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In the last years, we have been observing remarkable improvements in the field of protein

dynamics. Indeed, we can now study protein dynamics in atomistic details over several

timescales with a rich portfolio of experimental and computational techniques. On one

side, this provides us with the possibility to validate simulation methods and physical

models against a broad range of experimental observables. On the other side, it also

allows a complementary and comprehensive view on protein structure and dynamics.

What is needed now is a better understanding of the link between the dynamic properties

that we observe and the functional properties of these important cellular machines.

To make progresses in this direction, we need to improve the physical models used

to describe proteins and solvent in molecular dynamics, as well as to strengthen the

integration of experiments and simulations to overcome their own limitations. Moreover,

now that we have the means to study protein dynamics in great details, we need new

tools to understand the information embedded in the protein ensembles and in their

dynamic signature. With this aim in mind, we should enrich the current tools for analysis

of biomolecular simulations with attention to the effects that can be propagated over

long distances and are often associated to important biological functions. In this context,

approaches inspired by network analysis can make an important contribution to the

analysis of molecular dynamics simulations.

Keywords: protein dynamics, molecular dynamics, protein NMR, enhanced sampling, metadynamics, protein

structure

Protein Dynamics and Conformational Changes and their

Importance in Biology

It is now well-established that proteins, and biomolecules in general, are highly dynamic systems
(Vendruscolo, 2007; Boehr et al., 2009; Zhuravlev and Papoian, 2010; Osawa et al., 2012). We
moved, in the last decades, from the structure-function paradigm to the structure-dynamics-
function triad, where not only the knowledge of the tertiary or quaternary assemblies is important
to understand protein function, but also the dynamical behavior on different timescales (Henzler-
Wildman and Kern, 2007; Klepeis et al., 2009; Villali and Kern, 2010; Wand, 2012). In this context,
the knowledge of even protein states that account for a small population of the ensemble are
important (Baldwin and Kay, 2009). Indeed, proteins undergo conformational changes even in
their free and unbound/not modified state. Those minor conformations can resemble functional
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states, such as the structure that a protein assumes when it binds
to another biological partner. The “perturbations” that affect the
populations of the protein ensemble are caused by modifications,
mutations, and interactions with other biomolecules and have
impact on the related biological mechanisms (Popovych et al.,
2006; Manley and Loria, 2012; Motlagh et al., 2012; Tsai and
Nussinov, 2014).

An Atom-Scale View on Protein Structure

and Dynamics by Molecular Dynamics

Simulations

Molecular simulations applied to biology are a powerful
technique to integrate experimental studies, as attested by
the Nobel Prize in Chemistry awarded to Martin Karplus,
Micheal Levitt, and Arieh Warshel in 2013 for “the development
of multiscale models for complex chemical systems.” Among
the large array of simulation techniques that can cover the
definition of a multiscale approach, I will here focus on
atomistic classical molecular dynamics (MD) approaches. Other
approaches that are important component of a multiscale
approach are extensively covered in many review articles in the
field (such as Rapaport, 1998; Koehl and Levitt, 1999; Schlick,
2002; Warshel, 2003; Snow et al., 2004; Xia and Levitt, 2004;
Karplus and Kuriyan, 2005; Sherwood et al., 2008; Dror et al.,
2012; Saunders and Voth, 2013; Salvatella, 2014; Field, 2015) and
are not the focus of this perspective article.

Thirty-eight years are now passed since the first molecular
dynamics (MD) simulation of a biomolecule, i.e., the bovine
pancreatic trypsin inhibitor, was published (McCammon et al.,
1977) and even if that was a short and in vacuum simulation, that
work has a remarkable impact on the way in which we look at
biomolecular structures. Thirty-eight years later, MD simulations
are widespread tools that even experimentalists use to rationalize
or guide experiments and a search in Pubmed with “molecular
dynamics simulations” as a keyword provides more than 40,000
entries.

In MD methods, the system obeys to Newton’s equation
of motion and the interactions between atoms are described
using, as physical models, molecular mechanics force fields (for
a detailed discussion of the basis of MD see, for instance,
Rapaport, 1998; Schlick, 2002; Kukol, 2015). Atomistic MD
simulations have a unique strength of providing a description of
biomolecules on several timescales from the femtosecond (fs) to
the millisecond (ms), without renouncing to an atom-scale view
for both the biomolecules and the solvent (Dror et al., 2012).
They become over the last decades a useful method to integrate
experimental research in structural biology and protein science,
providing a “computational microscope” for proteins and their
complexes (Dror et al., 2012).

The Importance of the Force Field

Parameters: Improvements, Limitations

and Experimental Validation

The way in which we describe biomolecules in MD simulations
depends on the force field, that we use to describe the system.

Recently, new force fields have been developed that are in
good agreement with many NMR-derived parameters, describing
dynamics over different timescales (Best et al., 2012; Lindorff-
Larsen et al., 2012; Huang and MacKerell, 2013; Reif et al., 2013).
Despite the fact that the mathematical functional form of the
classical force fields is similar, the new-generation force fields
differ in parameters that are associated with a subset of very
important torsional angles.

Providing the community with good and accurate force fields
is an important task. Indeed, the risk to misinterpret the results
from our simulations and, as a consequence, to provide biological
models that are not meaningful is high. It is known that the even
slight changes in force-field parameters have a large impact on the
resulting conformational ensemble, as well as on the capability to
reproduce experimental parameters (Lindorff-Larsen et al., 2012;
Piana et al., 2014).

MD force fields, even if constantly improving, are still far
from being perfect (Piana et al., 2014). Indeed, there are several
aspects of protein dynamics that we are not able to simulate
with accuracy, or even in a reasonable way. For example,
currently employed classical MD force fields have been shown to
overestimate salt bridges (Debiec et al., 2014). This observation
can change how we interpret effects related to electrostatic
interactions in proteins. Salt bridges, especially when they are
in solvent-exposed positions, may be less populated in solution
than expected from the analysis of MD simulations or X-ray
structures, as convincingly argued by the NMR study of GB1
in solution (Tomlinson et al., 2009) or by the observation that
mutations of residues involved in salt bridges in thermophilic
or hyperthermophilic enzymes have often minor effects on
thermal stability (Jónsdóttir et al., 2014). Moreover, classical force
fields cannot accurately describe those interactions that need
polarizable effects to be explicitly taken into account. This is
crucial, for example, when we need to deal with metal-binding
proteins (Banci, 2003). MD force fields also encounter the risk
of over-compaction of the protein during the simulation, and
this is especially important when we aim at studying systems as
intrinsically disordered proteins (IDPs) or unfolded states (Knott
and Best, 2012; Lambrughi et al., 2012; Invernizzi et al., 2013;
Camilloni and Vendruscolo, 2014; Piana et al., 2014; Palazzesi
et al., 2015). We encounter the risk, for example, to attribute
a great importance to intramolecular interactions observed in
MD-derived IDPs ensembles, which are a consequence of the
highly compact states sampled during the simulation. Very
recently, solutions have been provided for MD simulations of
IDPs or unfolded states (Best et al., 2014; Piana et al., 2015). The
authors of these works showed that it is possible to recover the
compactness of IDPs or unfolded proteins observed, for example,
by small-angle X-ray scattering thank to improved solvent
models. This is an encouraging step toward a more accurate and
reliable atomistic description of IDPs by simulations.

A continuous exchange between experimental biophysical
techniques and MD is also needed.

Indeed, evaluation and validation of MD force fields cannot
rely only on the study of few proteins, we need to move
forward and test force fields on proteins with other folds. To
do this, a large amount of experimental data are necessary
for the comparison, along with methods to back-calculate
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from the simulated ensemble properties that can be measured
experimentally, for instance by NMR spectroscopy or SAXS
(Lindorff-Larsen et al., 2005; Lange et al., 2008; Kohlhoff et al.,
2009; Sahakyan et al., 2011; Li and Brüschweiler, 2012; Camilloni
and Vendruscolo, 2014). In this context, the usage of NMR
parameters to cross-validate a MD ensemble should become a
routine practice in computational biophysics.

The Coverage of the Conformational

Space in MD Simulations

On the other side, one of the main well-known issues of classical
atomistic MD is the sampling of the conformational space.
Indeed, during classical MD simulations, even if now we have
the hardware (Friedrichs et al., 2009; Kohlhoff et al., 2014; Shaw
et al., 2014) and software (Harvey et al., 2009; Pronk et al.,
2013) to improve the performance and simulate even millisecond
timescales, the protein encounters the risk to be trapped for
a long time in a local basin of the conformational space,
making the simulations not converging on even long timescales.
Conventional MD simulations thus allow us to provide a limited
description of protein dynamics since we neglect a major part of
the conformational landscape. Also, we should keep in mind the
risk to sample regions of the conformational space that are not
relevant for the dynamics that we observe experimentally when
a force field in bad agreement with the experimental data is used
(Lindorff-Larsen et al., 2012).

The sampling problem has been recently overcome, for
example, by enhanced-sampling techniques integrated to the
atomistic force field description that MD provides. A rich
portfolio of methods for enhancing sampling has been developed,
each of them relying on different philosophies (Piana and
Laio, 2007; Hritz and Oostenbrink, 2008; Sutto et al., 2012;
Abrams and Bussi, 2013; Bernardi et al., 2014; Do et al., 2014;
Papaleo et al., 2014; Spiwok et al., 2014; Barducci et al., 2015).
Among them, metadynamics has the potential to enhance the
sampling of rare transitions, which are often important in biology
(Laio and Gervasio, 2008). Metadynamics approaches proved
to be very accurate in recovering the conformational changes
experimentally observed on the micro-millisecond time scale,
which are the most important for many biological processes
(Berteotti et al., 2009; Palazzesi et al., 2013; Sutto and Gervasio,
2013; Papaleo et al., 2014). In metadynamics, the sampling is
enhanced along a properly selected set of reaction coordinates
(i.e., collective variables) that have to account for the slowest
degrees of freedom of the process of interest. It can be argued
that it is limited to the usage of few collective variables at the time
to ensure convergent simulations. The community, however,
did extensive efforts in the last years to mitigate this problem,
for instance, by reweighting procedures to calculate collective
variables not used directly to bias the simulations (Bonomi et al.,
2009) or by approaches as bias exchange metadynamics (Piana
and Laio, 2007), in which the replicas exchange between different
collective variables rather than in the temperature space.

The development of methods to predict NMR-derived
parameters that are probes of dynamics over different timescales

mentioned in the previous section, not only provides a solid
strategy to evaluate the quality of MD ensembles but it also allow
to simulate the protein integrating the atomistic description of
the MD force fields with the experimental data. In this context,
the usage of NMR parameters to restrain MD simulations
is becoming a popular application and provided encouraging
results toward a more complete picture of the complex dynamics
of proteins (Lindorff-Larsen et al., 2005; Tang et al., 2007;
Vendruscolo, 2007; Fenwick et al., 2011; Camilloni et al.,
2012, 2013; Camilloni and Vendruscolo, 2014). In some of
these approaches, the restraints are generally averaged over
multiple replicas to better reflect the intrinsic average nature of
the experimental data. These computational methods, among
the enhanced sampling techniques that can be integrated to
the atomistic MD force fields, have also the capability to
recover the dynamics observed experimentally in the millisecond
regime with high accuracy and without limiting the analysis
to a small subset of collective variables, as metadynamics
does.

When the Structural Effects Come from

Distal Site: Long-Range Communication in

Protein Dynamics and Network Analysis

Applied to MD Simulations

The network paradigm has been extensively used to describe
structure, topology and dynamics of proteins (Vishveshwara
et al., 2009; Atilgan et al., 2012; Collier and Ortiz, 2013; Csermely
et al., 2013; Feher et al., 2014). The intramolecular non-covalent
interactions in a protein are known to be crucial in determining
the protein structure and they can be collectively represented
in the form of a network, namely a Protein Structure Network
(PSN), where the residues are the nodes of the network connected
by edges that depend on their interaction strength. PSNs are
“small worlds” (Vendruscolo et al., 2002; Atilgan et al., 2004)
suitable for the fast transmission of conformational changes at
distal sites. Indeed, in the small world of PSNs, the residues can
communicate through the shortest paths available and multiple
paths with common nodes are used (Del Sol et al., 2009). Several
important issues, however, are, still unsolved when it comes to
network analysis of protein ensembles. We can identify paths of
communications between distal residues and we see that they
are modified by perturbations. Very often, however, the way in
which the native network of a protein is affected by a perturbation
is not easy to predict. We do not exactly know if the paths
that we calculate in a structural ensemble are really relevant for
functional dynamics, or even for the conformational changes
observed in the experiments. The community is collecting
some examples in favor of a relationship between the networks
observed in the protein structure and functional properties of
proteins (Whitley and Lee, 2009; Mariani et al., 2013; Van den
Bedem et al., 2013; Invernizzi et al., 2014; Papaleo et al., 2012b,
2014). We are, however, still far from being able to derive
straightforward information and predictions out of the protein
network. More efforts are certainly needed in this direction,
also considering the potential that these approaches can have in
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applications such as drug discovery and protein engineering (Kar
et al., 2010; Nussinov and Tsai, 2013).

Several methods are now available to identify networks
and paths of communication in protein ensembles, such as
the ones collected by MD simulations. The originally named
PSN approach relies on the description of atomic contacts
between residues that also feature correlated motions (Ghosh
and Vishveshwara, 2007; Seeber et al., 2011; Papaleo et al.,
2012a). It has become very popular also thanks to the availability
of tools to derive PSN from both experimental and simulated
ensembles (Seeber et al., 2011; Pasi et al., 2012; Bhattacharyya
et al., 2013; Tiberti et al., 2014). The metrics to estimate
correlated pairs of residues can range from Person correlation
to Mutual Information and often suffer of the disadvantage
in terms of convergence and statistical significance of the
data. Caution has thus to be taken in deriving correlation
maps from a MD ensemble and we should avoid in MD
applications to biological target to use just a unique average
correlation map from an entire MD trajectory. Other methods
have been recently proposed and applied to MD simulations,
relying on different philosophies, such as the usage of structural
alphabets (Pandini et al., 2013), the integration of topology,
correlated motions and communication propensity (Allain
et al., 2014), the notion of energetic coupling between protein
residues. (Ribeiro and Ortiz, 2014) or even the application
of concepts inspired by engineering in which the protein
is treated as a mechanical construct rather than a chemical
molecule (Stacklies et al., 2011) with the possibility to trace
communication even in stiff structures without evident atomic
displacement.

The contribution of the solvent in the modulation of long-
range communication in proteins should not be neglected and
the community still lacks successful approaches to analyze

the solvent-protein intermolecular networks, making this an
appealing field for future research.

All themethodsmentioned above often rely on the integration
between network analysis and MD simulations. It is thus
important to achieve a proper conformational sampling during
the simulations, verify the reproducibility of the results over
different replicates of the same system and o evaluate how long
the simulations have to be extended to get meaningful results
from network analysis. Indeed, long-range effects are often
associated to conformational changes occurring onmicrosecond-
millisecond timescales. Thus, the limitation inherent in the
sampling achieved by classical MD has to be kept in mind. We
recently showed that MD simulations of 100 ns or 1µs of the
same system provided similar average PSN results (Invernizzi
et al., 2014) but this account only for one case of study, making
any generalization very hard.

The Strength is in Unity: Integration of

Molecular Dynamics to Experimental

Observable

In conclusion, we have reached now a point in which both from
the computational and the experimental side, there are a large
amount of information on protein dynamics and techniques to
explore it on different timescale, as well as techniques to disclose
effects that can be mediated by distal communicating sites and
to actually describe these paths of communication at the atom-
scale. The strength is now in the unity, in the capability to
tightly integrate the computational and experimental approaches
combining their own capabilities and overcoming their own
limitations for a more detailed and accurate understanding of
protein dynamics at the atomic level.
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