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Understanding the folding of the human genome is a key challenge of modern structural

biology. The emergence of chromatin conformation capture assays (e.g., Hi-C) has

revolutionized chromosome biology and provided new insights into the three dimensional

structure of the genome. The experimental data are highly complex and need to be

analyzed with quantitative tools. It has been argued that the data obtained from Hi-C

assays are consistent with a fractal organization of the genome. A key characteristic of

the fractal globule is the lack of topological complexity (knotting or inter-linking). However,

the absence of topological complexity contradicts results from polymer physics showing

that the entanglement of long linear polymers in a confined volume increases rapidly with

the length and with decreasing volume. In vivo and in vitro assays support this claim in

some biological systems. We simulate knotted lattice polygons confined inside a sphere

and demonstrate that their contact frequencies agree with the human Hi-C data. We

conclude that the topological complexity of the human genome cannot be inferred from

current Hi-C data.

Keywords: chromosome organization, DNA knotting, equilibrium globule, Hi-C, BFACF, lattice models

1. Introduction

The 3-dimensional (3D) organization of the genome is a key functional component of the cell, and
errors in this organization are associated with a wide range of diseases (Mitelman et al., 2007).
Definitive, high-resolution visualizations of how genomes are packed have remained elusive, even
for the simplest organisms, since genomes are highly condensed (e.g., Holmes and Cozzarelli,
2000). The simplest models for understanding the complexity of 3D chromosome configurations
consist of random self-avoiding walks in confined volumes (also known as equilibrium globules).
Equilibrium globules capture features such as overall knotting and linking complexity, of the 3D
organization of the genome in dsDNA icosahedral bacteriophages and in trypanosomes but they
fail to predict detailed topological properties (Simpson and Da Silva, 1971; Liu et al., 1981; Wolfson
et al., 1985; Borst, 1991; Arsuaga et al., 2002, 2005; Blackstone et al., 2011; Diao et al., 2014). The
accuracy of this model for higher organisms remains to be investigated. Eukaryotes are widely
believed to possess topologically simple genomes, and to therefore deviate from the equilibrium
globule. Pioneering work in microscopy led to the discovery of chromosome territories (reviewed
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in Cremer et al., 2014) and to the proposal of new models for
genome organization (e.g., Kreth et al., 2004). These models
rejected an overall random organization of the genome in favor
of large [megabase (Mb) scale] or small [kilobase (kb) scale]
loops (Yokota et al., 1995; Münkel et al., 1999). Chromosome
Conformation Capture (CCC) methods such as 3C, 4C, and 5C
facilitate the study of long-range interactions between genetic loci
(Dekker et al., 2002; Dostie et al., 2006; Zhao et al., 2006). Other
methods, such as Hi-C ,TCC, and ChIP-3C, extend previous
CCC techniques to allow for genome-wide identification of
interactions (Fullwood and Ruan, 2009; Lieberman-Aiden et al.,
2009; Kalhor et al., 2011). These assays provide an unprecedented
opportunity for expanding our knowledge of 3D genomic
organization in higher organisms and potentially for addressing
questions of a topological nature. However, the data derived from
such assays are complex and their preprocessing, analysis and
interpretation remains challenging.

In the context of Hi-C analyses of human cell lines (described
in Section 2.1), Lieberman-Aiden et al. (2009) proposed the
fractal globule (Grosberg et al., 1988) as a possible model for
the 3D organization of the human genome. The validity of
this model for the 3D organization of the human genome
remains amatter of debate (Bohn andHeermann, 2010; Rousseau
et al., 2011; Barbieri et al., 2012). Fractal globules are self-
avoiding polygons characterized by the following attributes: non-
equilibrium, self-similarity, topologically trivial (i.e., unknotted)
and globularity (i.e., every linear section of the genome is locally
folded into globules). However, based on a variety of studies of
DNA confinement one could argue that topologically complex
conformations are highly likely (Liu et al., 1981; Ménissier et al.,
1983; Wolfson et al., 1985; Arsuaga et al., 2002; Shimamura
and Deguchi, 2002; Virnau et al., 2005; Micheletti et al., 2006;
Blackstone et al., 2011; Diao et al., 2012, 2014). It is unclear
if such topological complexity (e.g., knotting or interlinking of
chromosomes) is in agreement with available Hi-C data. We here
examine whether non-equilibrated knotted conformations can
be consistent with the data presented in Lieberman-Aiden et al.
(2009). To this end we implement an optimization algorithm
that generates globular structures with fixed topology. This
algorithm is based on the well established BFACF Monte-Carlo
method, described in Section 2.2 (Madras and Slade, 1996).
Our results show that knotted polygons some of which are
connected sums with multiple copies of a single non-trivial knot,
are consistent with the experimental data reported in Lieberman-
Aiden et al. (2009). We therefore suggest that current analyses
of Hi-C data are inconclusive as to the topological state of the
genome.

2. Methods

2.1. Hi-C Data and the Fractal Globule
In Hi-C experiments, genomic DNA is cross-linked and
linearized into fragments using restriction enzymes. The ends
of these crosslinked fragments are biotinilated and ligated.
Biotinilated junctions, termed contacts, are purified and
sequenced. The sequenced regions are mapped to their 1D
genomic position and their contact frequency is determined.
In this study we utilize the Hi-C data from human cell lines

presented in Lieberman-Aiden et al. (2009). There, log-log plots
of genomic distance vs. contact frequency revealed a linear
relationship with a slope of −1.08 in the range from 500 kb to
7 Mb. The authors used Monte-Carlo computer simulations
of fractal globules and of equilibrium globules to generate
3D reconstructions of the human genome. In the resulting
log-log plots each point is an average of over 500 simulated
conformations. The authors fitted a power law (in this case a
straight line) for loci between 10 and 100 simulated monomers
away. They found the slope corresponding to fractal globules
(−0.993) to be in better agreement with that from experimental
measurements (−1.08) than the slope for the equilibrium globule
(−1.508). The authors also computed the end-to-end distance
R(s) for a fragment of fixed contour length s averaged over 100
conformations and emphasized the differences between the two
models. The slope of the average of these distances for the fractal
globule was 0.27 while the slope for the equilibrium globule
was 0.175.

2.2. Simulation Data
2.2.1. The BFACF Algorithm
Our approach is based on, and extends, the BFACF algorithm.
BFACF is a dynamic Monte Carlo method acting on the space
of self-avoiding polygons in the simple cubic lattice (Z3) by
performing one of the three local moves described in Figure 1A

(Aragão de Carvalho and Caracciolo, 1983; Aragão de Carvalho
et al., 1983;Madras and Slade, 1996). The acceptance probabilities
for each move, denoted by p(0), p(2), and p(−2), are a function of
the fugacity per bond z, where 0 ≤ z ≤ z0. Within this range, the
choice of z determines the average length of the generated lattice
polygons. Going beyond this range causes the average polygon
length to diverge. In BFACF the equilibrium conformations are
sampled from a Boltzmann distribution (reviewed inMadras and
Slade, 1996), and the ergodicity classes are the knot types (Janse
van Rensburg and Whittington, 1991).

2.2.2. Generation of BFACF Globules
Inspired by the decondensation process that occurs at the end
of metaphase and by the work of Rosa and Everaers (2008)
and Lieberman-Aiden et al. (2009), we modified BFACF as an
annealing algorithm to generate globules that filled a sphere
of fixed radius r = 10.5 lattice units. We generated initial
conformations by randomizing a polygon with minimal step
number and the desired topology (Ishihara et al., 2012) using
107 BFACF steps (with z = 0.1). We expanded the initial
conformations to occupy 96% of the lattice vertices contained
within a sphere of radius 11 (as in Lieberman-Aiden et al.,
2009). Each annealing procedure was defined by a triplet
[p(−2), p(0), p(2)] (Table 1). Given that the three parameters
determine the rate at which the polygon grows within the
confined region, we hypothesize that growth requires that
favoring p(0) over p(-2) will take longer to fill the sphere. A total
of 10,000 conformations were generated for each combination
of parameters. We refer to these conformations as BFACF
globules. For each generated conformation we estimated the
contact probability between regions along the genome. A contact
between two sites was scored as 1 for nearest neighbors in the
lattice (i.e., points at distance 1) and as 1/2

√
2 for diagonal
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FIGURE 1 | Computational methods used to generate BFACF

globules. (A) BFACF moves: the 0-move (left) does not change the length of

the conformation; the (+2)- and (-2)-moves (right) can add/remove an edge.

(B) From left to right we illustrate a trefoil knot 31 smoothly embedded in R3,

a minimal step lattice realization of 31, and the resulting BFACF globule. This

BFACF globule is a 4000-step embedding of the knot within a sphere of

radius 10.5 obtained using the modified BFACF algorithm described in

Section 2. (C) Log-log plot of the contact probability as a function of contour

length. The data are obtained as an average over 10,000 sampled BFACF

globules with knot type 31. The slope of the linear fit is in excellent agreement

with the experimental data of Lieberman-Aiden et al. (2009). (D) Contact

probability curves for connected sums of trefoils (31 )n for

n = 1,20,40,60,100, with slopes −1.085± 0.003,−1.079±
0.003,−0.919± 0.011,−0.656± 0.013,−0.558± 0.035, respectively.

adjacencies (points at distance of
√
2). There are different

definitions and possibilities to compute the contact probability
between two loci. We here define the contact probability between
two sites at a fixed genomic distance by dividing the number of
all the contacts at that distance by the total number of occupied
vertices. The mean end-to-end distance for each conformation
was obtained by computing the distance between pairs of
points in the globule at a fixed genomic distance. To avoid
any biases introduced by the initial conformation we used the
BFACF algorithm (with z = 0.1) to generate different initial
conformations for each run. The process of generating BFACF
globules is illustrated in Figure 1.

3. Results

Simulation results are shown in Table 1. The data are organized
by columns in the following order: types of knots analyzed;
combination of parameters [p(−2), p(0), p(2)] used for each knot
type; slope of the contact probability curve in the range [9, 55] (±
standard error σcontact); 95% confidence intervals for the contact
probability data; and slope of the end-to-end distance R(s)±σR(s).
The first three rows show the experimental and simulated data in
Lieberman-Aiden et al. (2009).

To determine the combination of parameters
[p(−2), p(0), p(2)] that could best reproduce the Hi-C data,
we selected a randomly generated unknotted conformation.
The values of [p(−2), p(0), p(2)] were systematically modified,
starting with (0.25, 0.25, 0.25) as indicated in Table 1, rows
4–15. Note that [1 − (p(−2) + p(0) + p(2))] is the probability

of remaining in the current configuration. One can make a
few qualitative observations on the effects of the annealing
parameters [p(−2), p(0), p(2)]. First, the slope for R(s) remains
almost constant, near the value estimated for the fractal globule
(≈ 1

3 ) (Lieberman-Aiden et al., 2009), for a wide range of
parameters. This suggests that it is the local folding, and not the
knotted state of the conformation, that largely determines the
mean end-to-end distance. Second, as p(2) increases, changes
in the slopes are negligible for both the contact probability and
R(s). Similarly, changes in slope when increasing p(0) were
small for contact probability (and p(0) = 0.1, 0.2, 0.3) and for
R(s). At p(0) = 0.40 the contact probability slope was closer
to that observed for the fractal globule (−0.974 ± 0.004). Last,
we investigated the effect of p(−2). In this case, we observed
an overall increase of the slope (decrease in absolute value) for
p(−2) ∈ {0.1, 0.2, 0.3} with maximum variations of ≈ 0.036
and ≈ 0.0038 for contact probability and R(s), respectively.
The combination (0.40, 0.25, 0.25) resulted in a sharp change
of contact probability slope with values closely matching the
equilibrium globule.

The parameters that better minimized the difference between
the experimentally observed slope and the simulated slope
for the unknotted conformation were (0.10, 0.25, 0.25). These
parameters were then used to generate BFACF globules with knot
types: torus knots (31, 51, and 91), twist knot (52), and connected
sums of n trefoils, for n = 20, 40, 60, 100, which are denoted by
(31)n = 31#31#...#31. We refer the reader to Murasugi (1996)
for an introduction to knot theory, including the definition of
the connected sum, and to Brasher et al. (2013) for a table

Frontiers in Molecular Biosciences | www.frontiersin.org 3 August 2015 | Volume 2 | Article 48

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Arsuaga et al. On the topological structure of the human genome

TABLE 1 | Combination of parameters p(−2),p(0),p(+2) used to define the BFACF globules.

p(-2) p(0) p(2) Contact Prob. ± σcontact Confidence interval R(s) ± σR(s)

Fractal globule −0.993 0.2763

Equilibrium globule −1.508 0.1753

Experimental data −1.08

Unknot 01 0.25 0.25 0.25 −1.0688± 0.003 [−1.075, −1.063 ] 0.3559± 0.002

0.25 0.25 0.30 −1.0670± 0.004 [−1.075, −1.059 ] 0.3555± 0.002

0.25 0.25 0.40 −1.0672± 0.003 [−1.073, −1.061 ] 0.3553± 0.002

0.25 0.25 0.50 −1.0673± 0.003 [−1.073, −1.061 ] 0.3553± 0.002

0.25 0.10 0.25 −1.0712± 0.003 [−1.077, −1.065 ] 0.3558± 0.002

0.25 0.20 0.25 −1.0690± 0.003 [−1.075, −1.063 ] 0.3554± 0.002

0.25 0.30 0.25 −1.0615± 0.003 [−1.067, −1.055 ] 0.3546± 0.002

0.25 0.40 0.25 −0.9742± 0.004 [−0.983, −0.966 ] 0.3439± 0.003

0.10 0.25 0.25 −1.0843± 0.003 [−1.091, −1.078 ] 0.3565± 0.002

0.20 0.25 0.25 −1.0764± 0.003 [−1.083, −1.070 ] 0.3558± 0.002

0.30 0.25 0.25 −1.0491± 0.003 [−1.055, −1.043 ] 0.3531± 0.002

0.40 0.25 0.25 −1.1545± 0.007 [−1.168, −1.141 ] 0.4105± 0.003

Trefoil 31 0.10 0.25 0.25 −1.0848± 0.003 [−1.091, −1.078 ] 0.3584± 0.001

5-torus knot 51 0.10 0.25 0.25 −1.0862± 0.003 [−1.093, −1.080 ] 0.3593± 0.001

5-twist knot 52 0.10 0.25 0.25 −1.0842± 0.003 [−1.091, −1.078 ] 0.3596± 0.001

9-torus knot 91 0.10 0.25 0.25 −1.0860± 0.003 [−1.093, −1.079 ] 0.3606± 0.001

20 trefoils (31 )20 0.10 0.25 0.25 −1.0792± 0.003 [−1.086, −1.073 ] 0.3514± 0.002

40 trefoils (31 )40 0.10 0.25 0.25 −0.9190± 0.011 [−0.941, −0.897 ] 0.3045± 0.005

60 trefoils (31 )60 0.10 0.25 0.25 −0.6556± 0.013 [−0.682, −0.629 ] 0.2590± 0.005

100 trefoils (31 )100 0.10 0.25 0.25 −0.5584± 0.035 [−0.628, −0.489 ] 0.1952± 0.002

We report on the slopes of the contact probability curves and the mean end-to-end distance curve. The standard error is included in columns 2 and 4. In addition we provide 95%

confidence intervals for the slope of each contact probability curve. Parameter choices are shown in column 2. Changes in parameters from one row to the next are in bold.

with relevant knot nomenclature. As Table 1 shows, the same
combination of parameters gave very good approximations for
the different knot types tested, including connected sums of up to
20 trefoils; beyond this value the slope of the contact probability
decreased in absolute value, reaching values near−0.56.

Next we considered the knotted portion of each BFACF
globule. Our preliminary data suggest that the knots are not
localized. We analyzed two sets of 104 conformations for knots
31 and 91 obtained with the optimal parameter combination
(0.10, 0.25, 0.25). We cut each knot at a pair of points at distance
1 from each other and excised as much of the conformation as
possible while still retaining the initial topology. The procedure
was repeated multiple times on each conformation. The smallest
knotted arc had 1012 edges for 31 (i.e., 25.3% of the total length)
and 1452 edges for the 91 (i.e., 36.3% of the total length). Note
that a minimal 31 knot in Z3 has 24 edges (Diao, 1993) and thus a
minimal 31 within the BFACF globule would occupy 0.6% of the
total length. In a connected sum, a minimal (31)n can be tied with
20n lattice steps thus occupying 0.5n% of the total length, e.g., a
connected sum of 40 trefoils can occupy as few as 20% of the total
length of the BFACF globule.

4. Discussion

The widespread and growing interest in the experimental
characterization of 3D chromatin structure is driven by the

underlying hypothesis that structure is tightly related to
function. In particular, gene regulation and cancer-driving
gene fusions are believed to be strongly influenced by the
3D organization of the genome (Mitelman et al., 2007).
Generating high resolution reconstructions of genome
architecture based on Hi-C data is the subject of much
current research but involves many challenges including
computational bottlenecks (e.g., Segal et al., 2014; Zhang et al.,
2013).

Lieberman-Aiden et al. (2009) proposed that the fractal
globule model, initially developed in Grosberg et al. (1988),
provides an explanation for the folding of the human genome at
the megabase scale. The authors chose the equilibrium globule as
a competitive chromatin model. Based on comparing the fractal
globule with the equilibrium globule, which produces mostly
knotted conformations, the authors concluded that “fractal
globules are an attractive structure for chromatin segments
because they lack knots”(Lieberman-Aiden et al., 2009). Our
study however shows that knotted conformations are consistent
with the currently available Hi-C data. Furthermore, determining
whether the knots in BFACF globules are localized or spread is
important (e.g., Tubiana et al., 2011). Preliminary results on 31
and 91 suggest that the knotted portion of the BFACF globules is
not localized. If this is a general trend then it implies that large-
scale topological complexity is compatible with Hi-C data. We
will explore this question, as well as the comparison to other
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models (Yokota et al., 1995; Münkel et al., 1999) in a future
publication.

The topology of genome is a problem that we are just
beginning to understand. Studies on lower organisms such as
viruses and trypanosomes have revealed high levels of topological
knotting and interlinking. In fact, theoretical studies of different
polymer models have widely shown that the knotting and linking
probability grows rapidly upon confinement (Arsuaga et al., 2002;
Virnau et al., 2005; Micheletti et al., 2006; Blackstone et al., 2011;
Tubiana et al., 2011). It is believed that organisms have evolved
structural mechanisms that help reduce topological complexity,
given that the action of topoisomerases alone would not be
sufficient for this purpose (Sikorav and Jannink, 1994). However,
the existence of knots or links in the genomes of higher organisms
remains to be determined. The main objective of this work is not
to argue for topological complexity in mammalian genomes. If
there exist knots in the genome they are likely to be transient
structures, however some of these knotted conformations could
serve a biological purpose in gene regulation since topological
complexity is associated with decreased biological function.

Motivated by the results and conclusions in Lieberman-
Aiden et al. (2009), we have here performed an analysis of
the effects of knotting on the slope of the contact probability
of a polygon in the simple cubic lattice. We have used the
transition probabilities of the BFACF algorithm to dynamically
generate non-equilibrated conformations. Our results show that
combinations of the annealing parameters [p(−2), p(0), p(2)]
on a variety of knots can reproduce the contact data observed

experimentally, indicating that current theoretical analyses of Hi-
C data are insufficient to determine the topological structure of
the genome.

4.1. Data Sharing
Computer programs used in this work are available through the
Knotplot software. Data generated in this study are available
upon request from the authors of the paper.
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