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Purinergic signaling involves the activation of cell surface P1 and P2 receptors

by extracellular nucleosides and nucleotides such as adenosine and adenosine

triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and

have well-established roles in leukocyte and platelet biology. Emerging evidence indicates

important roles for these receptors in red blood cells. P2 receptor activation stimulates

a number of signaling pathways in progenitor red blood cells resulting in microparticle

release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2

receptors in mature red blood cells stimulates signaling pathways mediating volume

regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP

release, and susceptibility or resistance to infection. This review summarizes the

distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor

signaling in these cells and its implications in red blood cell biology.

Keywords: erythrocyte, red blood cell, adenosine triphosphate, purinergic receptor, P2X1 receptor, P2X7 receptor,
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INTRODUCTION

It is well-established that extracellular adenosine triphosphate (ATP) and other nucleotides
function through cell surface purinergic receptors to mediate numerous signaling events in all cell
types (Burnstock and Knight, 2004). Purinergic receptors that respond to extracellular nucleotides
are termed P2 receptors, and comprise P2X and P2Y receptor subtypes (Burnstock and Kennedy,
1985). P2X receptors are trimeric ATP-gated cation channels that mediate the rapid flux of Na+,
K+, and Ca2+, with some members also mediating the rapid flux of organic ions (Kaczmarek-
Hajek et al., 2012). In mammals, seven P2X receptor subunits exist (P2X1–P2X7), which combine
to form either homomeric or heteromeric receptors (Kaczmarek-Hajek et al., 2012). P2Y receptors
are G protein-coupled receptors and modulate various signaling events including adenylyl cyclase,
phospholipase C, and ion channel activation (Abbracchio et al., 2006). To date eight P2Y receptors
have been identified in mammals (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11–P2Y14). Unlike P2X
receptors, some P2Y receptor subtypes are preferentially activated by nucleotides other than ATP,
such as P2Y2 and P2Y13, which are preferentially activated by uridine triphosphate (UTP) and
adenosine diphosphate (ADP), respectively. Furthermore, ADP is an agonist of many P2Y receptor
subtypes (Abbracchio et al., 2006).

P2 receptors are present on all blood cells (Burnstock, 2015). In particular, P2X7 has well-
established roles on leukocytes (Bartlett et al., 2014), while P2Y1 and P2Y12 have well-defined
functions on platelets (Gachet, 2008). P2 receptors also play important roles in hematopoietic
stem cells (Rossi et al., 2012). Collectively, P2 receptor activation contributes to inflammation
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(Idzko et al., 2014a), and vascular and blood disease (Idzko et al.,
2014b), as evidenced by studies of P2 receptor-deficient mice
(Labasi et al., 2002; Stachon et al., 2014). Moreover, it is becoming
apparent that P2 receptors have important roles in red blood
cells (RBCs), a salient point given the importance of ATP release
from RBCs within the vasculature (Sprague and Ellsworth, 2012).
This review aims to provide an overview of the distribution of P2
receptors on RBC progenitors and mature RBCs (erythrocytes),
and to outline the functions of P2 receptor signaling in these
cell types. Other aspects relevant to purinergic signaling in RBCs
including ATP release, ectonucleotidases and P1 receptors have
been subject to earlier reviews (Huber, 2012; Burnstock, 2015).

DISTRIBUTION OF P2 RECEPTORS IN
PROGENITOR RED BLOOD CELLS

P2 receptors have been identified in progenitor RBCs from
humans and mice. RT-PCR of human erythroid progenitors,
derived by culture of CD34+ cells, reveals mRNA for P2X1,
P2X4, P2X7, and P2Y1, but not P2Y2, P2Y4, and P2Y6 (Hoffman
et al., 2004). Further, quantitative PCR reveals high amounts
of P2Y13 mRNA, and lower amounts of P2Y1 and P2Y12
in human reticulocytes (Wang et al., 2005). RT-PCR, and
immunoblotting and immunolabeling reveal P2X7 mRNA and
protein, respectively in murine erythroleukemic (MEL) cells
(Constantinescu et al., 2010), a model of progenitor RBCs
(Friend et al., 1971). Finally, RT-PCR demonstrates P2Y1, P2Y2,
and P2Y12, but not P2Y4, mRNA in murine bone marrow
erythroblasts (Paredes-Gamero et al., 2006).

P2X RECEPTOR FUNCTION IN
PROGENITOR RED BLOOD CELLS

Evidence for functional P2X receptors in progenitor RBCs is
limited to P2X7, and then only in MEL cells. Over 30 years ago,
ATP was shown to induce Na+, K+, and Ca2+ fluxes, and death
in MEL cells (Chahwala and Cantley, 1984), although the role
of purinergic receptors in these processes was not considered at
the time. Subsequently, it was demonstrated that P2X7 activation
mediates ATP-induced rapid dye uptake and apoptosis in MEL
cells (Constantinescu et al., 2010). A role for P2X7 in ATP-
induced Na+, K+, and Ca2+ fluxes was not examined, but
this study indicates that the initial ATP-induced cation fluxes
observed in the earlier study (Chahwala and Cantley, 1984) were
most probably mediated by P2X7. P2X7 activation in MEL cells
induces rapid phosphatidylserine (PS) exposure, microparticle
release, apoptosis (Constantinescu et al., 2010) and reactive
oxygen species formation (Wang and Sluyter, 2013). In contrast
to other cell types (Bartlett et al., 2013), reactive oxygen species
formation is not essential for P2X7-induced apoptosis in MEL
cells, but requires p38 mitogen-activated protein kinase and
caspase activation (Wang and Sluyter, 2013). The role of P2X7
activation in progenitor RBCs remains to be determined, but
may cause the removal of damaged RBC progenitors to prevent
development of anemia, leukemia, or autoimmunity.

P2Y RECEPTOR FUNCTION IN
PROGENITOR RED BLOOD CELLS

The presence of functional P2Y receptors in progenitor RBCs
is mainly limited to P2Y1. ATP, ADP, and UTP induce release
of Ca2+ from intracellular stores within murine bone marrow
erythroblasts suggesting the presence of functional P2Y receptors
in these cells (Paredes-Gamero et al., 2006). Although the
identity of the receptors responsible for the ATP- and UTP-
induced responses were not resolved, the ADP-induced release
of intracellular Ca2+ was caused by P2Y1 activation (Paredes-
Gamero et al., 2006). Functional P2Y1 may also be present in
in human progenitor RBCs, but direct evidence is sparse. ADP,
an agonist of P2Y1 but also other P2Y receptors (Abbracchio
et al., 2006), can cause the release of intracellular Ca2+ within
human erythroid progenitors generated from peripheral blood
(Porzig et al., 1995). The physiological roles of P2Y1 activation
in progenitor RBCs remain to be explored.

DISTRIBUTION OF P2 RECEPTORS IN RED
BLOOD CELLS

P2 receptors have been identified in RBCs from various species.
Quantitative PCR reveals high amounts of P2Y13 mRNA, low
amounts of P2X1, P2X4, P2X7, and P2Y2, and even lower
amounts of P2Y1, P2Y4, P2Y6, P2Y11, and P2Y12 in human
RBCs (Wang et al., 2005). Immunoblotting demonstrates the
presence of P2X1 and P2X7 protein in human, canine andmurine
RBCs (Sluyter et al., 2007a; Skals et al., 2009), and P2Y1 protein
in human RBCs (Tanneur et al., 2006). Immunolabeling confirms
the presence of P2X7 protein in RBCs from humans (Sluyter
et al., 2004) and dogs (Sluyter et al., 2007a), as well as P2Y1
(Tanneur et al., 2006), and to a lesser extent P2X2 (Sluyter et al.,
2004) and P2Y2 (Tanneur et al., 2004) in human RBCs.

P2X RECEPTOR FUNCTION IN RED
BLOOD CELLS

P2X1 and P2X7 mediate bacterial toxin-induced lysis of RBCs
from various species. Both P2X1 and P2X7, but not P2Y1 or
P2Y2, mediate Escherichia coli α-hemolysin-induced lysis of
human, murine and equine RBCs (Skals et al., 2009). This effect
is primarily mediated by P2X1 in murine RBCs, but P2X7 in
human RBCs (Skals et al., 2009) suggesting that these receptors
are differentially expressed in RBCs from these two species.
In contrast, python RBCs are resistant to α-hemolysin (Larsen
et al., 2011). α-Hemolysin also induces cell shrinkage of and PS
exposure on human RBCs, and the subsequent phagocytosis of
these cells by human THP-1 monocytes (Fagerberg et al., 2013)
implying that RBCs exposed to this toxin can be cleared from the
circulation. Through the use of the P2X1 antagonist MRS2159
and P2X7 antagonists, this study also indicated that both P2X1
and P2X7 mediate α-hemolysin-induced PS exposure (Fagerberg
et al., 2013). However, MRS2159 is also a potent antagonist
of human P2X7 (Sophocleous et al., 2015) leaving open the
possibility that P2X7, but not P2X1, mediates this event in human
RBCs.
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P2X1 and P2X7 also mediate Staphylococcus aureus α-
toxin-induced lysis of murine and equine RBCs (Skals et al.,
2011) and Aggregatibacter actinomycetemcomitans leukotoxin
A-induced lysis of human RBCs (Munksgaard et al., 2012).
The latter study also demonstrated that leukotoxin A induced
shrinkage of and PS exposure on RBCs (Munksgaard et al.,
2012), although the role of P2X1 or P2X7 in these processes
was not elucidated. P2X7 activation also mediates Actinobacillus
pleuropneumoniae ApxIA toxin-induced lysis of ovine RBCs
(Masin et al., 2013). In contrast, P2X receptor activation was
not required for Bordetlla pertussis adenylate cyclase toxin-
induced lysis of ovine RBCs (Masin et al., 2013). Collectively, the
authors concluded that involvement of P2X receptor activation
in hemolysis could be regulated by toxin pore size, with ApxIA
hemolysin forming larger pores (∼2.4 nm) than adenylate cyclase
toxin (∼0.7 nm) (Masin et al., 2013). Finally, E. coli shiga toxin
can induce microvesicle release from human RBCs; a process
blocked by broad-spectrum P2 receptor antagonists (Arvidsson
et al., 2015), however the specific P2 receptors involved remain
unknown.

Complement can also induce lysis of human, murine, and
ovine RBCs via P2X1 and P2X7 activation (Hejl et al., 2013).
Notably, the P2 receptor antagonist suramin was originally
shown to impair complement-mediated lysis of human and
guinea pig RBCs, although this effect appeared to be due to
suramin directly binding complement components (Fong and
Good, 1972). Nevertheless, a role for P2X receptor activation in
this early study cannot be excluded.

Bacterial toxin-induced and complement-induced hemolysis
involves the release of ATP acting on P2X receptors in an
autocrine or paracrine fashion (Figure 1A). ATP scavenging
enzymes impair α-hemolysin, α-toxin and leukotoxin A-induced
lysis of RBCs (Skals et al., 2009; Munksgaard et al., 2012), and
complement-induced hemolysis (Hejl et al., 2013) supporting the
concept that released ATP activates P2X receptors. Originally
it was thought that hemichannel pannexin-1, which can
mediate ATP release from RBCs (Locovei et al., 2006), was
responsible for the above ATP release (Skals et al., 2011),
as pannexin-1 antagonists prevented toxin-induced hemolysis
(Skals et al., 2009, 2011; Munksgaard et al., 2012). However,
recent findings indicate that α-hemolysin and leukotoxin A
induce ATP release from RBCs by forming toxin pores
rather than via pannexin-1 (Skals et al., 2014). Thus, current
evidence suggests that bacterial toxins directly from pores
in RBCs to allow ATP release, which then acts on P2X1
and P2X7 to mediate hemolysis. The mechanism by which
complement causes ATP release remains to be resolved. However,
recent data indicates that ligation of complement receptor
1 on human RBCs mediates ATP release (Melhorn et al.,
2013). Both bacterial toxin-induced and complement-induced
hemolysis pose potential health problems during certain bacterial
infections and in diseases associated with prolonged complement
activation.

Direct evidence for functional P2X7 in RBCs was first
demonstrated for human RBCs. P2X7 activation mediates Na+

and Rb+ (K+) fluxes, as well as choline+ uptake in human
RBCs (Sluyter et al., 2004; Stevenson et al., 2009). Moreover,

P2X7 activation can induce Rb+ efflux and choline+ uptake
in canine RBCs (Sluyter et al., 2007a; Shemon et al., 2008;
Stevenson et al., 2009). The ability of ATP to induce cation
fluxes in canine RBCs was first observed in 1972 (Parker and
Snow, 1972) and subsequently by others that same decade
(Elford, 1975; Romualdez et al., 1976). These early investigations
did not attribute this effect to purinergic signaling, despite
the establishment of this concept by Burnstock also in 1972
(Burnstock, 1972). Nevertheless, it is evident from the initial
observations (Parker and Snow, 1972) that ATP induced Na+

or K+ fluxes in canine RBCs in a manner characteristic of
P2X7 activation, and with a time course and order of magnitude
near identical to that of ATP-induced Rb+ fluxes in canine
RBCs observed some 30 years later (Sluyter et al., 2007a).
Thus, this original observation that ATP mediates cation fluxes
in canine RBCs (Parker and Snow, 1972) remains one of the
earliest known reports of functional P2X7 in any cell type.
Notably, relative P2X7 activity in canine RBCs is up to 100-fold
greater than that observed in human RBCs (Sluyter et al., 2007a;
Stevenson et al., 2009). This increased P2X7 activity in canine
RBCs corresponds to increased amounts of P2X7 in canine
RBCs compared to human RBCs (Sluyter et al., 2007a). The
physiological significance of this observation remains unknown,
as does the relative amount or activity of P2X7 on RBCs between
other species.

P2X7 activation induces PS exposure in human RBCs
(Figure 1B) either freshly isolated from peripheral blood (Sluyter
et al., 2007b) or following cold storage for up to 6 weeks
(Sophocleous et al., 2015). Notably, the amount of P2X7-induced
PS exposure varies between donors (Sophocleous et al., 2015).
This is mostly likely due to single nucleotide polymorphisms
in the P2RX7 gene that code for loss or gain of P2X7 function
(Sluyter and Stokes, 2011). Consistent with this concept, ATP-
induced cation fluxes and PS exposure are reduced in RBCs
from subjects coding loss-of-function P2RX7 gene mutations
(Sluyter et al., 2004, 2007b), while gain-of-function mutations
correspond with augmented ATP-induced cation fluxes in RBCs
(Stokes et al., 2010). ATP can also induce PS exposure and
hemolysis in canine RBCs (Sluyter et al., 2007a), but direct
evidence for P2X7 in these processes is lacking. Furthermore,
mutations that alter receptor function are found in the P2RX7
gene of dogs (Spildrejorde et al., 2014), but it remains to be
determined if these mutations alter P2X7-mediated events in
canine RBCs. The physiological significance of P2X7-mediated
PS exposure in RBCs remains unknown, but the propensity of
human RBCs to undergo PS externalization does not change with
in vitro or in vivo aging (Sophocleous et al., 2015). This suggests
that P2X7-mediated PS exposure in RBCs does not play a role
in the normal removal of senescent RBCs, but perhaps in the
removal of RBCs following cell stress or damage, or in diseased
states.

P2X7 activation induces epoxyeicosatrienoic acid (EET)
release from rat RBCs (Jiang et al., 2007). This release of
EETs is partly dependent on phospholipase A2 stimulation,
but not hemolysis (Jiang et al., 2007). In combination with
earlier data (Jiang et al., 2005), EETs released downstream of
P2X7 activation represent both EETs generated from stored
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FIGURE 1 | P2X receptor activation in red blood cells. (A) Binding of bacterial toxins or complement to red blood cells causes adenosine triphosphate (ATP)

release via toxin pores and pannexin-1. Released ATP can activate P2X1 and P2X7 receptors on these cells to induce phosphatidylserine (PS) exposure and

hemolysis. (B) Extracellular ATP can activate P2X7 receptors on red blood cells to induce PS exposure, or formation of epoxyeicosatrienoic acids (EETs), via

phospholipase A2 (PLA2) acting on stored phospholipids or via de novo synthesis, and subsequent EETs release.

phospholipids and from de novo synthesis (Jiang et al., 2007)
(Figure 1B). EETs are eicosanoids that mediate a variety of
functions within the circulation including vasodilation (Jiang
et al., 2010), thus P2X7-mediated EET release may amplify
the circulatory responses mediated by extracellular ATP (Jiang
et al., 2007, 2010). It remains to be determined if P2X7
activation can induce EET release from RBCs of other
species.

Functional P2X receptors have been reported in non-
mammalian RBCs. During hypotonic swelling, ATP is released
from Necturus salamander RBCs to stimulate regulatory volume
decrease in these cells (Light et al., 1999). Pharmacological
approaches indicated that this receptor is most likely a P2X2
homolog (Light et al., 2001), while other studies showed that
activation of this P2X2-like receptor mediates Ca2+ influx during
hypotonic swelling of Necturus RBCs (Light et al., 2003). ATP
release also regulates volume decreases during hypotonic swelling
of skate RBCs (Goldstein et al., 2003), but direct evidence for
P2 receptors in this process is lacking. In contrast, a P2X-like
receptor stimulates regulatory volume decrease in alligator cells
(Wormser et al., 2011). Activation of this receptor stimulates
Ca2+ influx to activate phospholipase A2 and arachidonic
acid release to increase K+ permeability and volume recovery
(Wormser et al., 2011). At present there is no evidence that
P2X receptor activation stimulates regulatory volume decrease
in mammalian RBCs. Finally, functional P2X receptors have
been identified in RBCs from other reptiles. Activation of P2X-
like receptors in RBCs from Iguania lizards causes an influx
of Ca2+ (Bagnaresi et al., 2007; Beraldo and Garcia, 2007). In
contrast, RBCs from Scleroglossa lizards do not appear to express
functional P2X receptors, but rather a P2Y4-like receptor that
causes intracellular Ca2+ release following activation (Sartorello
and Garcia, 2005).

P2Y RECEPTOR FUNCTION IN RED
BLOOD CELLS

The first direct evidence for functional P2 receptors in RBCs
was established through a series of studies demonstrating the
presence of P2Y1 in turkey RBCs (see Boyer et al., 1996). A P2Y
receptor was initially identified in membranes of turkey RBCs
(Harden et al., 1988) and then in whole turkey RBCs (Berrie et al.,
1989; Boyer et al., 1989). Combined, these studies showed that
activation of this receptor stimulates phosphatidylinositol 4,5-
biphophate hydrolysis and phospholipase C activation (Harden
et al., 1988; Berrie et al., 1989; Boyer et al., 1989). Subsequent
cloning identified this receptor as the turkey homolog of human
and chick P2Y1 (Filtz et al., 1994).

Functional P2Y1 is also present in human and murine
RBCs, where it plays a role in promoting malaria parasite
development. Plasmodium infection of human or murine RBCs
results in ATP release (Tanneur et al., 2006; Akkaya et al., 2009)
and the subsequent activation of P2Y1 to open an osmolyte
permeability pathway (Tanneur et al., 2006), which potentially
promotes parasite development through the supply of nutrients
and removal of metabolic waste products (Kirk, 2001). Similar
findings where also observed with oxidized RBCs suggesting
that parasite-derived oxidative stress is involved in the induction
of this P2Y1-induced osmolyte permeability pathway (Tanneur
et al., 2006) (Figure 2A). Studies of P2 receptor activation in
malaria-infected RBCs however are complicated by evidence
that Plasmodium malaria parasites also express functional P2
receptors (Levano-Garcia et al., 2010; da Cruz et al., 2012).

RBCs may express functional P2Y12, but direct evidence is
limited. In human RBCs, the P2Y12 antagonist ticagrelor inhibits
adenosine uptake (van Giezen et al., 2012) and induces the
release of ATP, which can be subsequently degraded to adenosine
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FIGURE 2 | P2Y receptor activation in red blood cells. (A) Plasmodium malarial parasite infection of red blood cells causes oxidative stress to induce adenosine

triphosphate (ATP) release, which activates P2Y1 receptors to open an osmolyte permeability pathway (OPP) to facilitate parasite growth by supplying incoming

nutrients and removing outgoing metabolic waste products. (B) Cellular stress (acidosis, adrenaline, hypoxia, or shear force) of red blood cells increases intracellular

cyclic adenosine monophosphate (cAMP) to cause ATP release. Released ATP can be degraded by ectonucleotidases (NTPDases) to adenosine diphosphate (ADP),

which then activates P2Y13 receptors to reduce cAMP and prevent further ATP release.

(Ohman et al., 2012). Further, ticagrelor augments cardiac blood
flow in dogs (van Giezen et al., 2012) indirectly suggesting that
P2Y12 may be present on canine RBCs. Combined these studies
suggested that ticagrelor may provide cardiovascular benefits in
addition to ADP-induced platelet aggregation.

Functional P2Y13 is present on RBCs, where it negatively
regulates ATP release from these cells (Wang et al., 2005).
Activation of this receptor by ADP impairs the release of
ATP from human RBCs (Figure 2B). Moreover, intracoronary
injection of the P2Y13 agonist 2-methylthio-ADP into pigs
reduces the amount of circulating ATP (Wang et al., 2005).
Further evidence defining a role for this receptor in this feedback
mechanism is wanting.

CONCLUSIONS

Various P2 receptors are present in progenitor and mature RBCs.
Evidence for functional P2 receptors in primary progenitor RBCs
remains to be fully explored, but studies of MEL cells indicate
that P2X7 can mediate microparticle release, reactive oxygen

species formation, and apoptosis. A larger body of evidence is
available for the presence of functional P2 receptors in mature
RBCs, with P2X1, P2X7, P2Y1, and P2Y13 being the major P2
receptor subtypes present. In RBCs, P2X1 and P2X7 mediate
ATP-induced PS exposure, hemolysis, and eicosanoid release.
P2Y1 facilitates malaria parasite development within RBCs, while
P2Y13 functions to negatively regulate ATP release from RBCs.
Despite these findings, further investigations are required to fully
define the role of P2 receptors in RBCs.
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