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New antimycotic drugs are challenging to find, as potential target proteins may have

close human orthologs. We here focus on identifying metabolic targets that are critical for

fungal growth and have minimal similarity to targets among human proteins. We compare

and combine here: (I) direct metabolic network modeling using elementary mode analysis

and flux estimates approximations using expression data, (II) targeting metabolic genes

by transcriptome analysis of condition-specific highly expressed enzymes, and (III)

analysis of enzyme structure, enzyme interconnectedness (“hubs”), and identification

of pathogen-specific enzymes using orthology relations. We have identified 64 targets

including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid

biosynthesis including 18 targets validated from the literature, two validated and five

currently examined in own genetic experiments, and 38 further promising novel target

proteins which are non-orthologous to human proteins, involved in metabolism and are

highly ranked drug targets from these pipelines.

Keywords: metabolism, targets, antimycotics, modeling, structure, interaction, fungicide

INTRODUCTION

The treatment of invasive fungal infections caused by the versatile saprophytic fungus Aspergillus
fumigatus is challenging (Denning, 1998). While the healthy human immune system is able to
fend off A. fumigatus infections in general, immune-deficient patients are highly vulnerable against
invasive aspergillosis. Aspergillosis is one of the major lethal conditions in immunocompromised
patients (Dagenais and Keller, 2009). In eukaryotic pathogens, most potential protein targets for
antimycotic development bear a considerable risk of toxic side effects for the patient as a similar
protein might be present in the human host.

Although several anti-mycotic strategies exist, they are only partially effective due to the
significant immunosuppression of those patients. Therefore, the development of new therapeutic
strategies against A. fumigatus infection is crucial.

Targeting the metabolism of pathogens is in general a valid strategy as it is central for pathogen
survival and there is also a lower chance for development of resistance mutations as those usually
affect fitness and are thus counter selected (Kohanski et al., 2010).
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Unlike many other approaches that exploit a direct anti-
fungal therapy pursuing identified antimycotic leads, we want
to introduce here a novel, general strategy to tackle a pathogen
at the metabolic level, choosing the human-pathogenic mold
A. fumigatus as example. Known challenges in the search for
new antimycotic targets include the high similarity between
fungal genes and those of the human host. To minimize
this problem, we combine three different bioinformatics
approaches that we have previously developed to target the
pathogen’s primary metabolism: (I) metabolic modeling (for
instance applied to S. aureus antibiotics in Cecil et al.,
2015): direct metabolic network modeling using elementary
mode analysis and flux estimates constrained by applying
gene expression data, (II) enzyme regulation-based strategy:
targetingmetabolic genes by transcriptome analysis of condition-
specific highly expressed enzymes (for instance applied to S.
aureus antibiotics in Cecil et al., 2011), (III) protein-protein
interaction-based strategy: analysis of enzyme structure, enzyme
interconnectedness (“hubs”) and identification of pathogen-
specific enzymes using orthology relations (for instance applied
in viral infections in Shityakov et al., 2015).

Each of these approaches has its strengths and limitations,
however, their combination offers a powerful tool to reveal
metabolic targets for later drug development. Based on the
resulting candidates we suggest a prioritized list of target genes
that are important for A. fumigatus but have no close orthologs
in humans. By focusing the effort on the metabolic pathways
for (a) vitamin synthesis, (b) lipid biosynthesis, and (c) amino
acids biosynthesis, we developed a pipeline that integrates and
compares results from all three bioinformatics approaches (I-
III) to reduce and focus the target list to the most promising
candidate genes.

These candidate proteins for targeting fungal metabolism by
antimycotics were in part validated according to literature
evidence, several are currently tested and evaluated
experimentally while others are still available for targeting.
Additional information can be incorporated for further
refinement and iterations of our combined target screening
pipeline. Our workflow is not restricted to A. fumigatus but can
also be easily transferred to other pathogens which are similar
challenging to target.

MATERIALS AND METHODS

Metabolic Modeling
Figure 1 shows the metabolic network modeling approach
applied as a first strategy to target fungal metabolism by
interfering substances. We outline the flow chart of analysis
procedures used to obtain a metabolic network which can be
used for prediction of flux and elementary modes with the help
of various different types of data and software.

As a first step we apply a process of pathway reconstruction
that identifies the A. fumigatus enzymes involved in the
different pathways.: For this we used biochemical databanks
such as KEGG (Kanehisa and Goto, 2000; Kanehisa et al.,
2014), Roche pathways (Michal and Schomburg, 2012), and
Metacyc (Caspi et al., 2016). Sometimes data from this

source are not complete or incorrectly annotated. Such
knowledge gaps were filled by literature and expert knowledge
including sequence analysis and reannotation of incorrect
annotations. The complete primary metabolism from A.
fumigatus was modeled in this way to yield a metabolic network,
including the major carbohydrate metabolism (glycolysis,
pentose phosphate pathway, TCA cycle), nucleotide biosynthesis,
amino acid biosynthesis and degradation, and fermentation
pathways.

Furthermore, cofactors and cell wall synthesis were also taken
into account. Moreover, we created sub-networks for vitamins
and fatty acid metabolism. For these additional components
we looked only at selective reactions and pathways, which we
considered particularly promising for targeting and being absent
in humans. Accordingly, we selected basic fatty acid metabolism,
ergosterol, and glucanmetabolism, as well as vitaminmetabolism
with focus on riboflavin and thiamine.

Elementary Mode Analysis
A method to identify metabolic pathways that might be crucial
for growth is the elementary mode analysis. A flux mode is a
set of enzymes, which balance all metabolites within a metabolic
network such that these “internal metabolites” do not accumulate
or are diminished (not considering sources and drains, the
“external metabolites”). Those flux modes (combinations of
enzymes) which cannot be decomposed further without affecting
this balance are called elementary modes. We computed these
elementary modes using the Metatool program (von Kamp and
Schuster, 2006), which has been integrated within the YANA
software package (Schwarz et al., 2005). Further analysis of
the calculated pathways (i.e., all elementary modes) considered
which metabolic enzymes are valid antibiotic targets. These are
enzymes that are essential for the metabolism as without their
operation there are no alternative routes available to produce
critical metabolites required for growth.

Flux Mode Strength
To calculate condition-specific strengths of different metabolic
fluxes, large-scale transcriptome data-sets were used as
constraints to fit the metabolic model with the aim to estimate
flux distributions (Schwarz et al., 2005, 2007) for optimal growth
conditions and changes under biofilm condition. The training
procedure and algorithms involved (Gradient descent: BFGS–
Boyden-Fletcher-Goldfarb-Shannon optimization method) have
been described previously (Liang et al., 2011).

In summary, we use two methods sequentially: First,
elementary mode analysis provides an overview of all metabolic
pathways accessible for the pathogen. Second, based on
this network, algorithms such as YANA, YANAsquare, and
YANAvergence offer various routines to calculate implied flux
values for different pathways using gene or protein expression
data. Changes in metabolite concentration are best to calculate
by flux analysis, but being elaborate to measure and hence
seldom available, they were therefore not available here. Both
methods identify those metabolic enzymes which are essential for
growth, either as they are involved in unique routes to provide
metabolites required for growth (elementary mode analysis)
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FIGURE 1 | Metabolic network modeling strategy. Flow chart of analysis procedure to obtain a metabolic network which can be used for the prediction of flux

and elementary modes in context with the help of various different types of data. Two steps are combined: Elementary mode analysis gives an overview on all

metabolic pathways accessible for the pathogen. Based on this network, algorithms such as YANA, YANAsquare, and YANAvergence offer different routines to

calculate implied flux value for different pathways using gene expression data, protein expression data or metabolite concentration changes. Targets which are critical

in a metabolic sense are easily identified considering hub enzymes, enzymes with a high metabolic control and observation of flux change in general.

or as they carry a strong metabolic flux, either constantly
(housekeeping enzymes) or in the relevant situation of invasion
and infection.

Enzyme Regulation-Based Strategy
Figure 2 depicts the flow chart of the enzyme regulation-based
strategy. Transcriptome datasets we used for our comparison
analysis involved: Bruns et al. (2010) (accession GSE19430);
Schrettl et al. (2010) (accession GSE22052); Willger et al. (2008)
(accession GSE12376). These data sets were available from
Gene Expression Omnibus (Edgar et al., 2002; Barrett et al.,
2013), a database collection of extensive experimental gene
expression results as well as from additional experimental sources
(McDonagh et al., 2008). We analyzed the datasets using the

GEO2R framework, a built-in function of the GEO database,
which uses the R statistics software (Davis and Meltzer, 2007;
Huber et al., 2015; R Core Team, 2015; Ritchie et al., 2015) for
normalization, fitting, comparison, and visualization of provided
microarray data and calculates the resulting differential expressed
genes.

After identification of relevant experiments to reveal key
enzymes involved in metabolic adaptation as prospective
antimycotic targets we defined two different groups of samples
(background and relevant condition).

Relevant experiments concerned here available GEO datasets
on A. fumigatus genes involved in virulence. Such genes have to
be induced by appropriate conditions, we found the following
datasets: changes during invasion initiation (McDonagh et al.,
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FIGURE 2 | Enzyme regulation-based strategy. Flow chart of

transcriptome analysis to verify the quality and potential of the suggested

genes for new anti-fungal therapeutic strategies. Starting with transcriptome

data two different sample groups were defined: condition X marking the

specific experimental significant genotype/sample type and a group of

background samples. The comparison results in a list of differential expressed

genes in “condition X” which are considered to be important in the specific

condition. Those differential expressed genes can then be mapped on the list

of potential targets resulting from the scoring and filtering procedure. Those

genes aligning with the target list is filtered regarding up-regulated genes

(URGs) which are considered as promising targets for knockout and thereby

as targets for new therapeutic strategies.

2008), by iron deficiency (Schrettl et al., 2010) and under hypoxia
adaptation (Willger et al., 2008).

We next compared the expression level of all genes. Using
GEO2R we calculated logarithmic fold change (logFC)-values
as well as p-values for every gene. We modified the GEO2R
output in the manner that the output only consisted of genes
with a p < 0.05. Those genes were considered as significantly
differential expressed genes under given conditions.

In the next step, the resulting list of differential expressed
genes was matched onto the list of potential targets (all A.
fumigatus metabolic enzymes; later enriched subsets) to receive
the relative expression of those target genes in comparison to
control conditions.

The control condition was here in all comparisons the wild
type of A. fumigatus grown in rich medium with wild type strains
used as control being: AF293 for the data set analyzed from

Schrettl et al. (2010) and McDonagh et al. (2008); CEA10 in
Willger et al. (2008)).

Furthermore, we analyzed the resulting expression list of
target genes with respect to increased transcript level since
up-regulated genes (URGs) are considered important genes
for A. fumigatus growth under this condition, thus indicating
potential antimycotic targets. Additionally we compared those
up-regulated target genes with the metabolic simulation data to
specify the quality of each suggested target.

Protein-Protein Interaction-Based Strategy
Three criteria were considered here in three sub-pipelines for in
silico screening (Figure 3, top): Metabolic network hub or rim
protein, targetable metabolic, or regulatory domains which have
no ortholog in the host as well as available structure from the
protein databank and drugs targeting the structure.

Sequence Comparisons
Sequence comparisons used standard techniques such as basic
local alignment sequence tool (Altschul et al., 1997). We used
the following parameters: A stringent e-value threshold 1e-10, a
bit-score of over >500, word_size 6, scoring matrix Blosum62,
gap existence cost 11, gap extension cost 1 for the blastp based
similarity searches followed by manual inspection of functional
domains and query coverage to avoid misinterpretation.

Protein Interaction Data
Protein interaction data were taken from the DIP database
(Database of Interacting Proteins; Salwinski et al., 2004). The
orthologous protein sequences from A. fumigatus were mapped
on the available interaction data from DIP using the interolog
approach. All the orthologous interactions were predicted with
OrthoMCL (Li et al., 2003; Fischer et al., 2011). The resulting
interactions in A. fumigatus were further investigated to check
which of them are supported by domain-domain interactions
(DDI) using the DDI containing databases DOMINE (Yellaboina
et al., 2011), DIMA 3.0 (Luo et al., 2011), and IDDI (Kim
et al., 2012). The subcellular localization was predicted using
an improved KnowPred software (Lin et al., 2009), the latest
UniLoc server and SwissProt localization annotations for these
proteins (bioapp.iis.sinica.edu.tw/UniLoc/). The localization
information was further used as confirmatory evidence for
plausible interacting proteins. Only the domain that supported
interactions in which the interacting partners shared a minimum
of one similar localization was considered as true protein-
protein interaction (PPI) in our reconstructed A. fumigatus
interactome. The protein interaction network was reconstructed
using Cytoscape (Smoot et al., 2011). Network analysis predicted
highly connected nodes (hubs) and metabolic bottlenecks which
suggested topologically important proteins which subsequently
can be used as potential drug target if they do not have homology
with human proteins. Of the top 20% proteins based on degree
rank and betweenness rank were retrieved and re-ranked based
on the minimum of their cumulative rank in the common top
20% proteins S

Xr =
∑

Xde + Xbe
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FIGURE 3 | Protein-protein interaction-based targeting of metabolism. Three criteria are combined here for in silico screening (top): Metabolic network hub or

rim protein, targetable metabolic or regulatory domains which have no orthologue in the host as well as available pdb structure and drug targeting the structure.

Where Xr is the new rank of protein X, the index “de” refers
to the degree rank of protein X and the index “be” refers to the
betweenness rank of protein X.

Metabolic bottlenecks are pathways and reactions for which
no alternative routes exist, so all metabolic flux for the following
metabolites has to go through such a bottleneck; these points
are also called “choke points” (Rahman and Schomburg, 2006)

and are a valid and promising position to interfere with primary
metabolism.

Betweenness centrality looks how central a given protein
(“vertex” or “node”) is in a network. It counts the number of
shortest paths from all vertices to all others that pass through that
node. The degree rank just counts how well connected a protein
target is by counting all edges leading to one of the vertex (so how
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many interactions converge on this protein). Further details are
found in Thadakamalla et al. (2005).

The newly ranked protein were further compared in their
sequence against the human proteome and the proteins showing
significant similarity with human were discarded from the
potential drug target list. The KEGG (Kanehisa and Goto, 2000;
Kanehisa et al., 2014) database was used to annotate the proteins
in the target list that have involvement in fungal metabolism.

Drug Targets with Orthology to
Functionally Important Genes
Furthermore, the A. fumigatus proteome and eukaryotic proteins
available at Database of Essential Genes (DEG) (Luo et al., 2013)
were analyzed to identify orthologous protein using OrthoMCL
(Li et al., 2003; Fischer et al., 2011). We further applied a
BlastP (Altschul et al., 1997) based screening to filter out
A. fumigatus protein in the set of orthology-based predicted
important proteins that are significantly similar with human
proteins. Next, the interacting as well as predicted essential
proteins were metabolically annotated to establish the metabolic
importance and metabolic pathway involvement. The final list of
potential drug target were scored and ranked accordingly to the
RhumPdb score (Toomey et al., 2009).

RhumDB = log10

(

EBlastP [query vs human proteome]

EBlastp [query vs PDB]

)

A high RhumPDB score indicates that the target has minimum
similarity with human and has a close protein data bank (PDB)
structure template.

To identify and prioritize targets in the metabolism of
A. fumigatus, first all metabolic reactions were mapped using
the orthology information from the already available metabolic
models of Aspergillus oryzae, Aspergillus niger, and Aspergillus
nidulans (models by Andersen et al., 2008; David et al., 2008;
Vongsangnak et al., 2008). Furthermore, reactions that were not
annotated from the orthology were fetched using the Blast2GO
(Conesa and Götz, 2008) annotation and Enzyme database
(Bairoch, 2000). At every step manual verification was performed
to remove any redundant information. The preliminary list of
metabolic reactions was reduced based on the following criteria:
(i) all those reactions which were catalyzed by true orthologs
of human proteins were removed; (ii) the list was compared
to the DEG database (Luo et al., 2013) of orthology based
genes to ensure that no gene potentially vital for growth was
removed from the list during the reduction process; (iii) for
the enzymes also present in the interactome, the number of
protein interactions these proteins have (“degree”) was also
considered during reduction as an enzyme with high degree
(interacting with many proteins, connected to many pathways)
has more possibility to be involved in multiple pathways and vice
versa; (iv) as a key simplification, and to avoid combinatorial
explosion during elementary mode calculation, we selected
very few enzymes for any linear stretch while considering the
metabolites which are similar; (v) the pace-maker (flux value
determining) enzymes for long linear pathways were generally
included; (vi) finally, pathway annotation was done for this list

and only the reactions which participate in primary metabolic
pathway were further considered to find the drug targets in
primary metabolism. Moreover, we calculated the RhumPDB
score (Toomey et al., 2009) and mapped the gene expression data
(Bertuzzi et al., 2014) over the preliminary target list to prioritize
the drug targets.

The following criteria were used to prioritize targets further:
(i) genes that were highly expressed at many independent time
points were given top priority (mean significant differential
expression) over the genes highly expressed at fewer time points.
A top expression rank represents a higher expression of a
gene at all time points during invasive infection (ii) the final
priority order was decided based on the minimum of RhumPDB
(Toomey et al., 2009) and expression rank (iii) it was also noted
whether the enzyme participates in a fungal-unique pathway or
any pathway is shared with human metabolism. Proteins were
ignored for which co-ortholog proteins were available, as this
implies that the same reaction might be catalyzed by alternative
proteins.

RESULTS AND DISCUSSION

Targets from Metabolic Modeling to
Interfere with Pathogen Proliferation
We defined here that the targets which are critical in a metabolic
sense to be easily identified by pointing out strong active
pathways pertaining to different environmental conditions.
Calculating the resulting differential effects on metabolite
synthesis and growth then allows the identification of enzymes
which are essential for growth and valid drug targets. To achieve
a compact network regarding identification of new antimycotic
targets in A. fumigatus, first we removed many non-central
A. fumigatus metabolic reactions in vitamins, lipids, and amino
acid metabolism that are governed by human orthologous
proteins. The central carbohydrate metabolism consisting of
glycolysis, PPP and TCA, however, was retained, as otherwise
no flux calculations covering a major part of central metabolism
are possible. We then used only those reactions for which we
had availability of gene expression data during infection. Overall,
the enzymes we selected in the analysis were based on their
importance in metabolic pathways, pathway crosstalk and flux
activity analysis in the model. With these criteria for filtering the
resulting list consists of 162 unique metabolic reactions which
were specific for A. fumigatus and that are catalyzed by 102
enzymes and contained 204 metabolites.

The resulting model of central primary metabolism for
A. fumigatus is illustrated in Figure 4, and given in full detail
in the Supplementary Material (input files for calculations
with Metatool see Supplementary Table 1; all enzyme reactions
considered are also given (Supplementary Table 15, with the
mapping to gene identifiers given in Supplementary Table 19)
so that from the stoichiometric matrix [Supplementary Table 16
or Supplementary Table 18 (null space version)] all elementary
modes (Supplementary Table 17) can be calculated).

The model contains the central carbohydrate and amino
acid metabolism, lipid synthesis and degradation as well as
key reactions for intermediary metabolism and all necessary
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FIGURE 4 | Metabolic model of A. fumigatus. This figure illustrates the metabolic web considered, focusing on primary metabolism. Top: Shown are reactions,

metabolites and enzymes (left) and modes calculated (right). Below major pathways modeled are given together with the number and examples of identified promising

antibiotic target structures. Details are found in Supplementary Material File 19 together with input files, stoichiometric matrix, calculated elementary modes, and flux

values for optimal growth and biofilm condition.

cofactors, often vitamins. From a systems biology point of
view there are hub metabolites (such as currency metabolites
including ATP, but also pyruvate, glutamic acid), central enzyme
nodes (for instance adenylate kinase to balance energy), unique
pathways and reactions, which are similar as “choke points”
(Rahman and Schomburg, 2006) to represent good positions for
interfering with metabolism. Overall, our network involves 204
metabolites, 102 enzymes, and 5737 elementary modes (model
in YANA/SBML format: Supplementary Table 20). Such a model
serves as a basis for both targeting genes encoding metabolic
enzymes as well as phenotyping with respect to growth or
nutritional characteristics. Phenotyping including prediction of
essential genes for growth requires a large model where most
metabolic reactions in these pathways and their branching are
considered so that there is good correlation between prediction
and any observed phenotype. Furthermore, larger models allow
identification of well-connected enzymes socalled hub enzymes.
Further methods such as metabolic control theory allows to
identify enzymes with a high metabolic control coefficient as well
as refined modeling of flux changes in general.

Specific fluxes and changes, were calculated using YANA: As
starting values for the flux calculation the flux value for each
elementary mode was set to 1; gene expression data sets were next
used to calculate affected key modes: The different expression
values for each enzyme were used to coarsely approximate their
different activity levels. Systematically different flux values for
each elementary mode were combined using a genetic algorithm

(Schwarz et al., 2005) and steepest descent methods (Cecil et al.,
2011) to minimize the error of the squared differences between
calculated and approximated enzyme activity. Integration of gene
expression data provides an acceptable way to calculate fluxes for
those parts of the metabolic network which cannot be validated
by directly measured metabolic data. We know that the average
error for the flux value calculated from gene expression data
is around 5–10% for the network, if a large scale data set is
available and used on the pathways of interest and the simulation
converges. This was validated by looking at and measuring
differences in metabolite concentrations for the calculated flux
values in several of our studies in infection biology (Cecil et al.,
2011, 2015).

Recent studies have shown that the fungus A. fumigatus in its
aerial grown biofilm-like state exhibits reduced susceptibility to
antifungal drugs and undergoes major metabolic changes that
are thought to be associated with virulence. These differences
in pathological and physiological characteristics between biofilm
and liquid shake conditions strengthen the notion that the
planktonic state condition is a poor in vitro disease model.
We therefore also used actual biofilm gene expression data
from Muszkieta et al. (2013) for comparative calculations to
the planktonic state datasets. Calculations were performed with
YANAvergence as detailed in Materials and Methods to provide
the resulting planktonic state fluxes (Supplementary File 2) and
the gene expression under biofilm conditions (Supplementary
File 4). That convergence was achieved and the data of the
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predicted fluxes correlate well with the gene expression data
is shown in Supplementary File 3 (for the planktonic state)
and Supplementary File 5 (for biofilm formation). Note that
this calculation also reveals which enzymes in A. fumigatus
are growth condition-specific higher or lower active (regarding
their fluxes) as predicted just according to the gene expression
data (all the points which are above the diagonal show higher
gene expression (“experiment”) then their calculated flux; see
Supplementary Files 3, 5). Points below the diagonal indicate
stronger flux then expected from the experimental data on gene
expression. The detailed datasets are provided in Supplementary
File 2 (planktonic growth, left: enzyme name, mapping to gene
identifiers is given in Supplementary Table 19; middle: flux values
compared to gene expression, right and the resulting regulatory
difference, very right) and Supplementary File 4 (biofilm growth).

Target Ranking and Identification
According to the metabolic modeling we performed, pathways
differentially regulated correlating with the biofilm gene
expression datasets include: glycolysis (down-regulated) and
gluconeogenesis (up-regulated, see for example: enolase flux is
in the correct direction); down-regulatedlipid, fatty acid, and
isoprenoid metabolism up-regulated, in particular ergosterol
and cell wall synthesis, pentose phosphate cycle, nucleotide
metabolism (signaling molecules), amino acid metabolism
up-regulated and vitamin and cofactor metabolism down-
regulated, several degradation pathways upregulated (Table 1).
Such strongly induced genes qualify (see M&M; prioritization of
targets) as potentially interesting targets for antimycotics as they
are essential for growth, emerging from this approach as these
enzymes carry a strong flux under biofilm formation (in that
sense these are named “pace maker enzymes” as they determine
the flux value and how strong this pathway is active). The Table 1
only provides examples for the top enzymes identified by this
criterion. For optimal results, however, all criteria have to be
compared and combined (see Results, part 4). In particular,
we also considered from this approach the results from the
elementary mode analysis and identified enzymes essential for
growth by providing building blocks of primary metabolism
required for growth.

Targets from an Enzyme Regulation-Based Strategy
We next show the flow chart for the enzyme regulation-based
strategy (Figure 2). First, we use available transcriptome data to
verify the quality and potential of the suggested genes and their
resulting proteins as antifungal targets. To analyze transcriptome
data two different conditions are usually compared: A specific
expression condition X marking the specific experimental
significant genotype/sample type and for comparison the control
or background samples. The comparison results in a list of
differential expressed genes. The user can apply different filters to
identify promising targets shared or exclusive for one condition,
up- or down regulation and of course the “no orthologs in man”
criterion (to avoid side effects in man). Genes which are robustly
expressed under many different conditions (true housekeeping
genes) represent another possible targeting strategy.

Differential expressed genes can then be placed on the list
of potential targets resulting from the scoring and filtering
procedure. Those genes aligning with the target list are filtered
regarding URGs which are considered as promising targets. The
screen for different genes upregulated in the transcriptome for
conditions such as iron deficiency (details in Supplementary File
8; Schrettl et al., 2010), hypoxia adaptation (see Supplementary
File 7; Willger et al., 2008) and invasion initiation conditions
(Supplementary File 6; McDonagh et al., 2008) shows different
prominent metabolic genes significantly (p < 0.05, multiple
testing condition) up- (red) or down-regulated (green) under
these condition (Table 2), the control is always wild type. This
allows for the identification of genes which are crucial for survival
(highly expressed) under those challenging conditions, as an
antimycotic will be a similar stress. By targeting the major players
involved in metabolic adaptation, we increase the likelihood of
a strong inhibitory effect that may stop metabolism, inhibiting
all growth and eventually killing the cell. This transcriptome-
based target identification has also promise for a quite different
strategy, targeting those genes which are critical for maximum
growth under optimal conditions (green entries in Table 2).

Target Ranking and Identification
The following top enzyme targets were predicted from this
approach, zooming in on lipid metabolism and amino acid

TABLE 1 | Top Targets from metabolic modeling to target pathogen metabolisma.

Pathway Target by pace maker enzyme Validated by flux analysis

Vitamin Riboflavin RIB1 Yes

Nucleotide Pyrimidin Carbamoyl synthetase Yes

Lipid Ergosterol and Ergosterol synthetase Yes

Cell wall synthesis Yes

Carbohydrates Glycolysis Aldolase, enolase Yes

Pentose Phosphate Cylce Transketolase Yes

aSummary of pathways and their primary metabolites investigated as well as important enzymes which posses a capability as pace maker in their pathway (middle column) and whether

they could be validated by flux analysis, and are therefore considered as prioritized targest. Furthermore, there is evidence from other systems, e.g., overexpression of the first gene

of the riboflavin biosynthetic pathway (RIB1) is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant in Pichia pastoris (Marx et al., 2008).

Validation by flux analysis is given in detail in Supplementary Material (Supplementary Tables 2, 4) indicating that the pathway did undergo expression changes comparing the different

data sets against each other in the flux calculations.
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TABLE 2 | Metabolic gene expression under iron deficiency, invasion initiation, and hypoxia compared to controla.

Iron deficiency In vivo Hypoxia adaptation Pathway Annotation

Sup6

AFUA_3G04210 1.052 −1.058 −1.474 FA Fatty acid synthase alpha subunit FasA

AFUA_3G04220 1.153 −1.971 n.s. FA Fatty acid synthase beta subunit

AFUA_3G09290 −0.706 −0.719 1.479 AA Phosphoglycerate mutase, 2,3-bisphosphoglycerate-independent

AFUA_3G06830 n.s. −1.684 0.945 AA Aspartate-semialdehyde dehydrogenase

AFUA_1G14570 n.s. 1.042 −2.718 AA Phosphoribosyl-AMP cyclohydrolase

AFUA_4G06460 n.s. 2.834 n.s. AA Pentafunctional AROM polypeptide

AFUA_3G14490 n.s. −1.401 −1.574 AA Ketol-acid reductoisomerase

AFUA_5G05590 n.s. −1.060 1.703 AA Aspartokinase

AFUA_5G05820 n.s. −2.065 1.107 AA Homoserine kinase

AFUA_6G12400 n.s. −0.031 −1.568 SUC 1,3-beta-glucan synthase catalytic subunit FksP

Sup2

AFUA_6G11390 −0.926 0.459 −2.196 1,3-beta-glucanosyltransferase Gel2

AFUA_3G11070 0.987 −4.248 n.s. GLU Pyruvate decarboxylase PdcA

AFUA_2G10740 n.s. −1.164 n.s. VIT Thiamin biosynthesis protein (Thi-4)

AFUA_5G12190 n.s. −4.310 −0.817 Transcription initiation factor subunit (TAF30)

AFUA_4G09660 n.s. 1.849 n.s. Secretory component protein shr3

AFUA_6G12400 n.s. −0.031 −1.568 SUC 1,3-beta-glucan synthase catalytic subunit FksP

AFUA_1G06700 n.s. −1.705 n.s. Metacaspase CasA

AFUA_3G14140 0.367 −1.273 −1.262 Metacaspase CasB

AFUA_4G13340 n.s. −0.008 −1.412 DUF907 domain protein

AFUA_2G17650 −0.523 2.921 −2.795 DUF907 domain protein

AFUA_2G17300 n.s. 4.050 1.057 GSH Glutathione S-transferase

AFUA_2G09040 n.s. 1.360 1.053 Vacuolar transporter chaperone (Vtc4)

AFUA_2G04010 n.s. −1.125 1.182 SUC Alpha,alpha-trehalose-phosphate synthase subunit

ESSENTIAL GENES

AFUA_3G14440 0.916 −1.174 n.s. Cytochrome c oxidase family protein

AFUA_4G10480 n.s. −2.375 1.812 Mitochondrial large ribosomal subunit protein L30

logFC: -1 0/NA 1

aOnly genes are listed that resulted from two ranking functions (RhumPDB + Expression, Supplementary Table 14; DegreeRank + BetweennessRank, Supplementary Table 10) and

additionally show a high logarithmic fold change of >1.0 in their expression in at least one of the included datasets under consideration of only entries with a p < 0.05. Up-regulated

genes are colored in varying shades of red to illustrate their specific expression change. Down-regulated genes are colored in shades of green, with increasing intensity toward negative

regulation. The Datasets were taken from: [McDonagh et al., 2008 (1); Schrettl et al., 2010 (2); Willger et al., 2008 (3)]. Pathway abbreviations: FA, fatty acid metabolism; AA, amino acid

metabolism; SUC, sugar modifications; GSH, glutathione metabolism; GLU, gluconeogenesis.

metabolism and considering only significantly differentially
expressed genes (p < 0.05) and only strongly regulated
genes (logFC > 1) and ranking all genes and potential targets
accordingly.

Fatty acid synthases are down-regulated in vivo and
under hypoxic conditions but up-regulated under iron
deficiency conditions. In contrast, phosphoglycerate mutase and
aspartokinase, and homoserine kinase (amino acid metabolism)
are down-regulated in vivo, while they are up-regulated under
hypoxia adaptation. Furthermore, in vitamin metabolism,
thiamin biosynthesis proteins stand out, showing a negative
regulation under in vivo condition (similar to the biofilm
condition investigated in results, part 1). Finally, several cell wall
carbohydrate metabolism genes stand out as strongly regulated
and induced both for invasion and under hypoxia, such as
glutathione S-transferase and the vacuolar transporter chaperone
(Vtc4).

In summary, in this pipeline we show only targets according to
one simple but clear criterion: High expression under infection-
associated conditions as detailed above. However, other criteria
help to identify alternative targets. As detailed in methods,
we are currently screening for new targets with constant and
high expression under several conditions, representing so-called
housekeeping genes. As this involves analysis of much more
transcriptome data sets, a definite list of metabolic target enzymes
will be generated during future efforts.

Targets from Protein-Protein
Interaction-Based Targeting of Metabolism
As a third line of research we considered an interactome-based
approach. Figure 5 shows the protein-protein interaction-based
drug targets.

The final interactome of A. fumigatus after considering the
domain-domain interaction database (DDI) and localization
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FIGURE 5 | Interactome view of metabolic proteins for antifungal targeting. Red color nodes depict the network based drug targets in A. fumigatus

interactome. The targets associated with the metabolism are shown with big red nodes with associated metabolic pathway annotation.

filtering consists of 1903 nodes and 4743 PPIs and its interactome
relation is given in Supplementary Table 9 (the interactome
can also be analyzed in detail for hub proteins, bystanders,
diameter, GO-categories etc., hence this data is made available
here for such different research questions). The topologically
important top 20% proteins were selected based on cumulative
rank of hub degree rank and betweenness rank. Among these, 21
proteins were found to lack any significant similarity with human
proteins, and are therefore proposed as preliminary network
based drug targets (Table 3A). A subnetwork consisting of the
proposed network based drug targets is shown in Figure 5. Out
of 21 targets seven were annotated to be involved in metabolic
pathways.

After consideration of the added Ranking scores from Degree
Rank and Betweenness Rank and sorting of the resulting list we
re-ranked the genes regarding their position. The five best hits
include (1) 1,3-beta-glucosyltranferase Gel2 (AFUA_6G11390),
(2) phosphate transporter (Pho88, AFUA_5G01960), (3) DUF6
domain protein (AFUA_1G09310), (4) pyruvate decarboxylase
PdcA (AFUA_3G11070) as well as (5) high osmolarity signaling
protein Sho1 (AFUA_5G08420).

In the subsequent analysis we determined a further ranking
based on RhumPDB data and expression by calculation of the
RhumPDB Score (Table 3B). The combination of those two
values by adding them up lead us to a new rank. We then
assigned them a priority order related to their position in
the list. The five top hits resulting from this method are (1)

chorismate synthase (AFUA_1G06940), (2) fatty acid synthase
alpha subunit FasA (AFUA_3G04210), (3) urate oxydase
UaZ (AFUA_2G10520), (4) glutamine amidotransferase:cyclase
(AFUA_2G06230), and (5) fatty acid synthase beta subunit
(AFUA_3G04220).

Hence, a total of 65 proteins were predicted to be important
based on orthology with DEG(“database of essential genes”)-
derived proteins.

Genes in the DEG database were included if they had scored
to be essential for one organism under a specific condition. In
general, essentiality depends very much on the environmental
condition tested. Instead, the sequence similarity to the DEG
entry can be determined by objective criteria. It is thus hard
to predict essentiality of the A. fumigatus homolog. For the
A. fumigatus genes we hence used DEG only to identify
functionally conserved and probably important metabolic genes.
Two preliminary targets identified in this way include the 50S
ribosomal protein (AFUA_4G10480) and a cytochrome c oxidase
family protein (AFUA_3G14440) that participates in oxidative
phosphorylation.

Target Ranking and Identification
A total of 130 metabolism-associated A. fumigatus proteins were
identified and subsequently parsed and prioritized regarding
contained top targets (see Materials and Methods). The gene
expression of predicted potential targets in the infection
condition (Bertuzzi et al., 2014) was used to rank the genes
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TABLE 3 | Results from two different ranking functions of the interactome pipelinea.

A I II III IV

Gene Degree

Rank

Betweenness

Rank

De+Be

Rank

ReRanking Annotatiom

AFUA_6G11390 36 91 127 1 1,3-beta-glucanosyltransferase Gel2

AFUA_5G01960 8 119 127 1 Phosphate transporter (Pho88)

AFUA_1G09310 68 79 147 2 DUF6 domain protein

AFUA_3G11070 52 96 148 3 Pyruvate decarboxylase PdcA

AFUA_5G08420 124 55 179 4 High osmolarity signaling protein Sho1

AFUA_3G12800 137 60 197 5 Clathrin-coated vesiclec protein (Bud7)

AFUA_2G10740 94 108 202 6 Thiamin biosynthesis protein (Thi-4)

AFUA_5G12190 220 92 312 7 Transcription initiation factor subunit

(TAF30)

AFUA_4G09660 19 310 329 8 Secretory component protein shr3

AFUA_2G12230 261 135 396 9 Mitochondrial large ribosomal subunit

protein L16

AFUA_6G12400 261 142 403 10 1,3-beta-glucan synthase catalytic subunit

FksP

AFUA_3G12320 307 117 424 11 Lipase/serine esterase

AFUA_1G06700 220 235 455 12 Metacaspase CasA

AFUA_3G14140 220 235 455 12 Metacaspase CasB

AFUA_4G13340 261 213 474 13 DUF907 domain protein

AFUA_2G17650 261 213 474 13 DUF907 domain protein

AFUA_2G17300 261 220 481 14 Glutathione S-transferase

AFUA_1G17010 261 220 481 14 Glutathione S-transferase

AFUA_2G09040 307 195 502 15 Vacuolar transporter chaperone (Vtc4)

AFUA_2G04010 220 302 522 16 Alpha, alpha-trehalose-phosphate

synthase subunit

AFUA_6G12950 220 302 522 16 Trehalose-phosphate

synthase/phosphatase complex subunit

Tps1, putative

B I II III

Gene Priority

order

New Rank

(II+III)

RhumPDB

RANK

Expression

RANK

RhumPDB_score Regulation,

(Bertuzzi et al.,

2014)

Annotation

AFUA_1G06940 1 11 1 10 183.000 UP Chorismate synthase

AFUA_3G04210 2 40 1 39 183.000 – Fatty acid synthase alpha subunit FasA

AFUA_2G10520 2 40 1 39 183.000 – Urate oxydase UaZ

AFUA_2G06230 3 41 2 39 180.716 – Glutamine amidotransferase:cyclase

AFUA_3G04220 4 43 4 39 178.380 – Fatty acid synthase beta subunit

AFUA_3G09290 5 52 13 39 149.637 – Phosphoglycerate mutase,

2,3-bisphosphoglycerate-independent

AFUA_6G04700 5 52 37 15 71.699 UP Imidazoleglycerol-phosphate dehydratase

AFUA_3G06830 6 55 16 39 142.097 – Aspartate-semialdehyde dehydrogenase

AFUA_1G14570 7 57 18 39 122.634 – Phosphoribosyl-AMP cyclohydrolase

AFUA_5G06160 8 66 27 39 93.000 – 5-proFAR isomerase His6

AFUA_5G13130 9 77 38 39 70.079 – Chorismate mutase

AFUA_2G10740 10 85 46 39 54.176 – Thiamin biosynthesis protein (Thi-4)

AFUA_4G06460 10 85 83 2 5.301 UP Pentafunctional AROM polypeptide

AFUA_3G14490 11 94 55 39 46.813 – Ketol-acid reductoisomerase

AFUA_5G05590 12 102 48 54 52.301 DOWN Aspartokinase

(Continued)
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TABLE 3 | Continued

B I II III

Gene Priority

order

New Rank

(II+III)

RhumPDB

RANK

Expression

RANK

RhumPDB_score Regulation,

(Bertuzzi et al.,

2014)

Annotation

AFUA_1G05530 13 105 60 45 39.523 DOWN Uridine nucleosidase Urh1

AFUA_5G05820 13 105 66 39 25.362 – Homoserine kinase

AFUA_4G04030 14 109 70 39 14.660 – Histidinol-phosphatase

AFUA_4G11980 15 114 63 51 33.665 DOWN Anthranilate phosphoribosyltransferase

AFUA_6G12400 16 140 101 39 −0.513 – 1,3-beta-glucan synthase catalytic subunit

FksP

AFUA_4G13680 17 167 117 50 −5000.000 DOWN Phosphatidylserine synthase

List of promising targets from two different ranking procedures. Table (A) describes the results of the first ranking calculation considering the genes degree rank (A.I) as well as its

subsequent betweenness rank in the metabolic pathway (A.II). The added values from (A.I) and (A.II) are listed in (A.III). (A.IV) contains the re-ranking based on column (A.III). Table (B)

proceeds with calculation of a RhumPDB Rank (B.II), an expression rank (B.III, Bertuzzi et al., 2014) and a final addition of those two values, leading to the new ranking (B.I). The resulting

order illustrates the priority of the target in context with the metabolic function, the expression and the three dimensional structure of the protein. For detailed description see Materials

and Methods.

according to their importance in infection and metabolism. The
genes that were highly expressed at all four time point were
given top priority (mean significant differential expression) then
the gene highly expressed at three time points were ranked
and so further on. A top expression rank represents a high
gene expression at all time points during invasive infection
(Supplementary Table 11). We also analyzed the RhumPDB score
for targets and together with expression rank this score was used
for prioritization. The score represents the normalized log10
ratio of BlastP e-value of A. fumigatus vs. human proteome
and A. fumigatus vs. current PDB structures (Supplementary
Table 12). The RhumPDB score orders the targets based on
their higher closeness to crystallized PDB structures and their
lack of similarity to human proteins. As a final reduction of
the targets we implemented sequence similarity searches of
A. fumigatus against human proteins by blast to avoid any
off-targets. The genes/enzymes catalyzing the reactions that
can also be catalyzed by alternative enzymes are indicated.
Therefore, we also ignored such enzymes from our target list.
The RhumPDB score and expression rank of the analyzed 130
metabolic proteins is listed in Supplementary Table 13. The
final list consists of 22 proposed targets from fungal metabolic
pathways (Supplementary Table 14).

As an example for a target list entry, PdcA (Pyruvate
decarboxylase, AFUA_3G11070), participates in biofilm
formation, which is represented by data from Muszkieta et al.
(2013). PdcA is down-regulated three fold during biofilm
formation. Hence, in principle, this target could also be picked
up by a transcriptomics approach, but only if a different filter
from our example is used, for instance strongly regulated genes,
comparing wild type and biofilm formation. Other genes in
our current list are not differentially expressed according to the
Muszkieta dataset, so they are complementary found to those
targets from the transcriptomic approach if using the filters just
given.

The RhumPDB rank of this gene is 55, however, the protein
is downregulated during invasive aspergillosis conditions and

upregulated under iron limiting conditions, henceforth it might
be possibly represent a valid target. AFUA_3G04210 (FasA Fatty
acid synthase A) and AFUA_3G04220 (FasB Fatty acid synthase
beta subunit) with RhumPDB rank of 1 and 4, respectively,
significant expression changes, up-regulation in iron limiting
condition and downregulation during invasion might be further
promising targets. AFUA_3G14440 (cytochrome c oxidase family
protein) from DEG can be examined as supported by expression
changes under both tested conditions. These proteins would be
the most interesting ones from this refined interaction-based
pipeline to identify targets in the pathogen metabolism network
(Figure 5).

In summary, we considered only top ranked proteins
from each of the three sub-pipelines using interactomic data
considering whether the target was connected to metabolism:
either using structure and RhumPDB score (top seven targets
all metabolic), or using combined degree rank and betweenness
rank (top five targets given) as well as functional important,
non-orthologous genes in the interactome (top two targets
included).

Identified Top Targets using Expert
Knowledge and Combined Evaluation of
the Three Pipelines
In general, however, detailed knowledge and extensive data
support the target strategy, which is in fact essential for any new
antifungal development. We show this now combining our three
pipelines: metabolic pathway modeling and flux calculations,
gene expression, and transcriptome data onmetabolic adaptation
as well as network modeling and protein interactions. All three
focus on the following metabolic areas: (a) vitamin synthesis, (b)
lipid synthesis, and (c) biosynthesis of amino acids. This focus
was chosen as A. fumigatus differs in these pathways significantly
from the host, which is of course a simplified search for metabolic
targets. However, for a direct comparison of the three pipelines
(and sub-pipelines) this focus is valid as it allows to combine and
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TABLE 4 | Top Targets from protein-protein interaction-based targeting of metabolisma.

Iron deficiency In vivo Hypoxia adaptation Pathway Annotation

Sup14

AFUA_3G04210 1.052 −1.058 −1.474 FA Fatty acid synthase alpha subunit FasA

AFUA_3G04220 1.153 −1.971 n.s. FA Fatty acid synthase beta subunit

AFUA_3G09290 −0.706 −0.719 1.479 AA Phosphoglycerate mutase, 2,3-bisphosphoglycerate-independent

AFUA_1G14570 n.s. 1.042 −2.718 AA Phosphoribosyl-AMP cyclohydrolase

AFUA_4G06460 n.s. 2.834 n.s. AA Pentafunctional AROM polypeptide

AFUA_5G05590 n.s. −1.060 1.703 AA Aspartokinase

AFUA_5G05820 n.s. −2.065 1.107 AA Homoserine kinase

Sup10

AFUA_4G09660 n.s. 1.849 n.s. Secretory component protein shr3

AFUA_2G17650 −0.523 2.921 −2.795 DUF907 domain protein

AFUA_2G17300 n.s. 4.050 1.057 GSH Glutathione S-transferase

AFUA_2G09040 n.s. 1.360 1.053 SUC Vacuolar transporter chaperone (Vtc4)

AFUA_2G04010 n.s. −1.125 1.182 Alpha, alpha-trehalose-phosphate synthase subunit

ESSENTIAL GENES

AFUA_3G14440 0.916 −1.174 n.s. Cytochrome c oxidase family protein

AFUA_4G10480 n.s. −2.375 1.812 Mitochondrial large ribosomal subunit protein L30

logFC: -1 0/NA 1

aResults of comparison of orthology results and transcriptomic results in consideration of metabolic function. Only differentially expressed genes with a confidence p <0.05 are shown.

Up-regulated genes are colored in varying shades of red to illustrate their specific expression change. The Datasets were taken from: [McDonagh et al., 2008 (1); Schrettl et al., 2010 (2);

Willger et al., 2008 (3)]. Pathway abbreviations: FA, fatty acid metabolism; AA, amino acid metabolism; SUC, sugar modifications; GSH, glutathione metabolism; GLU, gluconeogenesis.

compare results from all three approaches pertaining to the same
pathways (Table 4). The top seven genes where selected from the
resulting list of the structure analysis methodology, calculating
the RhumPDB score to assess the quality of the target suggestion.
Using this calculation the most accurate results can be obtained
(Table 4; Supplementary 14). All of the listed genes are involved
in metabolic pathways.

Furthermore, we selected the top five of the resulting genes
from network analysis strategy. Two of them are also known
to participate in metabolic pathways. This methods accuracy is
highly depending on the network structure to calculate valid
targets but nevertheless could give two new metabolic targets
(Table 4; Supplementary 10).

The remaining method of the pipeline is relevant for the
assessment of essential genes with no human orthologs. The
two best hits can be easily assigned to a metabolic pathway
(Table 4; essential genes) and hence can be assumed as valid
target candidates for antifungal therapy.

Using the results of the analysis for differentially expressed
genes in three different datasets (McDonagh et al., 2008; Schrettl
et al., 2010, accession GSE22052; Willger et al., 2008, accession
GSE12376), we used a stringent cutoff of a p-value of 0.05
and a logarithmic fold change of >1.0 or respective < −1.0
(Table 4).

In a first approach we mapped the resulting genes from
Supplementary Table 10 and Supplementary Table 14 onto the
gene expression results from Supplementary Tables 6–8. In
addition to the resulting list from Supplementary Tables 10,
14 we also included some genes which according to common
knowledge (DEG, Luo et al., 2013) are considered as essential.

Table 5 contains thus all genes that show differential expression
values as well as significant regulation (logFC > 1; logFC < −1).

Further targets which have no or only low orthology to
human ones and additionally show high expression change in at
least one condition (iron deficiency, in vivo/invasion initiation,
hypoxia adaptation) are shown in the list. We also included
two essential genes, AFUA_3G14440 and AFUA_4G10480.
Additionally we considered enzymes which have metabolic
pathway neighborhood to already known (according to literature
and biochemical data) promising antimycotic targets, as targeting
further members of such a known pathway promising to be
targeted by an antimycotic may yield further attractive targets
(Table 5).

Target Ranking and Identification Considering All

Approaches
Table 5 only shows new targets remaining after selection in the
pipeline and its major steps: (a) the metabolic pipeline, (b) the
orthology analysis (Supplementary Tables 10, 14), and (c) the
transcriptome dataset analysis (logFC >/< 1.0/-1.0; p < 0.05).
The results of the metabolic model simulations are shown in
an additional column, listing the pathway annotations of the
proteins (as far as known) as well as their predicted activation
(red: positive, green: negative). We show only the targets with a
top rank which were still (after filtering as above) considered by
our analysis to be worth testing experimentally. This list of 64
targets is thus not further ranked as in the interactome pipeline
(ranking see above) but rather the top targets from all approaches
are considered equally.
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TABLE 5 | Singled out best targets from the combined pipeline regarding A. fumigatusa.

Gene Iron

deficieny

In vivo Hypoxia

adapt.

Metabolic

category

Evidence in

literature

Genetic

test

worthwhile

Currently

tested

Annotation

Sup6

AFUA_1G06940 0.000 0.820 −1.855 AA 19 Chorismate synthase (ARO2)

AFUA_3G04210 1.052 −1.058 −1.474 FA 1 Fatty acid synthase alpha subunit FasA

AFUA_2G10520 0.000 −0.757 −3.258 CAF 2.3 Urate oxydase UaZ

AFUA_2G06230 0.000 −1.210 0.000 AA 4 Glutamine amidotransferase:cyclase (HisH/F)

AFUA_3G04220 1.153 −1.971 0.000 FA 1 Fatty acid synthase beta subunit (FasB)

AFUA_3G09290 −0.706 −0.719 1.479 AA Phosphoglycerate mutase,

2,3-bisphosphoglycerate-independent

AFUA_6G04700 0.000 −1.013 1.162 AA;GLU Imidazoleglycerol-phosphate dehydratase (HisB)

AFUA_3G06830 0.000 −1.684 0.945 AA;GLU Aspartate-semialdehyde dehydrogenase (HOM2)

AFUA_1G14570 0.000 1.042 −2.718 AA_HIS Phosphoribosyl-AMP cyclohydrolase (HIS4)

AFUA_5G06160 0.000 NA 0.000 AA_HIS 5-proFAR isomerase (HIS6)

AFUA_5G13130 0.000 0.037 0.000 AA_a 5 19 Chorismate mutase (AroC)

*AFUA_2G10740 0.000 −1.164 0.000 THI Thiamin biosynthesis protein (Thi-4)

AFUA_4G06460 0.000 2.834 0.000 AA_a Pentafunctional AROM polypeptide (ARO1)

AFUA_3G14490 0.000 −1.401 −1.574 AA Ketol-acid reductoisomerase (ILV5)

AFUA_5G05590 0.000 −1.060 1.703 AA_s Aspartokinase (HOM3)

AFUA_1G05530 0.000 0.147 0.000 PYR Uridine nucleosidase Urh1

AFUA_5G05820 0.000 −2.065 1.107 AA_s Homoserine kinase (THR1)

AFUA_4G04030 0.000 NA 0.000 AA_HIS Histidinol-phosphatase (HIS2)

AFUA_4G11980 0.000 0.083 0.000 AA_a Anthranilate phosphoribosyltransferase (TRP4)

*AFUA_6G12400 0.000 −0.031 −1.568 GLU 6 1,3-beta-glucan synthase catalytic subunit FksP

AFUA_4G13680 0.000 −0.112 0.000 AA_s Phosphatidylserine synthase

Sup2

AFUA_6G11390 −0.926 0.459 −2.196 7 1,3-beta-glucanosyltransferase Gel2

AFUA_5G01960 −0.685 −0.353 −0.981 8 Phosphate transporter (Pho88)

AFUA_1G09310 0.000 0.021 0.000 DUF6 domain protein

AFUA_3G11070 0.987 −4.248 0.000 GLU Pyruvate decarboxylase PdcA

AFUA_5G08420 −0.830 −0.213 0.000 MAPK 9 High osmolarity signaling protein Sho1

AFUA_3G12800 0.000 −0.645 0.000 Clathrin-coated vesiclec protein (Bud7)

*AFUA_2G10740 0.000 −1.164 0.000 THI Thiamin biosynthesis protein (Thi-4)

AFUA_5G12190 0.000 −4.310 −0.817 Transcription initiation factor subunit (TAF30)

AFUA_4G09660 0.000 1.849 0.000 Secretory component protein shr3

AFUA_2G12230 0.000 −0.415 0.924 Mitochondrial large ribosomal subunit protein L16

*AFUA_6G12400 0.000 −0.031 −1.568 SUC 6 1,3-beta-glucan synthase catalytic subunit FksP

AFUA_3G12320 0.000 0.506 0.837 Lipase/serine esterase

AFUA_1G06700 0.000 −1.705 0.000 10 Metacaspase CasA

AFUA_3G14140 0.367 −1.273 −1.262 10 Metacaspase CasB

AFUA_4G13340 0.000 −0.008 −1.412 DUF907 domain protein (FlcA)

AFUA_2G17650 −0.523 2.921 −2.795 DUF907 domain protein (FlcA)

AFUA_2G17300 0.000 4.050 1.057 GSH Glutathione S-transferase

AFUA_1G17010 0.000 0.681 0.000 GSH Glutathione S-transferase

AFUA_2G09040 0.000 1.360 1.053 vacuolar transporter chaperone (Vtc4)

AFUA_2G04010 0.000 −1.125 1.182 SUC 11 Alpha, alpha-trehalose-phosphate synthase

subunit (tpsA/B)

AFUA_6G12950 0.327 −0.773 0.000 SUC 11 Trehalose-phosphate synthase/phosphatase

complex subunit Tps1

(Continued)
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TABLE 5 | Continued

Gene Iron

deficieny

In vivo Hypoxia

adapt.

Metabolic

category

Evidence in

literature

Genetic

test

worthwhile

Currently

tested

Annotation

ESSENTIAL GENES

AFUA_3G14440 0.916 −1.174 0.000 Cytochrome c oxidase family protein

AFUA_4G10480 0.000 −2.375 1.812 Mitochondrial large ribosomal subunit protein L30

FURTHER CONSIDERED TARGETS

AFUA_2G15970 0.000 −1.561 0.000 PCS Phosphatidylethanolamine N-methyltransferase

AFUA_5G05690 0.000 2.177 0.000 AA Prephenate dehydratase

AFUA_1G02110 −0.832 0.086 0.000 AA_a 3-deoxy-7-phosphoheptulonate synthase

AFUA_7G04500 0.000 0.415 0.000 AA_HIS ATP phosphoribosyltransferase

AFUA_3G11640 0.000 0.914 0.986 AA Homoserine dehydrogenase

AFUA_4G10460 0.589 −0.266 2.419 AA Homocitrate synthase

AFUA_5G07210 0.000 −0.588 1.909 AA Homoserine O-acetyltransferase

AFUA_4G07360 −0.622 0.052 0.000 AA Methionine synthase

AFUA_6G02860 0.000 1.827 1.566 GLU 12 2-methylisocitrate lyase

AFUA_6G03730 −0.668 2.433 1.286 AA 2-methylcitrate hydrolyase

AFUA_1G09050 0.000 −1.883 0.000 PCS 13 Methylene-fatty-acyl-phospholipid synthase

AFUA_4G12990 0.000 1.271 0.000 14–16 Thioredoxin reductase

AFUA_2G11290 −0.452 −0.573 0.000 Orotate phosphoribosyltransferase 1

AFUA_4G12600 0.000 −0.294 2.812 Phosphoribosylaminoimidazole carboxylase

AFUA_3G05650 0.000 0.474 1.158 17 Trehalose-phosphatase

AFUA_7G01220 0.000 −1.010 1.083 Squalene synthase

AFUA_5G10680 0.000 −0.203 0.000 Phosphomevalonate kinase

AFUA_3G05730 0.000 0.024 0.000 Nicotinate mononucleotide pyrophosphorylase

AFUA_5G08120 −0.402 3.931 1.030 Glutamate N-acetyltransferase

AFUA_2G10660 −1.133 −0.890 0.000 18 Mannitol-1-phosphate 5-dehydrogenas

logFC: -3 0/NA 3

*Gene result in Sup10 + Sup14.
aThe heat map visualizes the logarithmic fold change in expression of respective genes. Green color depicts a negative regulation compared to control, red color a positive. White

cells in the heatmap are considered to show significant (p > 0.05) expression changes. Yellow colors indicate new promising targets. Mutants currently tested by us and thus already

available are shown by a blue box. Genes already successfully tested contain numbered literature references: (1) Edwards et al., 1998, (2) Oestreicher et al., 1993, (3) Oestreicher and

Scazzocchio, 1993, (4) Valerius et al., 2001, (5) Krappmann et al., 1999, (6) Dichtl et al., 2015, (7) Mouyna et al., 2005, (8) de Gouvêa et al., 2008, (9) Ma et al., 2008, (10) Richie et al.,

2007, (11) Al-Bader et al., 2010, (12) Brock, 2005, (13) Tao et al., 2010, (14) Schrettl et al., 2010, (15) Bruns et al., 2010, (16) Shi et al., 2012, (17) Puttikamonkul et al., 2010, (18)

Ruijter et al., 2003, (19) Sasse et al., 2016. Pathway abbreviations: FA, fatty acid metabolism; AA, amino acid metabolism (aromats: AA_a; serin: AA_s; histidine: AA_HIS); SUC, sugar

modifications; GSH, glutathione metabolism; THI, thiamin biosynthesis; GLU, gluconeogenesis.

Nevertheless, this analysis result might be classified further.
In particular, some of the new targets are already well
described in literature (see references in Table 5) and published
evidence (e.g., essential gene) supports them as promising
targets. In those cases where such validating evidence exists,
the entry was marked referring to the literature listed in the
table legend. Further testing of those already known genes
should next focus on identifying lead compounds to target
them. The remaining genes were considered regarding their
suitability as potential candidates by affiliation to any important
metabolic pathway and supporting biological knowledge. The
genes that preserved thus their potential are marked by a
colored box in column (“genetic test worth doing”). Yellow
labeled entries denote potential candidates, while blue labeled
entries are candidates that currently are under our experimental
evaluation (e.g., AFUA_3G09290). Furthermore, blue boxes
containing a black dot indicates candidates studied with a
conditional expression system in the course of our experimental

evaluation (AFUA_1G06940, AFUA_2G10520, AFUA_6G04700,
AFUA_5G13130). Moreover, two of those genes could already be
verified regarding their importance for fungal in vivo growth and
can be considered as promising potential drug targets (Sasse et al.,
2016).

We hence see in Table 5 several potential targets, many being
validated in literature: specifically some proteins connected
to amino acid biosynthesis and fatty acid biosynthesis
are already confirmed as good targets and well-studied
(UaZ, AFUA_2G06230; AroC, AFUA_5G13130; FasA,
AFUA_3G04210; FasB, AFUA_3G04220). Recent results
validated our predictions regarding targets of the shikimate
pathway (Sasse et al., 2016). The predicted and experimentally
validated targets chorismate synthase (ARO2, AFUA_1G06940)
and chorismate mutase (AroC, AFUA_5G13130) show a high
potential as antimycotic. From our results we can even derive
a more general strategy (see our Summary Table 5): Targeting
specifically expanded protein families of the fungal pathogen
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that are connected to its metabolism. For A. fumigatus this is for
instance a phosphate transporter like Pho88 (AFUA_5G01960),
a protein participating in inorganic phosphate acquisition.
In fact, Pho88 was already studied in A. nidulans as well
as in A. fumigatus (de Gouvêa et al., 2008). Similarly, other
branches of primary metabolism contain promising targets
(Table 5), for instance another metabolic target would be to
disrupt phospholipid biosynthesis by targeting genes like cho1
(AFUA_4G13680) (Wolf et al., 2015).

AFUA_3G12320 lipase/serine esterase is another promising
potential drug target. It has been studied in yeast only and it
has no human homologs. Yeast homolog Lpl1 is nonessential
and exerts phospholipase B activity to play a vital role in LD
(lipid droplet) morphology, so its absence results in altered LD
size (Selvaraju et al., 2014). However, as there is no auxotrophy
and there might be redundancy with additional phospholipase
B genes. However, from a drug point of view, a phospholipase
B blocker would be considered interesting, as a drug, because it
would probably block all phospholipase B activities in general,
resulting in an inviable phenotype.

In contrast, the vacuolar transporter chaperone (Vtc4,
AFUA_2G09040) is a vacuolar membrane polyphosphate
polymerase; from Candida we know that this is a putative
polyphosphate synthetase with decreased expression in hyphae
compared to yeast-form cells; moreover, it is a fungal-specific
protein (no human or murine homolog) with a typical virulence-
factor like expression during infection. Most components of the
pathway, except this protein, are shared in all organisms; yet,
this gene itself is an essential gene target and might be explored
further.

Furthermore, somemembers of the phospholipid biosynthesis
like cho1 (AFUA_4G13680), cho2 (AFUA_2G15970), and choC
(AFUA_1G09050) (Tao et al., 2010) are also worthwhile testing,
in particular as ChoC has no human homolog. The deletion
of choC in A. nidulans was studied by Tao et al. (2010):
It results in highly restricted vegetative growth, swelling at
the hyphal tips and the complete blockage of asexual and
sexual development on culture medium lacking choline. If we
extrapolate to the clinic, this may be a promising block against
various A. fumigatus infection routes. However, in the lung,
surfactant may help to counter balance such an antimycotic,
as dipalmitoyl phosphatidylcholine (aka: lecithin) is a major
component of pulmonary surfactant, and may provide an
alternative source of phospholipids.

Finally, for this phospholipid pathway a promising, not yet
explored strategy would be to target the connected enzyme
flippase. Phosphatidylserine(s) are actively held facing the
cytosolic (inner) side of the cell membrane by the enzyme.
Specific blocking of flippase (including known A. fumigatus
variants, e.g., Z5, DRS2 flippase) should inhibit A. fumigatus
growth.

DISCUSSION

The strategy to target metabolism in fungal pathogens has
been advocated previously (e.g., Tao et al., 2010; Sasse et al.,
2016) while the combination of different omics strategies for

antimycotic pipelines can provide efficiently novel targets in these
pathways. The three approaches we combined are each whole
fields of their own: metabolic modeling, transcriptome analysis
and the study of PPI are here combined in a specific and novel
way to systematically identify targets of the human-pathogenic
mold A. fumigatus. Related work includes a detailed metabolic
analysis (Li et al., 2013) to improve itaconic acid production in
different Aspergillus species, and a first study of essential genes
according to flux models in A. fumigatus (Thykaer et al., 2009).
Regarding the latter, we present here our own detailed model on
primary metabolism and are much stricter in validating potential
targets by combining several approaches as well as testing and
including direct genetic evidence and detailed transcriptome
data. There are several exciting transcriptome studies in A.
fumigatus, in particular studies identifying invasion-related gene
expression changes (McDonagh et al., 2008; Willger et al., 2008;
Schrettl et al., 2010) and detailed analyses of PPI in fungal
infections (Lamoth et al., 2015).

The key to success in the identification of new antimycotics
is efficient implementation. For the latter this paper provides
a broad overview on available approaches, as three different
pipelines are combined and evaluated against each other. We are
not dogmatic about any of these approaches, for instance, starting
from our calculations given (see Supplementary Material) the
metabolic approach can be pushed much further to identify
new pathways (Li et al., 2013), choke modes (Rahman and
Schomburg, 2006), hub enzymes (Thadakamalla et al., 2005)
and so on as visible in related work. The same applies for the
transcriptome analysis (analyzing more and more different data-
sets). A nice example is the analysis of gliotoxin production and
attenuation in A. fumigatus (O’Keeffe et al., 2014). Analysis of
PPI networks in A. fumigatus is particularly topical (Lamoth
et al., 2015; Remmele et al., 2015). Hence, our interactome
pipeline can be further refined profiting from new interaction
data-sets which constantly appear online and in the literature.
We hence suggest here that each of these pipelines has high
potential in antimycotic target search, however, they are virtually
complementary strategies to identify key metabolic targets and
that is the underlying rationale why we combined them.

Nevertheless, there are some inherent limitations. To show
that the different pipelines work and deliver, we were rather
conservative and strict in our overall criteria: anything being
homologous to humans (even low homology) was discarded as
a potential drug target, only central metabolism was targeted
and so on. Such an approach is good for delivering certified,
strong targets and can be used to validate the different pipelines
by knowledge (see Section Drug Targets with Orthology to
Functionally Important Genes of the Results part). However,
as the results confirm, this yields also several targets that have
already been identified or are currently tested.

Hence, this has to be extended in future by more subtle
approaches. A first measure will be to loosen the strict
requirement of absent orthology to human proteins, allowing
distant homologs. Furthermore, primary metabolism is defined
by its connection and requirement for cellular growth (reason to
pick it for antimycotic design), however, it needs not to be central
in the metabolic web. In particular further areas connected to cell
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wall metabolism, virulence or, for instance, iron utilization can
and will be scrutinized further. Finally, the metabolic calculations
in particular, but also interaction screens and transcriptomics
allow more refined screening methods: this includes synthetic
lethality (hitting two targets that together stop fungal growth,
calculation for instance by metabolic flux analysis), and exerting
the full power of the transcriptomic approach by looking
at ten or more conditions to identify all metabolic genes
that are at least expressed under some specific condition.
Furthermore, there can be better targeting of auxotrophic
mutants, for instance by knowledge-based approaches and
creating toxic metabolic intermediates which stop fungal growth
in the fungus without harming the human patient. We believe
that these more sophisticated approaches will allow an even
better view on new antifungal strategies against A. fumigatus
infection.

CONCLUSIONS

Metabolism is interesting to target by novel antimycotic
substances. Three different pipelines are made available here to
investigate A. fumigatus in this respect. They validate potential
targets from metabolism according to their importance in flux
control and metabolic pathways, as key regulated enzymes
under different challenging conditions or as central metabolic
hubs with known protein structure, different from man, and, if
possible, with some drug to target it. Together, these produced
important targets, as validated by previous publications and
currently ongoing experimental tests for about half of these.
The others are made public here to allow further research and
investigations. However, we followed a conservative approach
demanding no homology to human proteins and avoiding more
complex considerations such as targeting the same pathway
twice or producing toxic intermediates. Future, more detailed
analyses will follow up also these more sophisticated options.
Additionally, the software and criteria applied can (and will) next
be applied to other parts of the metabolic map in A. fumigatus

and can also handle any other organism of interest if protein
sequences are sufficiently comprehensively known.
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