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Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their

active redox centers have heme, cysteine thiols, selenium, manganese, and other

chemical moieties. Peroxidases and their mimetic systems have several technological

and biomedical applications such as environment protection, energy production,

bioremediation, sensors and immunoassays design, and drug delivery devices. The

combination of peroxidases or systems with peroxidase-like activity with nanostructures

such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods

and others is often an efficient strategy to improve catalytic activity, targeting, and

reusability.

Keywords: antioxidants, antioxidant enzymes, improved and reusable peroxidase activity, self-assembly, particles,

nanotubes, micelles

The Oxygen Paradox in Metabolism and the Role of Peroxidases

The majority of complex organisms on Earth require oxygen for their existence. The use of oxygen
in metabolism allows a high-energy output accompanied of the deleterious oxygen effects due
to oxygen partial reduction (Halliwell and Gutteridge, 2007). The deleterious effects of oxygen
include the oxidative damage to essential biomolecules in the cell such as DNA, proteins and
lipids (Sies, 1997; Vertuani et al., 2004). Oxidants are normal products of the aerobic metabolism
that reduces molecular oxygen to water. The escape of electrons from the respiratory chain
produces the superoxide anion radical, which can form hydrogen peroxide. Hydrogen peroxide
can yield the hydroxyl radical, the most reactive pro-oxidant species (Augusto and Miyamoto,
2011). Organic peroxides also derive from the oxidation of lipids and proteins (Sies, 1997).
The reactive oxygen species (ROS) are peroxides and free radicals derived from oxygen that
are highly reactive toward biomolecules. Free radicals are any atom or molecule that contains
unpaired electrons. Hence, as part of the defense against the ROS, organisms developed an
intricate network of antioxidants that inhibits the oxidation of other molecules by terminating
the reactions leading to the production of free radicals. Antioxidants can remove the free radicals
intermediates by oxidizing themselves so that they are often reducing agents such as poly-phenols,
tocopherols, carotenes, vitamin A, ubiquinols, thiols, ascorbic acid, and others (Sies, 1997). The
antioxidants act in concert with the enzymatic antioxidant defense represented by superoxide
dismutases, catalases, glutathione peroxidases, and others (Sies, 1997). An imbalance between
oxidants and antioxidants in favor of the oxidants is termed “oxidative stress.” Oxidative stress
has been related to the development of several diseases such as Alzheimer’s disease (Christen, 2000;
Nunomura et al., 2006), diabetes (Giugliano et al., 1996; Davi et al., 2005), rheumatoid arthritis
(Hitchon and El-Gabalawy, 2004), Parkinson’s disease (Wood-Kaczmar et al., 2006), and neuronal
degeneration (Cookson and Shaw, 1999). For example, low density-lipoprotein (LDL) oxidation
triggers atherosclerosis leading to cardiovascular disease (Aviram, 2000; Van Gaal et al., 2006).
Oxidative damage in DNA can cause cancer (Maynard et al., 2009; Khan et al., 2010). The dietary
intake of vitamins E and C, and β-carotene can lower the risk of Alzheimer’s disease (Li et al., 2012).
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However, ROS have also useful cellular functions such as redox
signaling (Collins et al., 2012; Reczek and Chandel, 2014;
Sies, 2014) or defense against invasive pathogens (Delattin
et al., 2014). Hydrogen peroxide (produced from reactions
catalyzed by the NADPH oxidases or complex III of the
mitochondrial respiratory chain) is a messenger under fine
control of peroxiredoxins, glutathione peroxidases and catalase
signaling major processes such as cell proliferation, tissue repair,
differentiation, inflammation, and aging (Sies, 2014). The main
ROS involved in redox signaling is hydrogen peroxide; however,
other forms of ROS also contribute as the nitric oxide (NO)
generated by NO synthases, which diffuses into mitochondria
and modulates mitochondrial function by competing with O2 at
respiratory complex IV thereby slowing respiration (Collins et al.,
2012). ROS are not only a toxic by-product of mitochondrial
respiration but also play a role in cellular signaling as for example
the role of H2O2 in thiol oxidation modulating the function
of proteins (Collins et al., 2012; Reczek and Chandel, 2014).
However, the mechanism by which the ROS signal reaches
its target protein in the face of highly reactive and abundant
antioxidants in the cell is not fully understood (Reczek and
Chandel, 2014). The function of antioxidant systems is not the
complete removal of oxidants, but instead the optimization of
their intracellular concentrations (Rhee, 2006). Against fungus,
azoles, echinocandins and liposomal amphotericin B, besides
their specific mode of action, also induce ROS in planktonic and
biofilm cells (Delattin et al., 2014). The three main classes of
bactericidal antibiotics, namely, the quinolones, the beta-lactams,
and the aminoglycosides also induce ROS (Delattin et al., 2014).

The protection available for cells under oxidative stress comes
from natural antioxidants and several antioxidant enzymes
(Davies, 1995; Sies, 1997). Superoxide released by oxidative
processes yields firstly the hydrogen peroxide in a step
catalyzed by superoxide dismutase. Then, the second step is
the reduction of hydrogen peroxide by catalases and other
peroxidases. Since these enzymes play in concert, it is often
difficult to ascertain their individual role in the antioxidant
defense. The generation of transgenic mice deficient in just one
antioxidant enzyme has been a major approach to get further
insight on the individual role of each peroxidase (Ho et al.,
1998).

The peroxidases catalyze redox reactions involving peroxides
cleavage (Mhamdi et al., 2010; Al Ghouleh et al., 2011; Hall
et al., 2011; Nantes et al., 2011; Mishra and Imlay, 2012; Rhee
et al., 2012; Shao, 2012; Whittaker, 2012; Zámockı et al., 2012;
Rodríguez-Rodríguez et al., 2014). The molecular evolution
of peroxidases required for efficient removal of peroxides
led to three metallo-enzyme families that differ in oligomers
organization, monomer architecture, active site geometry, and
catalytic residues. They are: (1) the highly conserved structures
of mono-functional heme catalases found in all domains of
life; (2) the bi-functional catalase-peroxidases, members of a
protein family predominantly present among eubacteria and
archaea with only two evolutionary branches found in eukaryotic
organisms; (3) the non-heme manganese catalases, a small
protein family with old roots, only present in bacteria and archaea
(Zámockı et al., 2012). These non-heme manganese catalases

represent an environmentally important alternative to heme-
containing catalases in antioxidant defense. Manganese catalases
contain binuclear manganese complexes in their catalytic site
rather than a heme, and cycle between Mn(2)(II,II) and
Mn(2)(III,III) states during turnover (Whittaker, 2012). Plants
contain several types of H2O2 –metabolizing proteins; catalases
are highly active and do not require cellular reductants as they
primarily catalyze a dismutase reaction (Mhamdi et al., 2010).
In mammalian cells, six peroxiredoxins isoforms expressed
and localized to various cellular compartments function as a
peroxidase and contain an active site cysteine that can be
oxidized by H2O2 (Rhee et al., 2012). The peroxiredoxins use
a conserved Cys residue to reduce peroxides and are highly
expressed in organisms from all kingdoms with 72 structures
already determined covering much of the diversity of the
family (Hall et al., 2011). Other peroxidases play major roles
in cardiovascular, lung and brain diseases (Al Ghouleh et al.,
2011; Shao, 2012; Rodríguez-Rodríguez et al., 2014) such as
myeloperoxidase, a heme enzyme secreted by human artery
wall macrophages which oxidizes apolipoprotein A-I (apoA-
I), the major HDL protein, diminishing apoA-I ability to
promote cellular cholesterol efflux. The oxidation of specific
tyrosine and methionine residues in apoA-I contributes to
its loss of activity (Shao, 2012). Peroxiredoxin 6 (Prdx6)
is the only mammalian 1-Cys member of the Prdx family.
This peroxidase uses the antioxidant tripeptide glutathione
(GSH) instead of thioredoxin as the physiological reductant
to reduce the oxidized sn-2 fatty acyl group of phospholipids
(peroxidase activity) or to hydrolyze the sn-2 ester (alkyl) bond
of phospholipids (phospholipase A(2) [PLA(2)] activity). This
bi-functional protein has separate active sites for peroxidase
and phospholipase PLA activities. These activities are dependent
on binding of the protein to phospholipids at acidic pH and
to oxidized phospholipids at cytosolic pH (Fisher, 2011). The
structures of different peroxidases and their redox centers is on
Figure 1.

Applications for Peroxidases and their
Assemblies

Horseradish peroxidase (HRP) is a much studied and versatile
peroxidase with about 600 articles presently available on its
assemblies. HRP certainly is the analyst’s friend (Ryan et al., 1994;
Krainer and Glieder, 2015). This oxidoredutase accepts a wide
variety of hydrogen donors to reduce H2O2, a property applicable
to a range of colorimetric, fluorimetric, chemiluminescent, and
electrochemical and immuno assays based on HRP activity.
However, HRP isolation and purification gives low yields
and recombinant HRP obtained in the yeast Pichia pastoris
is often hyper-glycosylated though an unglycosylated, active
and stable HRP variant is now available from site-directed
mutagenesis (Capone et al., 2014). The many difficulties inherent
to HRP production and purification (Spadiut and Herwig,
2013) essentially emphasize the importance of its functional
immobilization in nanostructures for improving activity and
allowing reusability.

Frontiers in Molecular Biosciences | www.frontiersin.org 2 September 2015 | Volume 2 | Article 50

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Carmona-Ribeiro et al. Nanostructures for peroxidases

FIGURE 1 | Structural diversity of peroxidases and their redox centers. (A) The glutathione peroxidase (1GP1-SeH) monomer and its selenium

cysteine SeCys-35 (Epp et al., 1983). (B) The manganese peroxidase (1YYD) monomer from Phanerochaete chrysosporium and its heme iron plus

Mn3+ (Sundaramoorthy et al., 2005). (C) The dimeric catalase (1DGB) structure from human erythrocytes and its heme iron (Putnam et al., 2000).

(D) The decameric peroxiredoxin (1QMV) from human erythrocytes and its cysteine thiol residues (Schröder et al., 2000). The PDB ID for each

protein is inbetween parentheses.

The water-soluble heme-containing peptides obtained by
proteolytic digestion of cytochrome c are the microperoxidases
(MP) often used to explore aspects of the chemistry of iron
porphyrins, and as mimics for some reactions catalyzed by
peroxidases (Prieto et al., 2006; Araujo et al., 2007; Marques,
2007). MP are not only model compounds but also useful
molecules for applications in biosensors as electron carriers,
photoreceptors, microzymes, and drugs. In a systematic study
to define the minimal requirements for covalent attachment of
hemes to c-type cytochromes, some artificial MPs were produced
in vivo by exploiting the secretion and cyt c apparatuses of E.
coli (Braun and Thöny-Meyer, 2004). MP-11, a MP with 11
aminoacids residues, assembles to boron nitride nanotubes which
enhance catalysis due to a strong electron coupling between
the active center of MP-11 and the nanotube showing that
nanostructures often modulate peroxidases activity (Li et al.,
2014b). The assembly of peroxidases into micelles (Prieto et al.,
2006), reversed micelles (Das and Das, 2009; Maiti et al.,
2012; Das et al., 2013), liposomes (Dotsikas and Loukas, 2012),
supported bilayers (Leão-Silva et al., 2011), lipid monolayers at
the air-water interface (Schmidt et al., 2008), organic, inorganic,
metallic, magnetic or composite nanoparticles (Xu and Han,
2004; Kim et al., 2005; Araujo et al., 2007; Khaja et al.,
2007; Silva et al., 2007; Chen et al., 2011; Klyachko et al.,
2012; Li et al., 2012; Pan et al., 2013; Duan et al., 2014),

hydrogels and microgels (Nakashima et al., 2009; González-
Sánchez et al., 2011; Wu et al., 2012; Bruns et al., 2013),
nanotubes (Li et al., 2014b), multilayers and nanostructured
films (Kim et al., 2010; Pallarola et al., 2012; Cortez et al.,
2013) has been explored for important applications such as
immunoassays design (Marquette and Blum, 2009; Dotsikas
and Loukas, 2012), drug delivery (Allen et al., 2011; Kotchey
et al., 2013), cancer therapy (Ibañez et al., 2015), environment
protection and bioremediation (Bansal and Kanwar, 2013; Duan
et al., 2014), construction of sensors (Xu and Han, 2004; Kim
et al., 2005; Chen et al., 2011; Pallarola et al., 2012; Chen and
Chatterjee, 2013; Cortez et al., 2013), and energy production
(Ramanavicius et al., 2005; Ramanavicius and Ramanaviciene,
2009). HRP adsorbs onto silicon wafers providing reusable films
for emulsion polymerization (Naves et al., 2007) and is useful
for tissue engineering applications by forming hydrogels in
situ via crosslinking (Bae et al., 2014) and for atom transfer
radical polymerization (Bruns et al., 2013). Although the enzyme-
catalyzed polymerizations are environmentally advantageous, the
high cost, large quantity of enzymes required for polymerization
and formation of relatively low molecular weight polymers
obstruct their employment in the industry (Albertsson and
Srivastava, 2008). Catalase and superoxide dismutase modified
by poly (ethylene glycol) (PEG) or encapsulated in PEG-coated
liposomes have increased bioavailability and enhanced protection
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of the enzymatic activity in animal models. Pluronic-based
micelles formed with antioxidant enzymes or PEG copolymers
also protect catalase and superoxide dismutase from proteolysis
improving delivery of these enzymes to vascular endothelial cells.
Liposomes, protein conjugates and magnetic nanoparticles also
successfully deliver these antioxidant enzymes to sites of vascular
oxidative stress (Hood et al., 2011). Nanoparticles of polyethylene
glycol and poly-lactic/poly-glycolic acid encapsulate catalase
and HRP into ∼300 nm diameter nanospheres combating the
oxidative stress both in cell culture and in animals (Dziubla
et al., 2008). Different cross-linking strategies and certain
reaction conditions of pH and polycation/proteincharge ratio
allow functional immobilization of superoxide dismutase (SOD1)
and catalase in cross-linked nanoparticles made of cationic
block copolymers such as polyethyleneimine-PEG (PEI-PEG) or
poly(L-lysine)-PEG (Klyachko et al., 2012). In mice, 125I-labeled
SOD1-containing nanoparticles display increased stability in
blood and in the brain, and improved accumulation in brain
tissues, in comparison with non-cross-linked complexes and
native SOD1 (Klyachko et al., 2012). Catalase self-assembles in
a cationic block copolymer of PEI-PEG yielding stable complexes
with ca. 60–100 nm in size that retain antioxidant activity with
negligible cytotoxicity (Batrakova et al., 2007). These particles
are rapidly, in 40–60min, taken up by bone-marrow-derived
macrophages and retain catalytic activity for more than 24 h
being released in active form whereas “naked” catalase is quickly
degraded; about 0.6% of the injected dose locates in the brain
(Batrakova et al., 2007). Catalytically active enzyme aggregates
of HRP cross-linked by glutaraldehyde yield 83% of activity
recovery when compared with the native enzyme; the advantage

of this procedure is the possibility of including other stabilizing
proteins in the aggregate such as albumin (Šulek et al., 2011).
Eventually HRP immobilization by physical adsorption can be
more effective than immobilization by crosslinking (Tatsumi
et al., 1996). Figure 2 shows examples of immobilized HRP
by entrapment in an inorganic, flower-like inorganic matrix
(Figure 2A), or by covalent attachment to hybrid particles
(Figure 2B).

A strategy receiving a wide spread interest is the use
of peroxidase mimetic systems with intrinsic peroxidase-like
activities associated to reliable reactivity and facile production
and storage. Hemin, hematin and porphyrin (Johnstone et al.,
1997; Wang et al., 2007; Griffith et al., 2012), magnetic
nanoparticles and nanocomposites (Dai et al., 2009; Park et al.,
2011; Gao et al., 2013), metals and alloys (Bernsmann et al.,
2011; Sun et al., 2013; Zhou et al., 2013), metal oxides and
sulfides (Asati et al., 2009; He et al., 2012; Hong et al., 2013),
carbon materials (Shi et al., 2011; Li et al., 2013), and others
(Wang et al., 2013) have been described and praised for their
intrinsic peroxidase-like activities in a variety of assays. For non-
aqueous applications, the peroxidase-mimetic materials are more
convenient and versatile than the natural enzymes. For example,
tungsten carbide (WC) as catalyst for electron-transfer reactions
has been extensively investigated for applications in fuel cells
and oxygen reduction (Palanker et al., 1976; Rosenbaum et al.,
2006), because it exhibits catalytic properties similar to those of
noble metals (Levy and Boudart, 1973). Recently, the intrinsic
catalytic activity of tungsten carbide nanorods toward typical
peroxidase substrates was described in comparison to the one
of natural HRP leading to the demonstration that the WC NRs

FIGURE 2 | Nanostructures for immobilizing and reusing peroxidases. (A) Entrapment of HRP in inorganic matrix of flowers like nanomaterial (Wang et al.,

2014). (B) Covalent attachment of HRP on NH2 –modified Fe3O4/SiO2 magnetic nanoparticles (Chang and Tang, 2014).
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have excellent catalytic behavior in various organic media, are
stable and reusable representing a promising peroxidase mimic
(Li et al., 2014a).

Layer-by-layer deposition of anionic and cationic
polyelectrolytes plus catalase—gold nanoparticles composites
originates multilayers onto electrodes that effectively permit
electron transfer between catalase and the electrode at high
loading of the composites (Kim et al., 2010). Following a similar
approach the polyelectrolyte DNA organizes an enzyme cascade
of discrete glucose-oxidase and HRP pairs with controlled
inter-enzyme distance resulting in enhanced enzymatic activity
at short distances (Fu et al., 2012). DNA also directs HRP
immobilization onto porous SiO2 thin films resulting in high
enzymatic activity (Shtenberg et al., 2012). Peroxidases degrade
carbon nanotubes in vitro and in vivo so that carbon-based
nanocarriers specifically designed to target organs and cells
can deliver their cargo, and biodegrade via peroxidase-driven
mechanism, a really attractive therapeutic delivery option in
nanomedicine (Shvedova et al., 2012; Kotchey et al., 2013).
Similarly, peroxidases can also release the hydrophobic cargo of
poly (propylene sulfide) nanoparticles in the presence of H2O2

(Allen et al., 2011).
Remediation of phenol waste water by immobilized HRP

in magnetic nanoparticles involves the oxidation of phenols
in the presence of H2O2 and the reaction of the phenoxy
radicals with each other in a non-enzymatic process forming
polymers; the polymers are then removed by precipitation with
salts or condensation and the reusable magnetic nanoparticles
with improved HRP activity are rescued (Duan et al., 2014). The
importance of peroxidases for treating and removing pollutants
such as phenols and halogenated phenols, polycyclic aromatic
hydrocarbons (PAH), endocrine disruptive chemicals (EDC),
pesticides, dioxins, polychlorinated biphenyls (PCB), industrial
dyes, and other xenobiotics has been recognized and recently
reviewed (Bansal and Kanwar, 2013). The recent efforts on the
rational design of supramolecular hemoprotein assemblies have
also been recently reviewed (Oohora and Hayashi, 2014).

For biomedical and technological applications, peroxidases in
nanostructures represent a rapidly growing area for innovative
research improving enzyme activity, protection, targeting, and
reusability. Free peroxidases have some inherent disadvantages
including loss of catalytic activity in solution during the reaction,
high cost and lack of reusability. To overcome these issues,
several supports including various nanomaterials for instance
metal and magnetic nanomaterials, polymer based nanofibers,

silicon and carbon based nanomaterials, have been used for
peroxidases immobilization (Lei et al., 2002; Dulay et al., 2005;
Sheldon, 2007; Wang et al., 2007; Lee et al., 2009; Cao et al., 2010;
Zhu et al., 2013). In general, enhancement in enzyme activity
and stability is desirable for given reactions or applications. A
decrease in activity compared to the one of the free enzyme
is due to the following reasons: (1) use of organic solvent for
the immobilization procedure, which deactivates some parts of
enzyme; (2) partially blocking of enzyme active sites during
the immobilization process, which makes enzyme less accessible
to the substrate; (3) unfavorable enzyme conformations on
external supports; (4) mass-transfer limitations between enzymes
and substrates (Luckarift et al., 2004; Kim et al., 2008; Ge
et al., 2009). Nanoparticles and other nanomaterials have been
the driving force behind the development of sophisticated
biosensors in recent years (Bhakta et al., 2015). The use of metal
nanoparticles, such as gold and platinum, results in improved
rate of electron transfer at the interface. Nanofilms also detect
several analytes and several are useful in the rapidly growing
biosensors area. The tunable feature of nanotubes also represents
a way for improving the analytical performance of biosensors.
The importance of nanomaterials is growing as the demand for
quick, selective, inexpensive, stable, and reproducible analytical
devices continues to surge. Bioactivity and compatibility of the
enzyme/material nanocomposites is a critical consideration to
further the applicability of biosensors (Bhakta et al., 2015).
A immobilization approach to obtain protein-inorganic hybrid
nanoflowers greatly increases enzyme activity and stability (Ge
et al., 2012). HRP and Fe2+ ions together yield flowerlike hybrid
nanostructures, the hybrid nanoflowers (HNF) that enhance
HRP activity by 5–7 times when compared to free HRP; this
is due to high local HRP concentration, appropriate HRP
conformation, less mass transfer limitations, and Fe2+ activation
(Ocsoy et al., 2015). Therefore, peroxidases and their mimetic
systems in nanostructures (like the nanoflowers) represent a
flourishing field for biomedical and technological research.
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