
REVIEW
published: 09 October 2015

doi: 10.3389/fmolb.2015.00057

Frontiers in Molecular Biosciences | www.frontiersin.org 1 October 2015 | Volume 2 | Article 57

Edited by:

Pierre Goloubinoff,

University of Lausanne, Switzerland

Reviewed by:

Stefan G. D. Rüdiger,

Utrecht University, Netherlands

Eileen M. Lafer,

University of Texas Health Science

Center at San Antonio, USA

*Correspondence:

Nadinath B. Nillegoda

and Bernd Bukau,

Zentrum für Molekulare Biologie

Heidelberg, University of Heidelberg,

Im Neuenheimer Feld 282, 69120

Heidelberg, Germany

n.nillegoda@zmbh.uni-heidelberg.de;

bukau@zmbh.uni-heidelberg.de

Specialty section:

This article was submitted to

Protein Folding, Misfolding and

Degradation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 13 July 2015

Accepted: 22 September 2015

Published: 09 October 2015

Citation:

Nillegoda NB and Bukau B (2015)

Metazoan Hsp70-based protein

disaggregases: emergence and

mechanisms. Front. Mol. Biosci. 2:57.

doi: 10.3389/fmolb.2015.00057

Metazoan Hsp70-based protein
disaggregases: emergence and
mechanisms
Nadinath B. Nillegoda* and Bernd Bukau*

Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ),

DKFZ-ZMBH Alliance, Heidelberg, Germany

Proteotoxic stresses and aging cause breakdown of cellular protein homeostasis,

allowing misfolded proteins to form aggregates, which dedicated molecular machines

have evolved to solubilize. In bacteria, fungi, protozoa and plants protein disaggregation

involves an Hsp70•J-protein chaperone system, which loads and activates a powerful

AAA+ ATPase (Hsp100) disaggregase onto protein aggregate substrates. Metazoans

lack cytosolic and nuclear Hsp100 disaggregases but still eliminate protein aggregates.

This longstanding puzzle of protein quality control is now resolved. Robust protein

disaggregation activity recently shown for the metazoan Hsp70-based disaggregases

relies instead on a crucial cooperation between two J-protein classes and interaction

with the Hsp110 co-chaperone. An expanding multiplicity of Hsp70 and J-protein

family members in metazoan cells facilitates different configurations of this Hsp70-based

disaggregase allowing unprecedented versatility and specificity in protein disaggregation.

Here we review the architecture, operation, and adaptability of the emerging metazoan

disaggregation system and discuss how this evolved.

Keywords: Hsp70, J-protein, Hsp110, protein disaggregation, metazoan

Introduction

In healthy cells, toxicities associated with protein misfolding are countered by regulated cellular
processes that sequester damaged, sticky and potentially harmful proteins to intracellular protein
deposit sites (Taylor et al., 2003; Arrasate et al., 2004; Miller et al., 2015) where protein quality
control machineries operate to resolve aggregates (disaggregation) (Parsell et al., 1994; Mogk et al.,
1999; Tyedmers et al., 2010; Doyle et al., 2013). Accumulation of protein aggregates however is a
distinguishing feature of cellular stress and aging in all organisms (Morimoto, 2008; Hipp et al.,
2014) and is associated with toxicities leading to pathology (Olzscha et al., 2011; Polymenidou and
Cleveland, 2012; Park et al., 2013). Aggregates hallmark a plethora of human disorders ranging from
neurodegeneration to diabetes and cancers (Knowles et al., 2014; de Oliveira et al., 2015; Mukherjee
et al., 2015). Persistence of protein aggregates eventually also poses a threat to the integrity of the
cytoskeleton and cellular signaling (Perutz et al., 1994; Kopito, 2000; Lee et al., 2004).

The ubiquitous presence of dedicated protein disaggregation machines (disaggregases) in all
cells (Winkler et al., 2012a; Doyle et al., 2013) underlines the importance of aggregate solubilization
activity. Polypeptides freed from solubilizing aggregates are sorted for either refolding (Glover and
Lindquist, 1998) or degradation (Ravikumar et al., 2008; Douglas et al., 2009; Ciechanover and
Kwon, 2015). Proteins essential for cellular processes must be rescued and refolded via protein
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disaggregation activities for cell growth to resume after
stress (Parsell et al., 1994; Weibezahn et al., 2004; Tessarz
et al., 2008). Additionally, disaggregation and refolding
activities greatly reduce resynthesis requirements (Sanchez
and Lindquist, 1990; Mogk et al., 1999; Motohashi et al., 1999;
Queitsch et al., 2000) which is arguably energetically favorable.
Terminally damaged proteins that fail to refold are cleared
from cells by proteolytic systems to prevent reaggregation
and ensuing toxicities (Cuervo et al., 2004; Cohen et al.,
2006). Protein disaggregation therefore, is central to the
establishment of protein homeostasis and the promotion of cell
survival.

The Non-metazoan Hsp100 and
Hsp70•J-protein bi-chaperone
Disaggregation System

The ability of cells to solubilize aggregated proteins is well
established in prokaryotes and in non-metazoan eukaryotes
(e.g., fungi, protozoa, and plants) (Parsell et al., 1994; Hübel
et al., 1997; Mogk et al., 1999; Doyle et al., 2007; Lee et al.,
2007). These disaggregase machineries involve cooperation
between members of the Hsp70 and the Hsp100 chaperone
families (Glover and Lindquist, 1998; Goloubinoff et al., 1999;
Zietkiewicz et al., 2004; Doyle and Wickner, 2009). Hsp100s
are powerful AAA+ ATPases that extract trapped polypeptides
from aggregates via a threading mechanism. Briefly, a hexameric
Hsp100 ring with a central pore interacts with the Hsp70
system (Seyffer et al., 2012; Rosenzweig et al., 2013) to load
onto protein aggregates (Winkler et al., 2012b). Concomitantly,
the Hsp70 system activates the Hsp100 disaggregase for ATP-
dependent substrate threading (Seyffer et al., 2012; Lee et al.,
2013; Lipinska et al., 2013; Carroni et al., 2014). Protruding
polypeptide termini or surface loops of trapped polypeptides
are drawn into the pore to interact with flexible aromatic
loop residues internal to the pore (Schlieker et al., 2004;
Weibezahn et al., 2004). Unfoldase activity of Hsp70 (Sharma
et al., 2011) is thought to remodel the surface of a protein
aggregate through J-protein (Hsp40) controlled substrate-
binding cycles, to generate these surface loops (Zietkiewicz
et al., 2006). It is generally accepted that ATP hydrolysis in
Hsp100 powers movement of the aromatic residues with a
ratchet-type mechanism, effectively pulling the polypeptide into
the pore and disentangling it from the aggregate (Lum et al.,
2004; Schlieker et al., 2004; Haslberger et al., 2008). Without
the cooperation of the Hsp100 disaggregase, the bacterial and
yeast Hsp70 systems show very limited protein disaggregation
capability (Goloubinoff et al., 1999; Diamant et al., 2000; Ben-Zvi
et al., 2004; Doyle et al., 2007; Rampelt et al., 2012) inadequate
for survival after severe protein aggregation stresses (Sanchez and
Lindquist, 1990; Squires et al., 1991; Hong and Vierling, 2000).
The Hsp100 and Hsp70•J-protein bi-chaperone disaggregation
system is powerful and efficient and supports rapid response to
protein misfolding stresses, minimizing cytotoxicity associated
with protein aggregation (Olzscha et al., 2011; Park et al.,
2013).

The Hsp70•J-protein•Hsp110 System
Forms a Potent Metazoan Disaggregase

Metazoan cells lack the core Hsp100 component of the bi-
chaperone system (Doyle et al., 2013), and ambiguity in
past results has made the very existence of robust protein
disaggregation activity in metazoa contentious (Kampinga, 1993;
Shorter, 2011; Murray et al., 2013). Recent work shows that
efficient metazoan disaggregation activity requires the Hsp70
chaperone and a complex of J-proteins of two different classes
(Nillegoda et al., 2015). Further cooperation with the Hsp110
co-chaperone, which acts as a nucleotide exchange factor (NEF)
(Dragovic et al., 2006; Raviol et al., 2006b), boosts overall
disaggregase capacity (Shorter, 2011; Rampelt et al., 2012;
Nillegoda et al., 2015). This configuration provides metazoans
with a potent Hsp70-based disaggregation activity that efficiently
solubilizes a wide range of protein aggregates in vitro, comparable
to the non-metazoan bi-chaperone disaggregation systems
(Nillegoda et al., 2015).

Unraveling of aggregated proteins depends on substrate bind
and release cycles of the metazoan Hsp70 in conjunction with
J-protein and Hsp110 co-chaperones (Figures 1A–C). J-proteins
target Hsp70 to substrates (Gamer et al., 1992; Laufen et al., 1999;
Kampinga and Craig, 2010) and form the largest and the most
structurally diverse chaperone family in metazoa (Cheetham and
Caplan, 1998; Kampinga and Craig, 2010). Class A and B J-
proteins (Figure 1A) contain conserved N-terminal J-domains
(JDs) that interact with Hsp70 (Tsai and Douglas, 1996; Suh et al.,
1999) and C-terminal domains (CTDs) involved in substrate
binding (Lee et al., 2002; Li et al., 2003). Class A proteins contain
a further zinc-finger-like region (ZFLR), also contributing to
substrate recognition/binding (Lu and Cyr, 1998).

Concomitant interaction of the Hsp70 with a J-protein and
substrate provides allosteric stimulation for ATP hydrolysis in
Hsp70 (Bukau and Horwich, 1998; Laufen et al., 1999; Mayer
and Bukau, 2005). This dual trigger traps aggregate substrate
in the Hsp70 substrate-binding pocket. Substrate dissociation
re-starts the Hsp70 chaperone cycle and requires release of
the hydrolysis products, ADP+Pi,followed by binding of a new
ATP molecule to Hsp70 (Figure 1B). ADP release from Hsp70
is triggered preferentially by the Hsp110 NEF during protein
disaggregation (Rampelt et al., 2012). Here, we outline the
newly defined architecture and function of efficient metazoan
Hsp70•J-protein•Hsp110 disaggregation machineries and briefly
discuss ensuing physiological implications and evolutionary
considerations.

Hsp110 and Metazoan Protein
Disaggregation

Hsp110 chaperones are a distinct eukaryotic branch of the
conserved Hsp70 superfamily (Lee-Yoon et al., 1995; Yasuda
et al., 1995; Easton et al., 2000) and share the Hsp70
bipartite domain architecture: an N-terminal nucleotide-binding
domain (NBD) linked to a C-terminal substrate-binding
domain (SBD) (Figure 1C). Hsp110 isoforms (three in humans,
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FIGURE 1 | Mechanistic models for Hsp70-based metazoan protein disaggregation. (A) Domain organization of class A and B J-proteins (as protomers). JD

designates the conserved N-terminal J-domain. G/F denotes the glycine/phenylalanine rich flexible region; ZFLR, Zinc finger-like region; CTDI and CTDII, two

homologous C-terminal β-sandwich substrate-binding domains. CTDs together with ZFLR provide substrate specificity. The dimerization domain forms functional

J-protein homodimers. (B) Hsp70•J-protein•Hsp110 functional cycle. Concomitant interaction of Hsp70 with a J-protein and substrate results in allosteric stimulation

of ATP hydrolysis trapping the substrate in Hsp70. Subsequent Hsp110 mediated ADP release from Hsp70 allows ATP rebinding, which triggers substrate release to

complete Hsp70 cycle. (C) Schematic representation of the domain organization of yeast and human Hsp110 and Hsp70. (−) in red indicates the acidic region

inserted between the terminal strands of the predicted β-sheet structure. The acidic loop determines the nuclear/cytoplasmic localization of human HSPH1 (Saito

et al., 2009). The extended C-terminal domain is noted in HSPH2. ATP and ADP nucleotides bound to the NBD of Hsp70 and Hsp110s are denoted as “T” and “D,”

respectively. (D) “Clamp and walk” model for Hsp70 and Hsp110 mediated protein disaggregation. Hsp70, J-protein and Hsp110 indicated in gray, purple and green,

respectively. Nucleotide state at the NBDs of Hsp70 and Hsp110 indicated by T and D. Sequential reaction steps (encircled numbers): 1, J-protein targets aggregate;

2, J-protein recruits Hsp70; 3, Hsp110 recruitment and formation of Hsp70•Hsp110 heterodimer; 4, Hsp70•Hsp110 heterodimer “walking” on aggregate by

alternating scanning (ATP state) and clamping (ADP state) substrate-interaction modes that generate pulling forces (dashed red arrows) on trapped polypeptides.

Pulling forces result in forming peptide loops (dark blue) that fold to native-like conformations; 5, Releasing of polypeptides from aggregate due to accumulation of

native-like folding events in trapped substrates. (E) Metazoan “nucleation” model for efficient Hsp70-based protein disaggregation. 1, J-protein targets and nucleates

on aggregate; 2, Localized, multiple Hsp70 recruitment by J-protein assemblies on aggregates; 3, Hsp110 recruitment; 4, formation of oligomeric chaperone complex

containing J-protein, Hsp110 and multiple Hsp70 molecules and buildup of entropic pulling forces (dashed red arrows) leading to extraction of trapped polypeptides

(dark blue). 5, Hsp110 NEF activity triggered releasing of polypeptides from aggregate.

Hsp105α/HSPH1, Apg-2/HSPH2, and Apg-1/HSPH3) form one
of the three distinct classes of NEFs (along with Bag-type and
HspBP1-type), which interact with Hsp70 molecules (Dragovic
et al., 2006; Raviol et al., 2006b; Shaner et al., 2006). In vitro,
all three cytosolic human Hsp110-type NEFs support protein
disaggregation equally (Rampelt et al., 2012). However, Hsp105α
knockout mouse cells show severe defects in reactivating
aggregated proteins after heat stress (Yamagishi et al., 2011)
despite the presence of the two other cytosolic Hsp110 members

(Apg-1 and Apg-2). This apparent hierarchy among Hsp110
members in vivo may reflect differences in cellular localization
(Saito et al., 2007) and/or tissue specific abundance (Kaneko et al.,
1997; Okui et al., 2000). RNAi depletion of the single C. elegans
cytosolic Hsp110 also shows defects in aggregate clearance after
heat-stress (Rampelt et al., 2012). These in vivo defects most likely
reflect Hsp110’s role in boostingmetazoan protein disaggregation
identified in vitro (Shorter, 2011; Rampelt et al., 2012; Gao
et al., 2015; Nillegoda et al., 2015). However, lack of aggregate
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clearance in vivomay also arise partly from Hsp110 involvement
in holdase-type functions preventing aggregation (Ishihara et al.,
2003; Yamagishi et al., 2003; Yamashita et al., 2007), and/or
involvement in other protein quality control processes such as
protein degradation (Heck et al., 2010; Saxena et al., 2012).

Knockdown of Hsp110, but not the Bag-1 NEF, abolishes
aggregate clearance in C. elegans (Rampelt et al., 2012).
Accordingly, substitution of Hsp110 by Bag-1 does not support
efficient protein disaggregation with human Hsp70•single J-
protein configuration in vitro (Rampelt et al., 2012; Gao et al.,
2015), implyingHsp110 specialization for protein disaggregation.

The precise nature of Hsp110 specialization/function during
metazoan protein disaggregation however, is currently under
debate. The basic question revolves around the primary function
of Hsp110 in protein disaggregation: Is Hsp110 function
limited to nucleotide exchange (as a specialized NEF) or does
Hsp110 function extend beyond NEF activity and act as a vital
substrate-binding chaperone within the composite disaggregase
machinery? The answer to this question is central to the
mechanism of disaggregation.

Evidence for Hsp110 Function Beyond NEF
Activity

Hsp110 and Bag-1 are NEFs that trigger similar structural
changes in the NBD of Hsp70 inducing release of nucleotides
(Sondermann et al., 2001; Andréasson et al., 2008; Schuermann
et al., 2008). Why in general Bag-1 can neither substitute for
Hsp110 in protein disaggregation in vitro nor in vivo is therefore
puzzling. Existence of unique structural features such as an SBD
(Oh et al., 1999; Goeckeler et al., 2008; Polier et al., 2010), which
is absent in other types of NEFs, may support a role for Hsp110
beyond NEF activity in metazoan Hsp70-based disaggregases.

The ability of Hsp110 to directly bind aberrant protein
substrates (via the SBD) is reflected in holdase activity, where
Hsp110 binds to misfolding proteins and prevents thermally
induced aggregation (Oh et al., 1997, 1999). Hsp110 has distinct
peptide binding specificity to that of Hsp70 (Goeckeler et al.,
2008; Xu et al., 2012), arising from sequence differences in the
SBD (Raviol et al., 2006a). Hsp110 proteins preferentially bind
aromatic residue-rich peptides, whereas canonical Hsp70s prefer
aliphatic-rich peptides. Yeast Hsp110 (Sse1) exhibits reduced
affinity for peptide substrate in the presence of ATP, indicating
nucleotide binding induces substrate release (Xu et al., 2012).
This suggests allosteric coupling between the NBD and SBD
of Hsp110 proteins prompting the idea that the NEF could
function as a substrate binding/unbinding Hsp70-like chaperone
in protein disaggregation. However, such nucleotide dependent
substrate release activity was not observed with other Sse1
specific peptide substrates (Goeckeler et al., 2008). Further,
the ATP-induced peptide release activity observed by Xu and
coworkers is restricted to yeast Hsp110s and is residual only, in
human Hsp110 (Xu et al., 2012).

A study in fruit flies however suggests suppression of
aggregation of polyQ containing proteins requires ATPase
driven allosteric coupling of NBD-SBD in the fly Hsp110,
since unlike wild-type fly-Hsp110, overexpression of an ATPase
deficient mutant of fly-Hsp110 is unable to suppress the

toxicities associated with aggregation. Suppression however, also
requires co-overexpression of a J-protein (Kuo et al., 2013). The
authors propose an Hsp70•J-protein-like cooperation between
Hsp110 and J-proteins, beyond NEF activity. Hsp110•J-protein
combinations however, are incapable of solubilizing aggregates
in vitro. Adding Hsp70 drives solubilization (Shorter, 2011;
Rampelt et al., 2012). Also, this study is in vivo, and therefore
an Hsp70•J-protein•Hsp110 requirement is not excluded.

More compelling support for Hsp110 function beyond
NEF activity comes from a study that shows human Hsp110
(Hsp105α) is an ATP-dependent foldase capable of refolding
preformed misfolded polypeptides into native proteins (Mattoo
et al., 2013). This study further shows a bi-directional
communication linkingHsp110 andHsp70, which allowsHsp110
to induce substrate release from Hsp70 in the absence of
ATP binding. Similarly, Hsp70 induces substrate release from
Hsp110. Under the conditions used, Mattoo and coworkers find
optimal Hsp70•J-protein•Hsp110 disaggregase activity at a 1:1
stoichiometry for Hsp70:Hsp110 (Mattoo et al., 2013). Based on
1:1 optimal activity stoichiometry and the foldase capacity of
Hsp110 (both of which activities require a J-protein to be present)
these authors propose an Hsp70•Hsp110 core functional unit for
metazoan disaggregases and the first mechanistic model for the
metazoan Hsp70-based disaggregase.

The Hsp70•Hsp110 “Clamp and Walk”
Model

The “clamp and walk” model proposed by Mattoo et al. (2013)
(Figure 1D) postulates an Hsp70•Hsp110 heterodimer as the
functional core unit of the Hsp70-based disaggregase. The spatial
arrangement of the proposed heterodimer depicted in Figure 1D

derives from the crystal structure of bovine Hsc70 NBD and
yeast Hsp110 Sse1 (Schuermann et al., 2008). Hsp70 (black) and
Hsp110 (green) toggle between ATP (T) and ADP (D) bound
states, triggering alternately coordinated substrate binding and
release for each. The ATP bound chaperone state is engaged in
scanning for new proximal substrate contacts, while the other
ADP-bound chaperone is anchored to the protein aggregate.
Capture of a new aggregated polypeptide segment by the first
molecule triggers substrate release in the anchored molecule,
locally unwinding the released polypeptide segment to form
an unfolded polypeptide loop. Such sequential bind-and-release
events, or “walking” of the Hsp70•Hsp110 heterodimer, are
predicted to constitute a power-stroke action (Sousa and Lafer,
2006), which pulls out and unfolds a series of polypeptide
loops from trapped substrates on the surface of an aggregate
(dark blue, Figure 1D). Polypeptide segments in these loops
would then spontaneously refold to native-like conformations.
Accumulation of these small refolding events along an aggregated
polypeptide would promote polypeptide dissociation from the
aggregate (Mattoo et al., 2013).

Irreconcilable Data

Though the “clamp and walk” model is attractive, it is
inconsistent with accumulating and emerging data. The foldase
activity of Hsp110 is debatable, as is the concerted action of
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Hsp70 andHsp110 in protein disaggregation proposed byMattoo
and coworkers (Mattoo et al., 2013). Studies previous to the
Mattoo report do not see any foldase activity by an Hsp110•J-
protein pair (Oh et al., 1997; Yamagishi et al., 2000; Dragovic
et al., 2006), although the kind of substrates used in the Mattoo
analysis may have given rise to different results. In addition,
mechanistic studies on yeast and human Hsp110s consistently
fail to detect any hallmark features of canonical Hsp70s (Shaner
et al., 2004; Raviol et al., 2006a; Liu and Hendrickson, 2007;
Andréasson et al., 2008). Direct analysis shows that characteristic
ATP and J-protein triggered conformational rearrangements
of Hsp70 are absent in yeast and human Hsp110s (Raviol
et al., 2006a; Andréasson et al., 2008; Goeckeler et al., 2008)
although ATP hydrolysis occurs in Hsp110 (Raviol et al., 2006a;
Goeckeler et al., 2008; Mattoo et al., 2013). Taken together, the
majority of studies shows a lack of Hsp70-like allosteric coupling
between NBD and SBD and foldase activity for Hsp110s (Oh
et al., 1997; Yamagishi et al., 2000; Dragovic et al., 2006; Raviol
et al., 2006a; Andréasson et al., 2008; Goeckeler et al., 2008).
Further, a NEF activity-deficient mutant of human Hsp110,
but not an ATPase deficient mutant, is defective in Hsp70•J-
protein mediated protein disaggregation (Rampelt et al., 2012).
This strongly suggests the primary function of Hsp110 in
protein disaggregation is nucleotide exchange and not an activity
requiring ATP-dependent structural rearrangements in Hsp110.

In general, NEFs act at substoichiometric levels to Hsp70
to avoid futile nucleotide exchange cycles in Hsp70 leading to
inhibitory effects during non-metazoan protein disaggregation
and/or refolding assays in vitro (Goloubinoff et al., 1999;
Yamagishi et al., 2000; Zietkiewicz et al., 2006; Genest et al., 2011).
Human Hsp110 displays characteristics of a typical NEF during
metazoan protein disaggregation/refolding and works optimally
at substoichiometric levels relative to Hsp70. Accordingly, higher
Hsp110 to Hsp70 ratios inhibit protein solubilization by the
human Hsp70-based disaggregation system (Rampelt et al.,
2012; Gao et al., 2015; Nillegoda et al., 2015). However, under
the conditions Mattoo and colleagues use, highest protein
disaggregation activity is found at equimolar concentrations of
Hsp70 and Hsp110 (Mattoo et al., 2013). This contradiction in
Hsp70 to Hsp110 stoichiometry perhaps arises from differences
in experimental conditions. The rationale for an Hsp70•Hsp110
heterodimer based disaggregase model however, depends heavily
on this observation. Furthermore, structurally, the elongated C-
terminal extension (Figure 1C) unique to human Hsp110s and
important for substrate binding (shown for holdase activity)
(Oh et al., 1999; Raviol et al., 2006a) is superfluous for protein
disaggregation. The yeast Sse1 NEF which has a stunted C-
terminal extension functionally dispensable in vivo (Shaner et al.,
2004; Liu and Hendrickson, 2007) and in vitro for NEF activity
(Andréasson et al., 2008), is capable of fully substituting for
the human Hsp110 during protein disaggregation (Rampelt
et al., 2012). This strongly suggests, but does not formally
show, that substrate-binding features of human Hsp110 are
dispensable for disaggregation. Altogether, these observations
further consolidate a primarily nucleotide exchange function
for metazoan Hsp110 in protein disaggregation. Finally and
most tellingly, Hsp110 is not strictly essential for activity

in some disaggregase configurations (Nillegoda et al., 2015),
though not others (Gao et al., 2015). The in vitro activity on
amorphous aggregates by human Hsp70-based disaggregases
containing heterocomplexed J-proteins is ∼33% less efficient
without Hsp110 (Nillegoda et al., 2015). This is reminiscent of
the yeast bi-chaperone-based disaggregase system where Hsp110
acts as a NEF, which boosts, but is dispensable for, disaggregation
(Glover and Lindquist, 1998; Rampelt et al., 2012).

The “clamp and walk” model is unclear as to how J-proteins,
an essential component of metazoan disaggregase machinery
(Nillegoda et al., 2015), participate in the “walking” dynamics
of the proposed Hsp70•Hsp110 heterodimer on the aggregate
(Figure 1D, beyond step 1). Cumulatively, these points suggest
a central role for an Hsp70•Hsp110 heterodimer in metazoan
protein disaggregation is unlikely, and point instead to a central
involvement of J-proteins.

In short, both the analytical discrepancies outlined regarding
NEF independent function and the latest developments
in Hsp70-based disaggregase biology involving J-protein
requirements (Nillegoda et al., 2015) suggest the primary role
of Hsp110 in disaggregation is nucleotide exchange. These
considerations argue against a central architectural role for
Hsp110 as a key substrate-binding chaperone in the Hsp70-based
disaggregases.

Metazoan NEF Specialization in Protein
Disaggregation

One explanation for the specialization of Hsp110 in protein
disaggregation may lie in the kinetics of NEF driven Hsp70
cycling through ATP/ADP states. A further consideration is
the overall architecture of the assembled Hsp70 disaggregase,
which may limit steric accessibility of one NEF over another
in some configurations. Hsp110 and Bag1 NEFs utilize
a similar mechanism to induce nucleotide release from
Hsp70, but have discrete binding interfaces on the Hsp70
NBD (Sondermann et al., 2001; Andréasson et al., 2008).
The assembled disaggregase core architecture (J-proteins and
Hsp70) probably favors accessibility of one binding interface
(Hsp110) over the other (Bag1), depending on the specific J-
protein combinations incorporated into the core architecture.
This accounts well for the inability of the Bag-1 NEF
to promote efficient nucleotide exchange in Hsp70-based
protein disaggregation in some combinations but not others.
Hsp70•DNAJB1•Bag-1 combinations show poor disaggregation
activity compared with Hsp70•DNAJB1•Hsp110 combination.
In contrast, Hsp70•DNAJA2 combinations, which specifically
target smaller aggregates (Nillegoda et al., 2015), function
equally well with Hsp110 and Bag-1 in vitro (Rampelt et al.,
2012). Bag-1 displays similarly differential cooperative efficacy
in refolding proteins, with Hsp70•DNAJA2 providing highest
activity (Terada and Mori, 2000). Although not directly shown,
these observations are entirely consistent with steric exclusion
due to architectural constraints leading to lack of function, and
suggest Hsp110 has evolved to provide a specialized NEF used by
all Hsp70-based disaggregases.
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On balance, we predict that Hsp110 co-chaperones play a
dual role in protein disaggregation. Hsp110 primarily provides
NEF activity facilitating efficient substrate release from Hsp70
molecules, which resets the disaggregase machine for another
round of polypeptide extraction. The contribution of Hsp110
NEF activity to protein disaggregation is dispensable and varies
with J-protein class (Rampelt et al., 2012), J-protein class
cooperation (Nillegoda et al., 2015), and substrate-type (Gao
et al., 2015; Nillegoda et al., 2015). Hsp110 however may
also perform an extra, but non-essential holdase function in
disaggregation by interacting directly with polypeptides during
extraction from the aggregate, as invoked by the earlier “clamp
and walk” model (see Figure 1E for a newly proposed model for
Hsp70-based disaggregases).

The Metazoan “Nucleation” Model for
Efficient Hsp70-based Protein
Disaggregation

A different mechanism for metazoan Hsp70-based
disaggregation incorporates the latest data (Figure 1E) and
resolves the analytical discrepancies outlined. This mechanism
involves initial formation of oligomeric, higher order chaperone
structures containing multiple Hsp70 molecules on the aggregate
surface. Clustered binding of Hsp70 molecules, potentially
to the same trapped substrate polypeptide, will increase the
extracting force on the polypeptide due to decreasing entropy
(De Los Rios et al., 2006; Goloubinoff and De Los Rios, 2007),
facilitating local disaggregation. Repulsive forces generated
by steric exclusion of bulky clustered Hsp70 molecules are
also proposed to disrupt strong peptide-peptide interactions
(Kellner et al., 2014). Together, such forces are thought to help
release trapped polypeptides from aggregates. Unfolding is a
prerequisite for subsequent correct protein refolding of extracted
polypeptides. Unlike non-metazoan Hsp100 AAA+ ATPases
where extracting polypeptides are unfolded by threading through
a molecular tunnel (Weibezahn et al., 2004; Hinnerwisch et al.,
2005; Haslberger et al., 2008; Doyle et al., 2012), the metazoan
Hsp70-based disaggregase probably relies instead on the
unfoldase power of Hsp70 chaperones to directly unravel the
disaggregating polypeptides (Sharma et al., 2011). The multi-
component disaggregase complex may also form a channel-like
or cavity-like structure to stabilize the disaggregating, unfolded
polypeptide (Figure 1E, step 4). However, how are multiple
Hsp70 molecules efficiently attracted to one site on the surface of
an aggregate? This is the crucial first step for this model.

A Central Role for J-proteins in
Disaggregase Structure

Recent work reveals the formation of transient heterocomplexes
between class A and class B homodimer J-proteins via
intermolecular JD•CTD interactions. Thesemixed class J-protein
complexes formed on the surface of amorphous aggregates
boost the efficacy of metazoan Hsp70-based disaggregases
(Nillegoda et al., 2015). Canonical J-protein homodimers present

two J-domains for potential interaction with two independent
Hsp70 molecules (Morgner et al., 2015). On this basis, a
minimal mixed-class dimer-dimer J-protein complex would
present four J-domains and could therefore recruit up to four
Hsp70 molecules after binding to an aggregate (Figure 1E,
step 2). Conglomeration of Hsp70 molecules would further
increase if recruited Hsp70 molecules themselves further formed
homodimers, as recently seen in bacteria (Malinverni et al., 2015;
Sarbeng et al., 2015). J-protein nucleation on the surface of
protein aggregates therefore would provide a foundation upon
whichmultiple Hsp70molecules are recruited to form oligomeric
Hsp70-based efficient disaggregation machines. The precise basis
for J-proteins nucleation on aggregates has not been defined but
presumably J-proteins nucleate where looped out polypeptide
stretches are available for binding.

Summarizing the Support for the Two
Models

The crucial difference between the two models lies in the
molecular architecture of the core disaggregase, which dictates
mechanism of aggregate solubilization. In the earlier model an
Hsp70•Hsp110 heterodimer core enables a ratcheted bind-and-
release of aggregate substrate, in a “walking” disaggregation
action to create successive disaggregated domains on a
polypeptide, eventually leading to full disaggregation. This
presumes ATP-hydrolysis coordinates substrate capture and
release by Hsp70, which is well established, but also for
Hsp110, which is experimentally unsupported. Further, recent
data show Hsp110 is not strictly essential in some metazoan
disaggregase configurations. J-proteins on the other hand, are
indispensable. The clamp and walk mechanism, based on an
Hsp70•Hsp110 core architecture, strictly requires Hsp110, and
makes no provision for J-protein function other than the initial
targeting of Hsp70 or Hsp110 to the aggregate. Together, these
points make an Hsp70•Hsp110 heterodimer architecture and the
ensuing ratchet mechanism less plausible.

In contrast, the new model requires initial nucleation by
J-proteins for Hsp70-based disaggregation to proceed. In this
model J-proteins target amorphous aggregate surfaces, recruiting
multiple Hsp70 molecules via established interaction interfaces,
to foci on the aggregate, nucleating higher order Hsp70-J-
protein core disaggregase structures. The NEF activity of Hsp110
is beneficial and often essential for enhancing disaggregation
function, but for some disaggregase configurations dispensable.
There is also evolutionary precedence suggesting a bacterial
J-protein-mediated Hsp70 clustering mechanism driving Hsp100
dependent disaggregation (Seyffer et al., 2012). In the metazoan
context, J-protein nucleation on aggregate surfaces is therefore
very plausible.

A J-protein Gearbox Regulates Metazoan
Protein Disaggregation Efficacy

Both efficacy and substrate (protein aggregate) specificity
of Hsp70-based disaggregases are determined by J-proteins.
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Hsp70-based disaggregases containing class A vs. class B
J-proteins specifically target different amorphous aggregates.
Human Hsp70 and Hsp110 combined with class A J-protein
(DNAJA1, DNAJA2) targets only small aggregates (Mattoo et al.,
2013; Nillegoda et al., 2015). In contrast, the Hsp70•class
B J-protein (DNAJB1)•Hsp110 system solubilizes only
large aggregates (Nillegoda et al., 2015). This explains the
superior disaggregation activity of the Hsp70•DNAJB1•Hsp110
combination in previous work which used substrates consisting
predominantly of large aggregates (i.e., aggregated luciferase
formed under high luciferase concentration) (Rampelt et al.,
2012). Selection is based on aggregate size/structure rather
than substrate type, possibly arising from differences in class
A vs. B J-protein mode of binding (Terada and Oike, 2010)
and/or peptide binding characteristics (Fan et al., 2004). Unlike
single class J-proteins, mixed class J-protein complexes provide
broad substrate specificity, allowing Hsp70-based disaggregases
to target aggregates over a wide size range (Nillegoda et al.,
2015). This is most likely due to combined presence of different
substrate binding CTDs in the complex. Different aggregate types
(amorphous vs. amyloid) are resolved by markedly different
configurations of Hsp70-based disaggregases. For example, the
Hsp70•DNAJB1•Hsp110 single J-protein configuration, which
specifically targets large amorphous aggregates is also sufficient
for efficient disintegration of α-synuclein amyloid fibrils and
does not require mixed class J-protein complexing (Gao et al.,
2015).

Overall, it is clear that during protein disaggregation, J-
proteins can function both independently in a class-dependent
manner, and as mixed-class complexes with markedly distinct
properties, dependent on specific constituent J-proteins. Humans
have over 50 members in the J-protein family (Figure 2A)
(Kampinga and Craig, 2010), as do other metazoans like C.
elegans (∼30 members) (Yook et al., 2012). A wide range
of complexed J-protein combinations is therefore available to
metazoa, essentially providing a metazoan gearbox for fine-
tuning target selectivity and efficacy of protein disaggregation.

The Emergence of Hsp70-based Protein
Disaggregases During Evolution

Gene losses occur in all major lineage transitions of life.
Such losses are usually reflected as deficiencies in specific
biological activities (Danchin et al., 2006). The abrupt loss
of cytosolic/nuclear Hsp100 class members in the transition
to metazoa has no immediately obvious basis, since protein
disaggregation activity is preserved and is essential in the
metazoa.

Loss of Hsp100 during metazoan evolution coincides with
gain-of-disaggregation function in Hsp70 machines during
metazoan evolution (Figure 2B). Three major changes in
cellular protein quality control could account for reduction
of the disaggregation machine from an Hsp100-Hsp70 dual
system to the single Hsp70 system: (1) The appearance of
vacuolar/lysosomal-based autophagic protein degradation in
eukaryotes diversifies and augments mechanisms of aggregate

clearance inmetazoa (Lu et al., 2014; Rogov et al., 2014). Presence
of an alternative pathway could reduce selection pressure for
the relatively energy-expensive Hsp100. (2) Habitat wise, free
living bacteria, fungi and plants are exposed to constantly
changing harsh environmental stresses, unlike metazoans, and
rely heavily on Hsp100-based disaggregases for survival after
extreme heat stress (Sanchez and Lindquist, 1990; Squires et al.,
1991; Hong and Vierling, 2000). Hsp100 however is dispensable
for central biological processes (Hong and Vierling, 2001) and
under unstressed growth conditions is actually detrimental to
fitness (Escusa-Toret et al., 2013). The fitness cost associated
with maintaining a powerful Hsp100-based disaggregase system
therefore, may have driven better stress-buffering in metazoan
cells (Durieux et al., 2011; Gidalevitz et al., 2011; Van Oosten-
Hawle et al., 2013) and loss of Hsp100. (3) The emergence
of enhanced disaggregation versatility, via J-protein and NEF
configurations providing a highly tunable Hsp70-based protein
disaggregation system, may have also contributed to loss of
Hsp100. A substrate-tailored versatile disaggregation system
is better suited to the needs of multicellular organisms than
the potent, but inflexible and less specialized Hsp100-based
bi-chaperone disaggregase system found in non-metazoan life-
forms.

Metazoan Hsp70, particularly the constitutive Hsc70 (HSPA8)
also harbor critical evolutionary changes that support protein
disaggregation. Appearance of Hsp110 in non-metazoan
eukaryotes may have triggered concomitant development of
accessorizing features of the partner protein Hsp70. Yeast Sse1
boosts the activity of humanHsp70•J-protein (HSPA8•DNAJB1)
disaggregation system, but is unable to do so to the same level
for yeast counterparts (Ssa1•Ydj1 or Ssa1•Sis1) (Rampelt et al.,
2012). This points clearly to specialization of metazoan Hsc70
in protein disaggregation and this remains to be dissected.
What also remains unclear is the evolution of mixed class
J-protein complexing in protein disaggregation, especially since
both class A and class B J-proteins exist in non-metazoans
(Figure 2B).

Concluding Remarks

In metazoans, the expanded number of Hsp70, J-protein and
NEF class members enables greater flexibility of disaggregase
machinery configuration, suggesting a natural selection in
favor of versatility of function. However, increased system
diversification, versatility and components also increases the
scope for defects arising in protein quality control processes, with
the potential to translate into disease.

The substrate spectrum of the metazoan Hsp70-based
disaggregase is currently poorly understood in vivo. It is of
particular interest to examine how disease-linked amyloid-
type aggregates that form stable fibrils can be disassembled
by Hsp70-based disaggregases. Components of the human
Hsp70-based disaggregase have been isolated from a variety
of amyloid-type aggregates (Olzscha et al., 2011; Kirstein-
Miles et al., 2013; Song et al., 2013) indicating that Hsp70
machinery may play a role in amyloid related neuropathies.
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FIGURE 2 | Evolution of the Hsp70-based protein disaggregases. (A) Tabulation of Hsp100, Hsp70, J-protein and nucleotide exchange factors in prokaryotes

(E. coli), non-metazoan eukaryotes (S. cerevisiae), and metazoa (H. sapiens). The listings include experimentally established isoforms of the respective chaperones

and co-chaperones (Genevaux et al., 2001; Lu et al., 2006; Saito et al., 2009; Kampinga and Craig, 2010). (B) Schematic diagram depicting the emergence of

Hsp70-based protein disaggregases and loss of Hsp100 and Hsp70 bi-chaperone machines during evolution. Hsp100, GrpE (bacterial NEF), Hsp70, J-proteins and

Hsp110 indicated in orange, brown, gray, purple (class A J-protein), blue (class B J-protein) and green, respectively. Hsp110 NEFs only appear in eukaryotes. Hsp100

is absent in metazoan cytosol and nucleus. Aggregate solubilization power of bacterial, yeast and human disaggregation systems indicated bellow. Color-coding

depicts different components of the disaggregation systems. *Denotes the high protein disaggregation activity by Hsp70•JB1•Hsp110 configuration that rapidly

disassemble α-synuclein fibrils (Gao et al., 2015).

A recent in vitro study now shows a specific architecture of
the Hsp70•Hsp110•J-protein configuration rapidly disassembles
α-synuclein fibrils, via a fibril-specific mechanism, involving
both fragmentation and depolymerization (Gao et al., 2015).
This is particularly exciting, as the timeframe of disassembly is
physiologically relevant. The full physiological impact, interplay
and function of metazoan disaggregase machines in vivo
however, remains largely unexplored and the most immediate
challenge is to dissect the molecular composition, dynamics,

and regulation of the basic disaggregation process in human
cells.
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