is

homologous to the C-terminal of CP12 and present two regulatory cysteine

residues. (B) Schematic representation of the autonomous redox regulation

of the A2B2-GAPDH. When oxidized, the C-terminal extension of the GapB

subunit presents a disulfide bridge, which places the C-terminal amino

acids inside the active site of the enzyme, resulting in its inhibition. The

disulfide bridge can be reduced by the thioredoxin f (TRX), and the enzyme

becomes active. (C) Schematic representation of the autonomous redox

regulation of the A4-GAPDH by CP12. When oxidized, the C-terminal part

of the CP12 protein presents a disulfide bridge, which places its C-terminal

amino acids inside the active site of GAPDH, resulting in its inhibition. The

disulfide bridge can be reduced by the thoioredoxin f (TRX) or DTT and the

enzyme becomes active.
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event which occurred near the origin of Streptophyta (which
include charophytes and land plants) (Petersen et al., 2006)
and might be a construct of a GapA moiety fused at the C-
terminus with the C-terminal half of the CP12, a 8.2–8.5 kDa
Chloroplast Protein (Pohlmeyer et al., 1996). The portion of
CP12 acquired by GapB subunits confers redox properties to
GapB-containing GAPDH (Pupillo and Piccari, 1973; Pupillo
and Giuliani Piccari, 1975; Wolosiuk and Buchanan, 1976, 1978;
Trost and Pupillo, 1993; Baalmann et al., 1994, 1995; Sparla
et al., 2002). Cyanobacteria, primitive photosynthetic eukaryotes
(including the glaucophyte Cyanophora paradoxa), and red and
green algae (except charophytes and sister lineages) seem to
contain exclusively the GapA subunit (Petersen et al., 2006;
Trost et al., 2006). However, the small prasinophyte green alga
Ostreococcus tauri has been shown to possess GapA and GapB
(Robbens et al., 2007).

CP12 is a protein of about 80 amino acid residues that
was originally described by Pohlmeyer et al. (1996) and has
been found in most photosynthetic organisms (Groben et al.,
2010; Gontero and Maberly, 2012; Gontero and Salvucci, 2014;
Lopez-Calcagno et al., 2014). The CP12 proteins show high
primary sequence variability, in particular at the N-terminus.
However, they share some remarkable common features.CP12
proteins have an amino acid composition poor in order-
promoting residues although they contain cysteine residues
(Groben et al., 2010), and behave abnormally under gel
electrophoresis and size exclusion chromatographies (Gontero
and Maberly, 2012) suggesting that they are IDPs. Moreover,
recent data from fluorescence correlation spectroscopy (FCS)
show that the hydrodynamic radius of CP12 from the green alga
Chlamydomonas reinhardtii is large compared to that expected
for globular proteins of this molecular mass (Moparthi et al.,
2014). The cysteine residues are involved in the formation
of disulfide bridges and peptide loops and are found as
pairs at the C-terminus and/or at the N-terminus. When
oxidized, CP12 proteins may present α helices maintained
by the N-terminal disulfide bridge (Graciet et al., 2003a;
Gardebien et al., 2006). The algal CP12 is a key component
of a supra-molecular complex controlling the activity of the
Benson-Calvin cycle by regrouping several key enzymes of
the cycle, including GAPDH, phosphoribulokinase (PRK) and
fructose 1,6-bisphosphate aldolase (FBP aldolase). Within the
ternary GAPDH/CP12/PRK complex, both enzymes are strongly
inhibited (Avilan et al., 1997; Lebreton et al., 1997; Graciet
et al., 2003a; Erales et al., 2008; Marri et al., 2008). CP12
forms a fuzzy complex with the green alga C. reinhardtii A4-
GAPDH, as revealed by EPR studies (Mileo et al., 2013) (see
the Minireview by Lebreton et al. in this Topic Research). The
ternary complex has also been found in the cyanobacterium
Synechococcus elongatus and in the higher plant A. thaliana.
The A4-GAPDH-CP12 sub-complex from these organisms have
been crystallized but in both complexes, the first 50 amino acid
residues were not visible in the density map, consistent with a
high flexibility of this region in the crystal (Avilan et al., 2000;
Matsumura et al., 2011; Fermani et al., 2012). Recently, it was
also observed using FCS and FRET (Förster Resonance Energy
Transfer) that the algal CP12 flexibility is not abolished by its

interactions with either GAPDH or with PRK (Moparthi et al.,
2014, 2015).

In the case of the GapB subunit of GAPDH from higher plants,
the C-terminal end of the protein (ca 30 residues)is strongly
homologous to the C-terminal part of CP12 (Pohlmeyer et al.,
1996; Trost et al., 2006; Groben et al., 2010) (Figure 1A).The
regulation of the A. thaliana A2B2-GAPDH activity by the
C-terminal extension of the GapB subunit is now very well
understood: upon oxidation (which happens during the day-
night transition) the two cysteine residues of the CP12-like
tail form a disulfide bridge that places the C-terminal ultimate
glutamate residue (E362) inside the active site (stabilized by the
electrostatic interactions with an arginine residue R77 involved
in the NADP cofactor binding). Consequently, the NADPH
cofactor is not able to enter the catalytic site and thus NAPDH-
dependant A2B2-GAPDH activity is inhibited (Sparla et al.,
2005; Fermani et al., 2007) (Figure 1B). In contrast, during the
night-day transition, the disulfide bridge maintaining the C-
terminal extension into the active site is reduced by thioredoxin
f, thereby releasing the CP12-like tail and resulting in A2B2-
GAPDH activity (Figure 1B) (Sparla et al., 2002; Trost et al.,
2006; Fermani et al., 2007). This mechanism is very similar to
the one observed in C. reinhardtii between the homotetrameric
A4-GAPDH and free CP12, where the penultimate glutamate
(E79) of the CP12 interacts with the arginine residue R82 of A4-
GAPDH (Figure 1C) (Trost et al., 2006; Erales et al., 2011; Avilan
et al., 2012). The reduction of the GAPDH-CP12 by dithiothreitol
(DTT) in the alga results in a more active NADPH-GAPDH as
a consequence of the rupture of disulfide bridges on CP12. Of
interest, DTT, in vitro mimicks thioredoxins in vivo and it has
been shown that CP12 can be reduced by thioredoxin f in the
light (Marri et al., 2009).

In the higher plant, A. thaliana and in the green alga, C.
reinhardtii, the stoichiometry of the oxidized A4-GAPDH-CP12
sub-complex is two CP12 molecules for one A4-GAPDH (Marri
et al., 2008; Kaaki et al., 2013), while four CP12molecules interact
with each GAPDH tetramer in the cyanobacterium, S. elongatus
(Matsumura et al., 2011). When interacting with CP12, A4-
GAPDH activity decreased by two-fold (in the case of the C.
reinhardtii proteins, the catalytic constant kcat of the free enzyme
was 430 ± 17 s−1, and became 251 ± 9 s−1 in the presence
of CP12), suggesting that only two of the four active sites were
blocked (Graciet et al., 2003b) (Figure 1C). The same observation
was made for the A. thaliana A2B2-GAPDH: upon oxidation, the
A2B2-GAPDH activity decreased by 2-fold (its kcat changed from
59 ± 19 s−1 to 27 ± 10 s−1) although its catalytic constant in a
reduced state (kcat = 59 ± 19 s−1) was comparable to the one
of the free A4-GAPDH (kcat = 61 ± 4 s−1) (Sparla et al., 2004).
The regulation of the plant A2B2-GAPDH and of the algal A4-
GAPDH-CP12 complex is thus very similar. With the addition
of the C-terminal extension within the GapB subunit, the A2B2-
GAPDH has become autonomously redox-regulated, a property
that was previously provided through interaction with CP12.

Although the appearance of the GapB subunit represents an
important step in the evolution of the redox control of the Calvin-
Benson cycle enzymes, this new autonomous regulation co-exists
with the CP12-based one in higher plants (Scheibe et al., 2002),

Frontiers in Molecular Biosciences | www.frontiersin.org 5 May 2015 | Volume 2 | Article 23

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Thieulin-Pardo et al. Photosynthetic fairy tails

and a A2B2-GAPDH-PRK complex entirely devoid of CP12 has
yet to be identified. The presence of CP12 is likely to be required
for the assembly of larger supramolecular complex, and in C.
reinhardtii, A4-GAPDH-CP12-PRK was shown to interact with
the aldolase (Erales et al., 2008). In this regard, one may wonder
how this system will continue to evolve, and if more enzymes
of the Benson-Calvin cycle will also acquire similar CP12-like
disordered extensions, possibly meaning that the CP12 protein
will become redundant. However, CP12 seems to be a part of
numerous other processes in photosynthetic organisms (Singh
et al., 2008; Howard et al., 2011a,c; Stanley et al., 2013), so it is
unlikely to disappear completely from higher plants genomes in
the future.

Rubisco Activase

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is
the enzyme that catalyzes the formation of two molecules
of phosphoglyceric acid using one molecule of ribulose 1,5-
bisphosphate (RuBP) and one of carbon dioxide (CO2). As the
primary CO2 acceptor of most photoautotrophic organisms,

Rubisco can represent up to half of soluble proteins in higher
plants, and is believed to be the most abundant protein on Earth
(Ellis, 1979; Losh et al., 2013; Raven, 2013). Rubisco from most
photosynthetic organisms, including plants and cyanobacteria,
is a very large protein (550 kDa), composed of large (L, 52 kDa)
and small (S, 12 kDa) subunits arranged as a L8S8 hexadecamer.
For this enzyme to be active, a lysine residue inside the Rubisco
active site (K201 in Nicotiana tobacum) must be carbamylated
and bind a Mg2+ ion (Lorimer et al., 1976; Andersson and
Backlund, 2008). The addition of the non-catalytic CO2 molecule
to the active site is a spontaneous process, but the presence of
RuBP or other sugar-phosphate at the active site decreases the
carbamylation efficiency of Rubisco and thus its activity (Lorimer
et al., 1976; Cleland et al., 1998). The Rubisco activases (RCAs)
exhibit ATPase activity and were first characterized for their
ability to promote the carbamylation of such RuBP-inhibited
Rubisco (Portis et al., 1986). With time, it became clear that the
RCAs allowed the CO2 to enter the active site of Rubisco by
removing the hindering RuBP or its analog, carboxyarabinitol
bisphosphate (CABP) (Figure 2A) (Portis et al., 2008). The
presence of RCAs allows Rubisco to function at its maximal

FIGURE 2 | Model of the function of the C-terminal extension of the

α-Rubisco activase. (A) Schematic representation of the Rubisco activase

reaction with Rubisco. Only the carbamylated Rubisco is active and can

participate to the Calvin-Benson cycle. However, the presence of sugar

phosphate in the Rubisco active site prevents is carbamylation. Using ATP,

the Rubisco activase facilitates the departure of the inhibiting sugar

phosphate and promotes the Rubisco carbamylation. The CO2* represents

the non-substrate molecule carbamylating Rubisco. (B) Schematic

organization of the α and β Rubisco activases subunits from plants,

β-cyanobacteria and CbbX. (C) Schematic representation of the

light-dependent redox regulation of the α3β3 Rubisco activase. When

oxidized, the C-terminal extension of the α-RCA subunit bears a disulfide

bridge, which places the C-terminal amino acids inside the

nucleotide-binding site of the protein, resulting in its inhibition. The disulfide

bridge can be reduced by the thioredoxin f (TRX), and Rubisco becomes

active.
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capacity in sub-optimal CO2 concentration that would normally
not permit carbamylation in vivo (Portis et al., 1986). In higher
plants, RCAs, as expected, are mostly present in the parts of
plants involved in photosynthesis (Watillon et al., 1993; Liu et al.,
1996), and their expression follows a daily cycle that is regulated
by external factors like light and temperature (Martino-Catt and
Ort, 1992; Watillon et al., 1993; Liu et al., 1996; To et al., 1999).

In most organisms from the green lineage, two isoforms of
RCA are found: an α isoform of 45–46 kDa and a β isoform of
41–43 kDa (Werneke et al., 1989; Rundle and Zielinski, 1991; To
et al., 1999; Gontero and Salvucci, 2014). The only difference
between the two RCA isoforms is the presence of a short C-
terminal extension (ca 30 amino acid residues depending on
the species) on the α isoform (Figure 2B). Both the α and β

isoforms were found in Arabidopsis thaliana, spinach, and rice,
although only one RCA gene is present (Werneke et al., 1988;
To et al., 1999); in these species, the presence of the two RCA
isoforms is the result of alternate splicing (Werneke et al., 1989;
Rundle and Zielinski, 1991; To et al., 1999). On the other hand,
other species like barley, cotton, maize and tobacco have multiple
RCA genes (Rundle and Zielinski, 1991; Qian and Rodermel,
1993; Salvucci et al., 2003; Yin et al., 2010). In most cases, these
organisms have separate genes coding for α and β RCAs without
alternative splicing (Rundle and Zielinski, 1991), although all the
genes identified in tobacco and cucumber appear to only encode
the β isoform (Portis, 2003). To the best of our knowledge, the
C-terminus of the α and β RCA isoforms were never tested for
intrinsic disorder. Using several disorder predictors, including
MeDor (Lieutaud et al., 2008) and MFDp2 (Mizianty et al.,
2014), we were able to determine that the end of both the C-
terminal part of the α and β RCAs (ca 50 residues for the α

isoform and 20 residues for the β isoform) seem to be intrinsically
disordered, including the entire C-terminal extension of the α

RCA (Figure 3). The most remarkable features of this disordered

tail are the two cysteine residues (C392 and C411 in the A.
thaliana protein), that are highly conserved among the α RCA
isoforms (Zhang and Portis, 1999).

The crystal structure of the tobacco β RCA was recently
solved at 3Å (Stotz et al., 2011), showing that RCA proteins
are functional doughnut-shaped hexamers displaying an AAA+

fold, as was predicted using other AAA+ proteins (ATPases
involved in a multitude of processes, Neuwald et al., 1999 as
templates Portis, 2003). Interestingly, the last 23 residues of
the protein were absent from the structure, indicating that this
part of the molecule is very flexible and can adopt different
conformations. Moreover, the substrate recognition site of the
RCA from the creosote bush, Larrea tridentata, was solved at
the atomic level (Henderson et al., 2011). Unfortunately, the
structural studies were performed only on the β RCA isoform.
As the α RCA core is identical, its structure should not be
different from the β RCA, but the α RCA was shown to form
functional αnβn heteromers rather than αn homomers (Crafts-
Brandner et al., 1997; Zhang et al., 2001). In the light of
these new structural data, we can suppose that α RCA can
form heterohexamers α3β3 (Figure 2C). These structural data
also show the presence of three loops containing hydrophilic
amino acid residues lining the surface of a central pore. Site-
directedmutations introduced in this part of the proteins severely
diminished the Rubisco activation and the ATP hydrolysis by
the RCA proteins (Stotz et al., 2011), confirming that this
region is implicated in the binding of ATP (Salvucci et al.,
1993; Li et al., 2006). Based on this information, the model that
has been proposed for RCA interaction with Rubisco includes
one face of the flat hexamer interacting with the surface of
the Rubisco, while an exposed loop of the Rubisco protein
could fit into the central hole. Minor conformational changes
of this Rubisco loop, allowed by the ATP hydrolysis, would
then be transmitted to Rubisco allowing the inhibiting RuBP

FIGURE 3 | Disorder predictions of the C-terminal regions of the

α and β RCA proteins from A. thaliana. MeDor (http://www.
vazymolo.org/MeDor/) graphical output of the C-terminal part of the α

(A) and β (B) Rubisco activase isoforms from A. thaliana. Predicted

secondary structure elements and the HCA plot, are shown above

and below the amino acid sequence, respectively. Arrows below the

HCA plot correspond to regions of predicted disorder (Lieutaud

et al., 2008).
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to be released and Rubisco to be carbamylated (Stotz et al.,
2011).

The activity of the α and β RCAs is classically described
to be dependent on the ATP:ADP ratio (Zhang and Portis,
1999; Carmo-Silva and Salvucci, 2013), and is extremely sensitive
to high temperatures (Portis, 2003; Salvucci, 2004). Moreover,
the activity of the α RCA is regulated by light (Mächler and
Nösberger, 1980; Perchorowicz et al., 1981). This observation
is linked to the action of thioredoxin f on the two cysteine
residues present on its C-terminal extension (Shen and Ogren,
1992; Zhang and Portis, 1999; Zhang et al., 2001, 2002; Portis,
2003; Wang and Portis, 2006).A site-directed mutagenesis study
(Shen and Ogren, 1992) showed that the substitution of only
one of the two cysteine residues was enough to abolish the
light regulation of α RCA, implicating the involvement of a
disulfide bridge. Several studies showed that the mechanism of
inhibition involves the blocking of the ATP-binding region by
the C-terminal extension upon oxidation. This self-inhibition
would be stabilized by strong electrostatic forces between the
negatively-charged tail and the positively charged nucleotide
site (Shen and Ogren, 1992; Zhang and Portis, 1999; Zhang
et al., 2001, 2002; Wang and Portis, 2006; Carmo-Silva and
Salvucci, 2013) (Figure 2C). It was also observed that the β RCA,
although devoid of regulatory cysteine residues, could be light-
regulated in the presence of the α isoform (Zhang and Portis,
1999; Zhang et al., 2001). In the hypothesis that RCAs form
α3β3 heterohexamers, we can assume that the combined bulk of
C-terminal extensions efficiently inhibit the whole complex in
dark conditions (Figure 2C). The RCA activity can be restored
consequently by the reduction of the C-terminal disulfide bridge
by the thioredoxin f, which occurs upon dark-light transitions
(Carmo-Silva and Salvucci, 2013). In this case, the acquisition of
a C-terminal tail, originally by alternate splicing, has allowed the
RCA protein to fine-tune the activity of Rubisco in function of
the light availability in addition to the energetic state of the cell.

In other photosynthetic organisms, the Rubisco activase
system is different or works in a different way. In β-cyanobacteria,
the RCA protein has the same main domains as plant RCAs, but
lacks the N-terminal domain necessary for Rubisco activation
found in plants and green algae (Van De Loo and Salvucci,
1996; Li et al., 1999; Stotz et al., 2011; Gontero and Salvucci,
2014; Mueller-Cajar et al., 2014). This could explain why no
Rubisco activation has been observed using cyanobacterial RCAs
(Li et al., 1999; Pearce, 2006). The latter also possess a very
long (180 residues) intrinsically disordered C-terminal extension
that seems to target the protein to the carboxysomes (Zarzycki
et al., 2013) (Figure 2B). Organisms from the red lineage (α-
proteobacteria, rhodophyta, heterokontophyta, etc.) do not have
exactly the same Rubisco as the green lineage, and the so-
called “Red Rubisco” has a slightly longer large subunit. These
organisms do not have RCA genes, but the same Rubisco activase
function is carried out by another protein, CbbX (Pearce, 2006;
Gontero and Salvucci, 2014) (Figure 2B). The crystal structure
of CbbX has recently been solved, showing that this protein is
organized in hexamers arranged in a very comparable manner
to green RCAs (Mueller-Cajar et al., 2011). It was also suggested
that CbbX mechanisms are based on the same principles as the

one of RCA, with the C-terminus of the large Rubisco subunit
inserted into the central hole of CbbX (Mueller-Cajar et al.,
2011). It should be noted that CbbX seems to have an IDR at
its C-terminus, but its implications in CbbX activity is yet to be
studied.

Rubisco activase is not the only “friendly” protein involved in
the regulation of Rubisco, since other proteins are needed during
its assembly and folding, including the cpn60 chaperone, which
also has a disordered C-terminal tail (Goloubinoff et al., 1989;
Cloney et al., 1992; Libich et al., 2013).

Three Transcription Factor Families (NAC,
bZIP and TCP)

Disordered regions are ideal for proteins coordinating regulatory
events and as such, transcription factors participating in
regulation and signaling functions are enriched in IDRs.

The NAC family (named after No Apical Meristem, ATAF,
Cup-Shaped Cotyledon) is one of the largest families of plant-
specific transcription factors (Ooka et al., 2003; Olsen et al.,
2005; Rushton et al., 2008; Sun et al., 2013). These family
members are involved in a very large variety of processes,
including plant development (Olsen et al., 2005), biotic and
abiotic stress responses (Jensen et al., 2010b; Seo and Park, 2010;
Seo et al., 2010) and leaf senescence (Kjaersgaard et al., 2011).
The NAC transcription factors usually contain two domains:
the N-terminal NAC domain and the C-terminal extremity
domain (Figure 4A). The NAC domain is mainly conserved
and well-ordered, displaying a typical structure comprising α

helices flanking one β strand (Ernst et al., 2004). This domain
binds the consensus DNA sequence CGT(GA) (Olsen et al.,
2005). The C-terminal domain of the NAC proteins is highly
variable within the family; however, some motifs in the C-
terminus may display a sub-family-specific conservation (Jensen
et al., 2010a). The C-terminal domains composition reveals a
very high percentage of hydrophilic (Asp, Glu, Ser, Thr) and
proline (Pro) residues, whereas the proportion of hydrophobic
and aromatic residues is very low (Olsen et al., 2005; Jensen
et al., 2010a). These specificities are typical of IDRs, and the
C-terminal domain of some NAC proteins was experimentally
characterized as an IDR (Jensen et al., 2010a,b). Despite this
IDR feature, some hydrophobic and/or aromatic residues are
present in this domain; interestingly, these amino acid residues
are often conserved among a subfamily (Jensen et al., 2010a,b;
Kjaersgaard et al., 2011). The IDR C-terminal domains of the
NAC proteins are predicted to contain MoREs that are conserved
in sub-families (Jensen et al., 2010a). It has been experimentally
confirmed that these particular residues are very important to
the specific function of each sub-group in the NAC family, and
are essential to activation mechanisms often involving many
different partners (Ooka et al., 2003; Ernst et al., 2004; Taoka
et al., 2004; Olsen et al., 2005; Ko et al., 2007; Jensen et al., 2010a)
(Figure 4B).

The bZIP (basic Leucine Zipper) transcription factors family
is ubiquitous and is one of the largest families of transcription
factors in eukaryotes. bZIP transcription factors take part
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FIGURE 4 | Model of the function of the disordered extremities of the

NAC, bZIP, and GRAS proteins. (A) Schematic organization of the NAC,

bZIP, and GRAS protein families. The disordered parts are schematized in

orange, the MoREs are represented as black squares. (B) Schematization of

the multiple protein-protein interactions involving the disordered extremity. X, Y,

and Z represent different protein partners capable of interacting with one or

more MoREs and regulate the behavior of the globular domain.

in a multitude of regulatory pathways such as development,
metabolism, circadian rhythm and response to stress (Sun et al.,
2013). The bZIP proteins are composed of two domains: a
C-terminal bZIP domain and a N-terminal activation domain
(Figure 4A). The C-terminal bZIP domain gives its name to the
family and displays large patches of basic residues and leucine
zipper motifs (Ellenberger et al., 1992; Vinson et al., 1993).
The leucine zipper regions are organized in α helices and are
responsible for the dimerization of the proteins through the
formation of a coiled-coil structure (Vinson et al., 1993; Yoon
et al., 2006), while the basic regions bind to the DNA molecule
(Ellenberger et al., 1992). Interestingly, the basic regions have
been described either as fully ordered, very flexible or intrinsically
disordered depending on the protein (Bracken et al., 1999; Podust
et al., 2001; Moreau et al., 2004; Yoon et al., 2006). When
bound to DNA, the basic regions have however been observed
as α helices, suggesting that the interaction triggers folding in
response to a specific DNA motif (Hollenbeck et al., 2002),
illustrating once more the disorder to order transition (induced-
fit). The N-terminal regions of bZIP proteins act as regulators
(Ang et al., 1998; Sun et al., 2013), and are mostly intrinsically
disordered (Campbell et al., 2000; Moreau et al., 2004; Yoon et al.,
2006; Sun et al., 2013). These regions typically contain different
MoREs, and their flexibility allows the interaction with multiple
partners, again by adopting different secondary structures (Ang
et al., 1998; Campbell et al., 2000; Oldfield et al., 2005; Yoon
et al., 2006) (Figure 4B). Through these activating or inhibiting
interactions, transcription of the genes targeted by bZIP proteins
is effectively modulated in response to several signals. The N-
terminal disordered domain also modulates the activity of bZIP
transcription factors through post-translational modifications,

and phosphorylation in particular. In plants, bZIP transcription
factors can be phosphorylated in response to illumination, which
disrupts the interactions between the bZIP proteins and their
activating partners (Ciceri et al., 1997; Hardtke et al., 2000).
The phosphorylated proteins also have lower affinity for their
DNA targets, resulting in a decrease of gene activation (Ciceri
et al., 1997; Hardtke et al., 2000). Interestingly, some bZIP
proteins also display IDRs in their C-terminal domain. In the
case of bZIP28 (initially a transmembrane protein), these IDRs
are exposed to the lumen of the endoplasmic reticulum and allow
the interaction, throughMOREs with BIP, the majority reticulum
chaperone. In response to stress, bZIP28 is relocated to the Golgi
and the cytoplasmic domain is detached, allowing it to enter the
nucleus and to control gene expression (Srivastava et al., 2013,
2014).

A recent study on TCP8, a transcription factor belonging
to the TCP [Teosinte branched 1 (tb1), Cycloidea (cyc) and
Proliferating Cell Factor (PCF)] family, showed the presence of
three IDRs, two of them at the N- and C-terminal extremities
(Valsecchi et al., 2013). While the N-terminus binds DNA in an
induced-fit mechanism, the C-terminal region is involved in the
TCP protein self-association in a coiled-coil structure (Valsecchi
et al., 2013). Furthermore, it seems that different transcription
factors from the TCP family can interact, modulating the
response of different pathways to multiple stimuli (Baier and
Latzko, 1975; Viola et al., 2011, 2012; Steiner et al., 2012; Valsecchi
et al., 2013).

As illustrated in these examples, the disordered tails of
transcription factors have an essential role in modulating their
activities through protein-protein interactions with a wide range
of activators and inhibitors. Moreover, these extensions are
often prone to phosphorylation and constitute another level of
regulation. Together, these IDRs form a complex signaling web,
turning the transcription factors into hubs and allowing the genes
involved in adaptive responses to be finely regulated.

GRAS Family

The GRAS family comprises proteins involved in numerous
aspects of plant development and growth. This large family is
named after its first members, Gibberellic Acid Insensitive (GAI),
Repressor of Gai (RGA) and Scarecrow (SCR), and its members
are mostly related to signaling in response to phytohormones
[gibberellic acid (GA), auxin, brassinosteroids] and biotic and
abiotic stress (Bolle, 2004; Sun et al., 2011). The GRAS family
proteins are composed of one variable N-terminal region and
a commonly conserved C-terminal GRAS domain (Figure 4A),
and are divided into ten subfamilies based on phylogeny (Bolle,
2004; Tian et al., 2004; Lim et al., 2005; Sanchez et al., 2007;
Sun et al., 2011). The conserved GRAS domain (ca 380 residues
depending on the subfamilies) acts as a transcriptional co-
activator (Heery et al., 1997) through leucine-rich motifs. GRAS
domains typically contain two leucine-rich motifs, which are
needed for specific protein-protein interactions(Cui et al., 2007;
Vacic et al., 2007; Fode et al., 2008; Hirsch and Oldroyd, 2009;
Hirsch et al., 2009; Hou et al., 2010). The GRAS proteins interact
with a large number of nuclear proteins, most of which are
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transcription factors, thereby modulating their target activity
(Hirsch and Oldroyd, 2009; Hirsch et al., 2009; Hou et al., 2010;
Sun et al., 2012).

In contrast to the highly conserved GRAS domain, the N-
terminal domains of the GRAS family proteins display a rich
diversity at the sequence level, although the N-terminus is
conserved within subfamilies (Sun et al., 2010, 2011, 2012,
2013). Moreover, these N-terminal domains have recently been
identified as intrinsically disordered (Sun et al., 2010, 2011,
2012, 2013). Interestingly, patches of repeated hydrophobic
and/or aromatic residues are found in the N-terminal region
(Triezenberg, 1995; Sun et al., 2011). These patches are arranged
in conserved motifs within subfamilies (Triezenberg, 1995; Sun
et al., 2011), and are involved in specific multiple protein-protein
interactions (Sun et al., 2010, 2012). In the case of the DELLA
subfamily which has been intensively studied, the N-terminal
domain can interact with the gibberellic acid receptor GIB1,
but only when GIB1 has bound its ligand (Murase et al., 2008;
Hirano et al., 2010; Sun et al., 2010, 2012). Moreover, each
DELLA protein domain (N-terminal and C-terminal domains)
can interact with several partners, making these proteins a hub
at the center of the gibberellic acid response pathway. Other
examples of GRAS proteins are important in other regulatory
pathways, although subfamilies are always specialized in a precise
type of stimulus (phytohormones, biotic and abiotic stress, etc. . . )
(Sun et al., 2010, 2011, 2012, 2013).

A common feature of the GRAS proteins is their ability to
acquire a structure when bound to a partner, unlike the fuzzy
GAPDH/CP12 complex (Mileo et al., 2013). Asmentioned above,
MoREs are present in GRAS proteins; each one was predicted
to occur within the N-terminal domains, and more specifically
in the elements conserved within subfamilies, strengthening
the idea that these motifs are the key to the specificity of
GRAS proteins (Sun et al., 2011, 2012). In the case of the
DELLA subfamily, the presence of the MoREs has been verified
experimentally (Sun et al., 2010, 2011, 2012). Interestingly, the
N-terminal domain of the GRAS proteins is also the target
of phosphorylation, which again introduces another way to
fine-tune the regulation of these proteins (Fu et al., 2002;
Iakoucheva et al., 2004; Hussain et al., 2007; Mittag et al., 2010).
Phosphorylation of the N-terminal domain is directly linked to
the activity of the GRAS proteins, modulating the affinity of the
N-terminus for its partners, and having a direct effect on the
GRAS proteins stability through the control of their degradation
(Day et al., 2004; Hussain et al., 2005; Itoh et al., 2005; Czikkel
and Maxwell, 2007).

When considering the GRAS family as a whole, it is
remarkable how conserved the GRAS domains and patterns
are, while the N-terminal domains are highly variable. It seems
that the addition of a disordered protein segment to the GRAS
domain has increased its number of partners, and thus turned
it into a signal-integration hub involved in many different
pathways. On the other hand, one could consider that the
addition of GRAS domains to pre-existing IDPs involved in the
phytohormonal and/or stress responses has allowed these IDPs
to control, even more directly, the cellular responses by acting on
gene expression.

Cryptochrome

Cryptochromes are a group of proteins in which most
members have an intrinsically disordered C-terminal tail
that can have a profound impact on their overall function.
Together with the photolyases, these proteins belong to the
photolyase/cryptochrome family (Lin and Shalitin, 2003; Sancar,
2004; Chaves et al., 2006; Ozturk et al., 2007; Fortunato et al.,
2015).

Photolyases are ancient enzymes that use blue light to catalyze
the repair of DNA lesions caused by ultraviolet light. Lesions
such as cyclobutane pyrimidine dimers (CPD) and pyrimidine-
pyrimidone photoproducts are repaired by photolyases CPD
and by photolyases 6–4, respectively. Photolyase capacity to
use blue light is due to the presence of two chromophores:
a photoantenna pterin (5,10-methenyltetrahydrofolateor a-
hydroxy-5-deazaflavin) and flavin adenine dinucleotide (FAD).
During the DNA repair, the two chromophores cofactors absorb
blue photons and initiate splitting of the cyclobutane ring by a
mechanism involving reactive radicals (Liu et al., 2011b).

Cryptochromes, the other group of proteins in the
photolyase/cryptochrome family, have a photolyase homologous
region (called PHR) and a C-terminal tail (Figure 5A) (Yu et al.,
2010). Cryptochromes are able to absorb blue light in a very
similar way to the photolyases. Another group within this family
includes DASH-type cryptochromes named after the Drosophila,
Arabidopsis, Synechocystis and Human. Members of this group
are closer to photolyases than to cryptochromes, and are able to
repair single-stranded DNA (Chaves et al., 2011) and may also
have N-terminal and C-terminal disordered extensions.

In contrast to photolyases, cryptochromes do not have
the ability to repair DNA. However, in many organisms,
the absorption of photons by the chromophores in the
photolyase homologous region of these proteins, induces
conformational change (through electron transfer and
subsequent phosphorylation), which in turn trigger specialized
signaling events through protein-protein interactions (Liu et al.,
2011b). It has been shown that the function of cryptochromes
resides mainly within their C-terminal tails (Yang et al.,
2000; Green, 2004; Chaves et al., 2006, 2011; Yu et al., 2010).
Interestingly, this tail is poorly conserved among groups of
organisms. In Arabidopsis, two cryptochromes are present,
CRY1 and CRY2, that have different C-terminal extensions
although a DAS motif is found in both (Lin and Shalitin,
2003). The length of the C-terminal tail in cryptochromes of
animals, plants and some unicellular organisms varies from
30 to 250 residues and, as mentioned above, is intrinsically
disordered. This characteristic has been established by
sequence analysis, biochemical methods such as analysis of
the sensitivity to protease cleavage, and physical methods such
as circular dichroism and nuclear magnetic resonance (NMR)on
recombinant C-terminal extensions of both Arabidopsis and
human cryptochromes (Partch et al., 2005). Comparison of the
proteolysis susceptibility between full-length cryptochromes
and their C-terminal tail showed that this tail interacts with the
photolyase domain, causing it to adopt a tertiary structure. The
susceptibility to proteolysis of the C-terminal tail of the CRY1
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FIGURE 5 | Models of the function of the C-terminal tail of

cryptochromes. (A) Representation of cryptochrome (CRY) and photolyase.

Cryptochromes have a photolyase-homologous region (PHR) and a C-terminal

tail. The chromophore molecules of the PHR are shown. (B) Model of the

action mechanism of cryptochromes from Arabidopsis. After absorption of

light, the C-terminal tail is phosphorylated and a change in conformation is

triggered in the entire molecule. The C-terminal tail is exposed at the surface of

the protein and as a consequence interactions with partner proteins such as

COP1 and SPA are induced (Liu et al., 2011a,b). (C) In darkness, the

C-terminal tail of the cryptochrome from Drosophila inhibits the binding of the

proteins involved in the circadian rhythm. After illumination, the inhibition by the

tail is released and the PHR domain interacts through electrostatic interaction

with the protein partners TIM and JET (Green, 2004; Czarna et al., 2013).

(D) In mammals, cryptochrome is necessary for the translocation of the protein

into the nucleus in which it is part of the core of the transcription/translation

feedback that controls the circadian clock together with the proteins PER,

BMAL, and CLOCK.

from A. thaliana increases after illumination, which is consistent
with a conformational change (Partch et al., 2005). Indeed, the
crystal structure of the complete cryptochrome from Drosophila
confirmed that the C-terminal tail stays in a groove of the
photolyase domain and mimics the recognition of photolyases
with DNA (Zoltowski et al., 2011; Czarna et al., 2013).

In plants, cryptochromes play a role, together with other
photoreceptors, in a variety of functions. In general, the
cryptochromes of plants are involved in mechanisms that
respond to blue light and their action has been explored in the
inhibition of the elongation of hypocotyls, in the photoperiodic
induction of flowering, in the circadian clock as in animals, and
in other functions (Yu et al., 2010; Chaves et al., 2011; Liu et al.,
2011b).These studies have been mainly performed in the model
plant A. thaliana. Studies using transgenic plants overexpressing
the C-terminal tail of CRY1 or CRY2, fused with β-glucuronidase
(GUS) showed a constitutive morphogenic phenotype similar
to that produced by blue light (Yang et al., 2000), indicating
that, in the cryptochrome molecule, the C-terminal tail is

responsible for the light-induced function. Moreover, NC80,
an 80-residues segment present in the Arabidopsis protein, is
responsible for the function of the C-terminal tail of CRY2 (Yu
et al., 2007). The C-terminal tail of these proteins interacts with
other proteins such as COP1 (constitutive photomorphogenic
1) (Wang et al., 2001; Yang et al., 2001), a multifunctional E3
ubiquitin ligase, and SPA1 (suppressor of phytochrome A 1) (Zuo
et al., 2011; Liu et al., 2011a). This interaction is part of the initial
steps for the light signaling and mechanisms to modulate the
developmental process in the plant either by: (1) modulation of
gene transcription or (2) suppression of proteolysis of regulators
involved in development (i.e., flowering) (Liu et al., 2011a,b).
Models have been proposed to explain the mode of action of
plant cryptochromes (Lin and Shalitin, 2003; Partch et al., 2005;
Yu et al., 2007; Liu et al., 2011a). In general, in these models,
the photolyase domain and the C-terminal tail form a closed
conformation in the dark. Upon illumination, an open and active
conformation is adopted and, in this new conformation, the
C-terminal tail is exposed allowing its interaction with other
proteins to initiate signaling (Figure 5B). A model of action that
includes dimerization and light dependent-phosphorylation that
explains the exposure of the C-terminal tail as a result of charge
repelling has also been proposed (Figure 5B) (Lin and Shalitin,
2003; Yu et al., 2007).

Although cryptochromes of plants are involved as
photoreceptors in the circadian cycle, the molecular role of
cryptochromes in relation to this cycle has been more elucidated
in Drosophila. In this organism, the cryptochrome modulates
the central oscillator, or clock, through the light-dependent
interaction with the protein Timeless (TIM) (Busza et al., 2004),
one of the components of the clock core. This interaction favors
the degradation of both TIM and the cryptochrome itself, thus
triggering the light/dark cycle each day by synchronization of
the clock with the environment. The protein Jetlag (JET), an
E3 ligase, also binds to the cryptochrome in a light-dependent
manner and is responsible for the ubiquitination and subsequent
proteolysis of both the cryptochrome and TIM (Peschel et al.,
2009). In this case, and in contrast with the cryptochromes in
Arabidopsis, the binding of the cryptochrome from Drosophila to
its partners is performed by the photolyase domain of the protein
(Figure 5C), whereas in the dark, the C-terminal tail inhibits this
binding determining thus the photosensitivity of the circadian
clock (Busza et al., 2004; Green, 2004).

In contrast to their homologs from plants and Drosophila,
where the disordered C-terminal tail is used for light
signaling, mammalian cryptochromes are light–independent
transcriptional repressors in the core of the circadian clock
(Figure 5D). Mammalian cryptochromes repress transcription
processes that are dependent on the protein complex
BMAL/CLOCK (Sancar, 2004; Chaves et al., 2011). In the
case of these cryptochromes, the function of the C-terminal tail
is more complex: (i) it is involved in the nuclear localization of
the protein and (ii) with the photolyase domain, it also has a
role in the interaction with other components of the clock such
as BMAL (Chaves et al., 2006). Interestingly, the C-terminal
tail also contributes to the circadian period length, since its
phosphorylation affects the level of the protein, either promoting
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its own degradation in the case of CRY 2 (Harada et al., 2005) or
stabilizing the protein as for CRY 1 (Gao et al., 2013).

It has been proposed that cryptochromes have evolved several
times independently as an example of convergent evolution
(Green, 2004). Only small changes have occurred in the
photolyase domain, this part of the protein being conserved
among cryptochromes and photolyases. One possible mechanism
to explain the acquisition of C-terminal extensions in existing
proteins would be through gene fusion (Marsh and Teichmann,
2010). If this mechanism had taken place at the origin of
cryptochromes, it would suggest that proteins related to the C-
terminal tail of cryptochromes already existed independently
and had a function of their own. These independent domains
became later associated to a photolyase domain providing them
with the capacity to detect light. As mentioned above, the
plant cryptochromes C-terminal domain is active and has the
information needed to achieve signaling (Yang et al., 2000).
During evolution, this protein could have fused with a duplicate
of photolyase. In this hypothesis, the addition of the light-
dependent photolyase module might be a way to adjust the
physiology of the organisms to their environment through light
perception. This could therefore be seen as an IDP having
acquired a globular extension. Since in plants, a motif (DAS)
within the C-terminal tail is conserved, it has been proposed
that the ancestral plant cryptochrome emerged from a fusion
of a photolyase with a protein containing the DAS motif (Lin
and Shalitin, 2003). Another hypothesis that could explain the
acquisition of the C-terminal tail in cryptochromes is by gene
extension into a non-coding region (Marsh and Teichmann,
2010). The photolyase gene could thus have been extended
through junk DNA. Analysis of phylogenetic relationships of
gene families in animals showed that extension of an existing
gene by “exonization” of a previous non-coding region seems
to be an important evolutionary strategy to add a C-terminal
disordered extension to proteins (Buljan et al., 2010). The high
variability and different functions of the C-terminal tail of
cryptochromes among plants and animals are in accordance
with this hypothesis. Studies on the origin and evolution of
the C-terminal tail of cryptochromes will give insights into the
adaptation of organisms to light.

Conclusion

Within the present review, we tried to demonstrate the central
and multiple roles of intrinsically disordered tails carried by

certain globular proteins. Describing several examples of proteins
displaying IDRs in photosynthetic organisms, we discussed how
IDRs impact on both the functions and mechanisms of action
of their “host” proteins. The examples of the A2B2-GAPDH
and the α-Rubisco activase isoform show that their C-terminal
disordered extensions participate in the light-dependent redox
regulation of the photosynthetic metabolism. The cases of the
multiple transcription factors with a disordered tail are very
similar yet very different. In the few examples listed here,
the disordered region plays a major role in the regulation of
the DNA-binding domain through protein-protein interactions
or post-translational modifications. Their sensitivity to a large
number of signals allows the activity of the transcription
factors to be modulated according to many factors (one to
many), turning these proteins into hubs in a large signaling
web. Lastly, the cryptochrome family is a prime example of
a disordered extension changing the fundamental function
of the initial photolyase into a light-dependent signaling
protein, conserving the ability to absorb blue light and
repurposing it.

The examples presented here are but a few of the multitude
of proteins that have acquired a disordered extension (Uversky,
2013), although most examples do not usually come from the
photosynthetic world. We can expect that in the years to come,
an increasing number of these proteins will be identified. A great
question that remains is how these proteins originated. While
in some cases, the addition of an IDR seems to be quite recent
like the GapB subunit. In other cases, this addition might be
very ancient as in the NAC, bZIP, and GRAS families, in which
there are multiple disordered extensions families that may derive
from multiple fusion events, or a long succession of duplications
followed by diverging evolution of the subfamilies. We hope that
the expansion of the IDP field in general and specifically, the
one involved in “green” biochemistry, will 1 day answer these
questions.
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