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Untargeted metabolomics is a powerful phenotyping tool for better understanding

biological mechanisms involved in human pathology development and identifying early

predictive biomarkers. This approach, based on multiple analytical platforms, such as

mass spectrometry (MS), chemometrics and bioinformatics, generates massive and

complex data that need appropriate analyses to extract the biologically meaningful

information. Despite various tools available, it is still a challenge to handle such large and

noisy datasets with limited number of individuals without risking overfitting. Moreover,

when the objective is focused on the identification of early predictive markers of clinical

outcome, few years before occurrence, it becomes essential to use the appropriate

algorithms and workflow to be able to discover subtle effects among this large amount

of data. In this context, this work consists in studying a workflow describing the general

feature selection process, using knowledge discovery and data mining methodologies

to propose advanced solutions for predictive biomarker discovery. The strategy was

focused on evaluating a combination of numeric-symbolic approaches for feature

selection with the objective of obtaining the best combination of metabolites producing

an effective and accurate predictive model. Relying first on numerical approaches, and

especially on machine learning methods (SVM-RFE, RF, RF-RFE) and on univariate

statistical analyses (ANOVA), a comparative study was performed on an original

metabolomic dataset and reduced subsets. As resampling method, LOOCV was applied

to minimize the risk of overfitting. The best k-features obtained with different scores of

importance from the combination of these different approaches were compared and

allowed determining the variable stabilities using Formal Concept Analysis. The results

revealed the interest of RF-Gini combined with ANOVA for feature selection as these

two complementary methods allowed selecting the 48 best candidates for prediction.

Using linear logistic regression on this reduced dataset enabled us to obtain the best

performances in terms of prediction accuracy and number of false positive with a

model including 5 top variables. Therefore, these results highlighted the interest of

feature selection methods and the importance of working on reduced datasets for the

identification of predictive biomarkers issued from untargeted metabolomics data.
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INTRODUCTION

Metabolomics is a powerful phenotyping tool in nutrition
research to better understand the biological mechanisms
involved in the pathophysiological processes and identify
biomarkers of metabolic deviations (Ramautar et al., 2013). It can
be described as a global analysis of small molecules present in a
biofluid (blood, urine, saliva. . . ), which are produced or modified
as a result of stimuli (nutritional intervention, drug, genetic
perturbations. . . ) (Nicholson et al., 1999; Fiehn et al., 2000).
Among different approaches, the untargeted strategy is a data
driven approach dedicated to biomarker discovery. Based on the
use of multiple analytical platforms, such as mass spectrometry
(MS), it allows detecting thousands of features and offers the
possibility of characterizing global alterations associated with
disease conditions, and of identifying early and/or predictive
biomarkers of disease development (Mamas et al., 2011).
Such platforms generate massive and complex data that need
analyses and integration to extract the biologically meaningful
information. Metabolomic data processing is probably one
of the most challenging step of this approach, because of
some intrinsic characteristics: data are generated from an
instrumental signal, noisy, and contain a high number of highly
correlated variables compared to the number of individuals.
Despite a lot of chemometrics tools available in the literature,
difficulties have been reported in the analysis process of this
high dimensionality data (Gromski et al., 2015) and there is
still a need for methods and workflows that allow obtaining
reliable results. Furthermore, when using metabolomics for
biomarker discovery, data treatment methodologies need to
model the discriminatory relationship between a two state
clinical outcome variable (such as healthy vs. diseased) and
more explanatory variables (metabolites or features). The final
objective is then to propose a short list of 1–10 biomarkers,
suitable for clinical utilization, meaning that within the
modeling process, the simplest combination of metabolites
producing a suitably effective predictive outcome has to be
found.

In this context, data mining tools, as well as machine learning
algorithms are becoming of interest to analyze these large
amounts of data and make accurate data-driven predictions.
The use of (new) methods and tools enables the discovery of
unknown patterns (or features) or relationships which can bring
useful results and hypotheses to the experts (Giudici and Figini,
2009) in an iterative process (Figure 1). The emergence over
the recent years of new metabolomics-based applications (e.g.,
high resolution MS, chemometrics methods) raised many new
challenges, demanding further theories and techniques handling
high-dimensional and complex data. Feature selection represents
an integral component to successful data mining (Liu and
Motoda, 1998; Guyon and Elisseeff, 2003). Biomarker discovery
(Drabovich et al., 2013) is one of the most fundamental and
challenging issue in feature selection (Liu and Yu, 2005; Saeys
et al., 2007; Baumgartner et al., 2011). This issue can be addressed
with a combination of different approaches from machine
learning, multi-dimensional methods, data visualization, to
statistics, such as regression techniques, and clustering and

classification to identify relevant features with a discriminative
power. Nonetheless, the selection and eventually the sequence of
the appropriate techniques can be problematic as evidenced by
several comparative studies (Gromski et al., 2014, 2015; Saccenti
et al., 2014).

Different robust supervised learning techniques are
commonly used in the analysis of metabolomics data (Issaq
et al., 2009; Boccard et al., 2010; Xi et al., 2014), like partial least
squares-discriminant analysis (PLS-DA), Principal component-
discriminant function analysis (PC-DFA), linear discriminant
analysis (LDA), Random forest (RF), and Support vector
machine (SVM), all based on recognized advantages with
specific limitations for each of the methods. RF belongs to
the family of ensemble methods (e.g., bagging, Breiman, 2001;
boosting, Freund and Schapire, 1997), and more specifically of
classification trees. Introduced in 2001 by Breiman (Breiman,
2001), this approach becomes more popular and shows high
performance for classification and discrimination in several
and various application domains (Fan et al., 2011; Patterson
et al., 2011). The principle of RF is to recursively generate a
large number of binary decision trees, each of them being built
from a bagged sample set randomly among the data. In RF, each
tree is independently constructed using a bootstrap sample of
the training data. The left out data, named out of bag (OOB)
data, is used to calibrate the performance of each tree. It is a
feature selection method including features ranking, based on
the measure of each feature importance in the overall result.
Alternatively, SVM, originally proposed by Vapnik (1998), is a
multivariate supervised machine learning technique suitable for
both classification and regression problems. It becomes more
popular because of its robustness and its kernel approach. SVM
works by depicting samples as points in a high-dimensional space
that allows separating distinct classes of samples into distinctive
regions. An optimal separation is the major goal of SVMmethod,
since it attempts to directly find the best dividing hyperplane that
has the greatest distance to the nearest training data point of any
class, and therefore the widest margin. The small fraction of the
samples/points positioning on the boundaries of these margins
are referred to “support vectors.”

SVM and RF algorithms have been applied in the field of
biomarker discovery (Chen et al., 2013; Gromski et al., 2014).
RF is a highly accurate classifier, performing robust-to-outlier
models. Its main advantage, as reported in the literature (Ho,
1998; Liaw and Wiener, 2002; Biau, 2012; Hapfelmeier et al.,
2014), includes principally its power to deal with over-fitting
and missing data, as well as its capacity to handle large datasets
without variable elimination in terms of feature selection (Menze
et al., 2009). It was successfully applied as a biomarker selection
tool for metabolomic data analysis in several studies (Chen et al.,
2013; Scott et al., 2013; Gromski et al., 2015), especially due to its
resilience to high dimensionality data, insensitivity to noise, and
resistance to overfitting, etc. Nevertheless, it generates different
results, contrary to SVM which delivers a unique solution. As RF,
the SVM technique has also been adapted for features selection
purposes (Hermes and Buhmann, 2000; Weston et al., 2001;
Guyon et al., 2002), and widely applied in various biological
fields in which the feature size far exceeded the available number
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FIGURE 1 | General feature selection process.

of samples, such as in metabolomic analyses (Mao et al., 2007;
Frickenschmidt et al., 2008; Gromski et al., 2014), because of its
potential to extract relevant chemical and biological knowledge
from complex data. The main advantage of SVM is its flexibility
in the selection of the kernel function that enables the separation
of different sample classes. Nevertheless, this technique suffers
from certain limitations, essentially its sensitivity to over fit
the model selection criterion, which may introduce bias in the
classification result (Cawley and Talbot, 2010) and the lack of
transparency (quantifiers) of the results making rather abstract
the identification of important variables. This obstacle can be
circumvented by the identification of relevant features via the
use of a SVM classifier combined with a recursive feature
elimination (RFE) approach, as introduced by Guyon et al.
(2002). Moreover, SVM enables solving binary problems and is
ideal for case-control studies (Cortes and Vapnik, 1995; Vapnik,
1998). Therefore, these alternative approachesmay be useful tools
for generating variousmodels through data reduction and feature
selection, as well as providing more accurate results. However,
different studies showed that the choice of the appropriate
algorithms and workflow is highly dependent of the dataset
characteristics and the objective of the data mining process (Scott
et al., 2013).

In the context of the identification of early predictive markers
of clinical outcome, few years before occurrence, in relatively
homogeneous populations considered as healthy at the time
of analysis, untargeted metabolomics data driven approach
required a specific data processing enabling the discovery of
subtle effects among a large amount of data. The objective of the
present study was then to compare different feature selection
methods and evaluate their capacity to select relevant features
for further use in predictive models. It consists therefore in
studying a full workflow inspired from Figure 1, describing the
general feature selection process, using knowledge discovery and
data mining methodologies to propose advanced solutions for
predictive biomarker discovery from untargeted metabolomic

data. The strategy was based on evaluating a combination
of numeric-symbolic approaches, two common techniques
from machine learning, RF and SVM, compared with classical
univariate analyses ANOVA (Cho et al., 2008). This evaluation
was done on the basis of performances of the final predictive
models. Different feature selection approaches were applied
either on an original metabolomic dataset or on reduced subsets.
Filter methods based on the correlation coefficient and mutual
information were tested to eliminate redundant/dependent
features Then, supervised learning methods as SVM, RF, and
SVM-RFE were used to rank the variables and select the most
discriminative and predictive ones. This feature selection
approach was based on different accuracy measurements, the
“Gini” and “kappa” scores, as well as the weight “W.” In addition,
univariate statistical tests were performed. A comparative
study of the best k features obtained from the combination
of these different approaches (10 methods in total) identified
their degrees stability (1–10). A binary matrix of the form (N
features × 10 data analysis techniques) based on the method
of presence/absence of features was built. This matrix was
the starting point for the application of the Formal Concept
Analysis (FCA) method and the construction of concept lattices.
According to the structure of the lattice, a set of features
shared by complementary techniques were retained for the
prediction step. A final post-processing phase focused on
prediction, validation, and visualization and interpretation
of the results, with the generation of correlation-based
networks and association rules as complementary explicative
data.

MATERIALS AND METHODS

The present approach for feature selection from metabolomic
data analysis comprises pre-processing, processing and post-
processing steps (Figure 2). In phase 1, a transformation of
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FIGURE 2 | General framework. Main phases of metabolomic data treatment.

the input collected data was performed by scaling the data.
In phase 2, feature selection was conducted by some given
machine learning algorithms. Then, a resulting reduced subset
was used as input data for prediction. The performances
of the final models were determined to finally evaluate the
capacity of the alternative selection methods to identify the
most relevant features. Figure 3 summarizes the process of
the current approach with the three main phases and five
steps.

Data Collection and Pre-processing
Biological samples were obtained from a case-control study
within the GAZEL French population-based cohort (n∼20,000)
(www.gazel.inserm.fr) (Goldberg et al., 2015). The GAZEL
cohort received approvals from the National Commission for
Data Processing and Freedoms (CNIL), the National Medical
Council and the National Consultative Committee of Ethics, and
the INSERM IRB. The volunteers gave written and informed
consent for this study.

At risk male subjects (n = 111, 54–64 years old) with
high body mass index (BMI, 25 ≤ BMI < 30), free of metabolic
syndrome (MetS) at baseline, were selected. Cases who developed
T2D at the follow-up (5 years later) were compared with
Controls (matched for BMI and age). Baseline serum samples
were analyzed using mass spectrometry-based untargeted
metabolomics. Metabolic profiles of deproteinized sera samples
were determined using an UPLC/QToF mass spectrometer
(Bruker Impact HD2), equipped with an ESI source. Separations
were carried out using an Acquity UPLC HSS T3 column
(Waters) at a flow rate of 0.4mL/min (Pereira et al., 2010).
Data were acquired in positive ion mode with a scan range
from 50 to 1000 mass-to-charge ratio (m/z). Samples were
randomized within the analytical sequence using a Williams
Latin Squares defined according to the main factors of the study.
Data were processed under the Galaxy web-based platform
(Worflow4metabolomics, Giacomoni et al., 2015), using first
XCMS (Tautenhahn et al., 2008), followed by quality checks and
signal drift correction according to the algorithm described by
van der Kloet et al. (2009), to yield a data matrix containing
retention times, masses and peak intensities that have only been
corrected for batch effects, without any other normalization.
This step included noise filtering, automatic peak detection
and chromatographic alignment allowing the appropriate
comparison of multiple samples by further processing
methods.

Feature Selection Methods
Data Reduction for Feature Selection
This section presents the feature selection process, with a full
description of each phase. All data analyses were performed
using the Rstudio software (Version 0.98.1103 with R. 3.2.2)
environment. This language offers a selection of packages suitable
for different types of data and is available as a free software in the
public domain.

Several feature selection methods are generally used in
bioinformatics when the number of variables is large and
the sample size is relatively small. Two different alternative
type of feature selection methods can be used to reduce the
dimensionality of data and identify variables with the best
discriminant ability and predictive power: (i) embedded
methods, which use a predictive model to give a score
to the feature subsets, or (ii) filter methods, which use a
proxy method (MutualInformation, PearsonCoefficient,
Inter/intra class distance) to give a score to the feature
subsets. Feature selection algorithms are divided into two
categories:

1. Feature ranking: ranks the features by a metric and eliminates
all features that do not achieve an adequate score;

2. Subset selection: searches a subset of possible features from the
original set.

In the present study, reducing the dimensionality of the data
is one of the most challenging step, requiring a careful choice
of appropriate feature selection techniques. Two main type of
methods were selected:

◦ The “filter” methods: consist in selecting variables using
correlation coefficients and dependencies. As mentioned
before, metabolomic data contain highly correlated features,
which can be a drawback in some ranking methods such as
some RF variable importance calculations (Gromski et al.,
2015). To overcome this problem, variables were selected with
a method using a coefficient of correlation (Cor) and mutual
information (MI) criterion. Very highly correlated features
were discarded to keep a reasonable number of variables to
work with.

◦ The “embedded” methods (Lal et al., 2006): consist in
searching for the optimal subset of features according to their
usefulness to a given predictor. They consist in computing
feature class based on supervised classifiers, as SVM and RF.
These methods are guided by the learning process that offers
a chance to build more accurate classifiers, and are based on
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FIGURE 3 | Detailed approach. Representation of the different steps of the proposed approach, from the untargeted metabolomics original dataset to the

identification of predictive biomarkers. It includes (i) data transformation, i.e., noise filtering, scaling, to generate suitable datasets for feature selection methods; (ii)

data reduction for feature selection, which consists in identifying relevant features for further use in predictive models; (iii) a prediction and validation step for

discovering the best predictive markers. The numbers in the circles refer to the different sections of the manuscript for a more detailed description.

a limited number of features to identify the most “relevant”
ones.

In the context of feature selection, each feature has a score of
importance that enables the identification of “relevant” features.
For RF feature importance, two straightforward methods are
provided: (i)mean decrease in accuracy (MdAcc), whichmeasures
the importance of each variable to the classification; (ii) mean
decrease in Gini index (MdGini), which provides a measure of the
internal structure of the data (Boulesteix et al., 2012). The general
idea is to permute the values of each variable and measure the
decrease in the accuracy of the model.

For SVM-RFE, which is a multivariate supervised approach
based on a forward and backward sequential search, several
metrics of feature importance are used, as the SVM weights “W”
(i.e., the weight magnitude of features), the accuracy (Acc) and
the Cohens Kappa (Kappa) metrics. The Kappa is a statistical
measure comparing an observed accuracy with an expected
accuracy (random chance).

The feature selection methods were either applied on the
original dataset without filter, or with previous filters as shown
in Figure 4.

Feature selection with no filter
The analysis was restricted to machine learning techniques
(SVM-RFE or RF) that were applied directly on the original
dataset to identify the optimal feature subsets. Firstly, the SVM-
RFE with linear kernel as a classification method was chosen.

The weight values “W” of the decision hyperplane given by
the SVM were generated, and sorted in a decreasing order to
obtain the core set of features with the highest discriminative
power. Secondly, the RF technique was performed on the whole
dataset with the parameters described below for sub-dataset. The
variables of the model leading to the smallest misclassification
error value ranked according to the mean decrease accuracy
method, were selected. In addition to these machine learning
algorithms, an univariate statistical tool ANOVAwas also applied
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FIGURE 4 | Experimental design. Experimental design for comparisons of feature selection methods (RF, RF-RFE, SVM-RFE, ANOVA), applied either on original

dataset or after filters, based either on correlation coefficient (Cor) or on mutual information (MI), and used with different classifiers (MdGini, MdAcc, Kappa, W,

p-value). It resulted in 10 different subsets, with different feature rankings.

since it provides stable results, by calculating the “p-value” of
each feature in the objective of identifying the significant ones.
Verification of ANOVA assumption was performed prior to
analyses (see Supplemental Data). The choice of ANOVA was
justified by its common use in metabolomics, in particular due
to the possibility to add co-variables if necessary. An ascending
order of the 1195 variables according to their p-values was
performed. Consequently, three additional subsets of features
“SVM-RFE-W,” “RF-Acc,” and “p-value” were obtained with
these different variable rankings.

Feature selection based on correlations
Two approaches namely “Cor-RF” and “Cor-RF-RFE” were
applied. They first removed redundant features using a
correlation coefficient criterion, and then used RF or RF-RFE
methods to select the “n” best ones based onMdGini,MdAcc, Acc
and Kappa scores. Concerning the correlation filter, the selection
was conducted using the “findCorrelation” function from the

“Caret” R package. Features which were highly correlated were
filtered out: one feature was kept out of each set of correlated
ones. In order to limit the loss of information, we used Pearson
correlations with a threshold set to 0.95. Consequently, a reduced
subset was generated and used as input for analysis with RF.
To train RF on this new subset, the “randomForest” R package
(Liaw and Wiener, 2002) was used, with the following standard
parameters: number of trees = 2000 and number of variables
selected at each node = 2 × √ number of features in the subset.
Nonetheless, as correlation values between variables were still
high, we furthermore adapted the RFE approach with RF, using
the Caret R package. The feature selection process for the four
subsets was replicated t = 50 times, and the model leading to the
smallest “OOB error” was selected.

Feature selection based on MI criterion
An alternative method “MI-SVM-RFE” was tested. It first filtered
out the dependent variables by means of mutual information
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criterion (MI), and then selected the “n” best feature subset
based on SVM-RFE feature selection with calculation of accuracy
and kappa scores. The “mRMR.data” and “mim” functions of
the “MRMR” R package were used to compute the mutual
information matrix over the full data set. The average mutual
information of variables was then calculated and a MI threshold
of 0.02 was set. All the features whoseMI values were smaller than
the threshold were selected, since it is recognized that high values
of MI are indicating a large uncertainty needing to be reduced
(Wang et al., 2013). An independent feature subset was obtained,
and used as input data for applying the SVM-RFE technique
within the “kernlab” R package and the “rfe” function with SVM
model. This method enabled to obtain variables using accuracy
and kappa metrics. As a result, two new subsets “MI-SVM-RFE-
Acc” and “MI-SVM-RFE-Kap” were generated.

Cross-validation via leave-one-out CV (LOOCV) was
performed for evaluating the best models (Kohavi, 1995)
after having compared various matrix of performance (see
Supplementary Data).

n-top feature selection
The subsets of “n” highly ranked features derived from each
approach within different metrics of importance (MdGini,
MdAcc, Kappa, W, and p-value), were selected as the results
of the first dimensionality reduction of the original data set.
Therefore, multiple subsets of reduced data rDSi where i ∈
{1. . . n} containing the top ranked were obtained as output and
exported for further analysis of their stability.

Stable Features Selection
This step focused on comparing all the reduced subsets (rDSi)
of obtained features. For this propose, a presence-absence
table of features × data-analysis-techniques was conducted (see
Supplementary Table), where the objects (rows) are the features
and the variables (columns) are the data analysis techniques (10
techniques). Each feature had a degree of stability identified from
the obtained binary table, where themost stable features are those
existing in all the reduced subsets.

Visualization of Stable Features
FCA is an unsupervised technique based on a mathematical
theory of data analysis. Introduced by Ganter andWille (1999), it
enables deriving a concept hierarchy bymeans of formal contexts,
data tables that represent binary relations between objects and
their attributes. In this theory, each concept in the hierarchy
represents a set of objects (the “extent”) and a set of attributes
(the “intent”) such that the extent consists in all objects that
share the given attributes, and the intent consists in all attributes
shared by the given objects. Each sub-concept in the hierarchy
contains a subset of the objects in the concepts above it. FCA
was applied for a visualization purpose for viewing the different
relationships between the variables from one hand, and between
variables vs. applied techniques from the other. It was applied
on the binary table previously obtained, and a concept lattice
of “p” concepts was then generated (using the “ConExp” tool,
Yevtushenko, 2000).

Post-Processing Phase
The last phase was dedicated to the prediction, validation, and
interpretation of data:

Prediction and Validation
For prediction, the subset of stable top-ranked features was
selected and different alternative techniques were used.

To perform prediction based on RF, the dataset was sampled
into a first training set (on average 75% of the samples) to fit
the model with the construction of trees and a validation set
for estimation of the classification accuracy. Therefore, the RF
model was firstly trained over the selected subset (retained from
the concept lattice), and then the classifier was validated on
the corresponding test sets using the usual mean classification
error. Evaluation of the model was performed using cross
validation. Randomly selected subspaces were considered and
100 replications of the selection procedure were performed.

Alternatively, a second variable selection algorithm using
random forests was applied for prediction purpose: “VarSelRF”
(Díaz-Uriarte and de Andrés, 2006). It is based both on a
backwards variable elimination (for the selection of small sets
of non-redundant variables) and on a selection with on the
importance spectrum to provide a reduced set of predictive
features. Since it is a subset feature selection algorithm that
generates directly a reduced set of predictive features, it was
directly applied on the 48 features subset without splitting the
data. The “varSelRF” function proposed by “VarSelRF” R package
was applied. Several replications (100 times) were carried out;
for each replication, a different reduced set of relevant features
was generated since the algorithm aimed at reducing the set of
predictive variables until obtaining the lowest OOB error rate.

Finally, logistic regressionwas performed on the same reduced
subset and compared with the same analysis performed on
a dataset containing significant features (after ANOVA). In a
first step, a partial logistic regression was performed separately
for each feature. Only those whose coefficient had a p-value
lower than 0.25 were selected. In a second step, paired-wise
Pearson correlation coefficients were calculated. Then, in order
to remove the information redundancy and collinearity between
features, and to select only the 10 most potentially predictive
ones, features were eliminated one by one, until obtaining a
maximum correlation coefficient in the matrix of 0.5, the one of
the two features the most correlated to others in the matrix being
eliminated. At this step, the elimination of the remaining features
was based on the lowest correlation with the outcome factor and
the less significant p-value in partial logistic regression. Then,
the 10 remaining features were introduced in a multiple logistic
regression model, which was finally automatically reduced using
the AIC values in a stepwise method (R package “stats”).

Six common evaluation metrics were employed (sensitivity,
specificity, accuracy, precision, OOB error, and misclassification
rate), defined in Supplementary Table 1. “Specificity” also
called true negative rate, measuring the proportion of correctly
identified negative instances relative to all real relative ones. It
evaluates then the efficiency of the classifier in identifying the
true positive features (“Sensitivity”). The “Precision” rates the
predictive power of a method, by measuring the proportion
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of the true positive instances relative to all the predicted
positive ones. The “Accuracy” or “G-score” evaluates the overall
performance of the feature selection methods, since it measures
the predictive model capacity to classify correctly both positive
and negative instances. Additional assessment criteria can be
calculated besides the evaluation of the optimal feature sets
based on the above-mentioned metrics: the “misclassification
rate” or “error rate,” is equivalent to “1—accuracy.” It refers to
the misclassification rate of the learning model, by estimating the
proportion of wrongly classified features (negative and positive
equally). The size of the feature set has an impact on the
performance of the final model.

Most machine learning methods need to resort to cross-
validation for the estimation of a classification error, but RF can
intrinsically estimate an OOB error in the process of constructing
the forest.

Data Interpretation
The results of predictive features and models previously obtained
were considered for Receiver Operating Characteristic (ROC)
curves constructions. ROC curve is a non-parametric analysis,
which is considered to be one of the most objective and
statistically valid method for biomarker performance evaluation
(Xia et al., 2013). These analyses were performed using the
ROCCET tool (http://www.roccet.ca) for the univariate and the
multivariate RF-based analyses and the pROC R package for
prediction based on logistic regression (Robin et al., 2011) with
calculation of the area under the curve (AUC) and confidence
intervals (CI), calculation of sensitivity, specificity. The p-values
of the predictive variables were also computed using t-test, and
the core set of best features with the smallest p-values and the
highest accuracy values was selected to finally obtain a short list
of potential biomarkers. To evidence the relationships existing
between these predictive variables, a correlation network was
built using a correlation matrix based on Pearson coefficient.
Association rules (Agrawal et al., 1993) based on a series of
operations (numeric attributes values discretization on 4 ranges,
and association rule mining on the resulting data set) were
also performed using the WEKA tool (Witten and Frank,
2000).

RESULTS

Data Characteristics
The dataset included measurements of 111 individuals divided in
two groups: 55 belong to the class “1” (Case) and 56 to the class
“−1” (Control). After noise filtration of metabolomic data, each
subject was described by 1195m/z variables, referred to attributes
or features. Our objective was to reduce the dimensionality of
this dataset and to extract the potential candidate biomarker
discriminating cases from controls.

The metabolomic dataset showed 2.4% of the ions with
correlation coefficient higher than 0.5 in the auto-correlation
matrix, with 576 ions with a least one correlation higher than
0.8. Correlation networks of the ions with correlations higher
than 0.5 showed highly correlated clusters due to both analytical
and biological origins (Supplementary Figure 1). Moreover, 107

features were identified with a p-value lower than 0.1 after
ANOVA, which represent around 9% of the original dataset.
Fifty two (4.3%) were found to be significant after Benjamini-
Hochberg (BH) correction. This result confirmed the fact that
the discovery of predictive markers of pathology development
years before it appears, implies the identification of subtle effects,
reinforcing the need of adequate data mining methods.

Data Pre-Processing
Data transformation: Because a wide concentration range exists
among the different detected metabolite, a data pre-processing is
necessary to adjust the importance allocated to the variables in
some of the fitting models chosen. Thus, before applying SVM,
data were transformed, using a Unit-Variance scaling method,
which divides each variable intensity by its standard deviation; so
that all variables have the same chance to contribute to the model
as they have an equal unit variance.

Feature Selection and Stability
Because of the large number of features derived from
metabolomic data inducing intensive computation, it is crucial
to reduce the feature dimension. In this study, the aim was to
find a subset of the original dataset enabling the identification
of relevant features and the decrease of the overfitting risk. The
choice and use of appropriate features selection algorithms are of
great importance to be able to build good models.

After feature selection based on correlation criterion, a subset
of 963 features was generated and used as input for RF analysis.
Four different subsets of the 963 ranked features “Cor-RF-Acc,”
“Cor-RF-Gini,” “Cor-RF-RFE-Acc,” and “Cor-RF-RFE-Kap” were
generated. Only 590 independent features were obtained using
the Mutual Information technique resulting in two SVM-RFE
subsets, named “MI-SVM-RFE-Acc” and “MI-SVM-RFE-Kap.”
In order to compare the different subsets, the first 200 ranked
features from each subsets were finally retained. When no filter
was applied, the first 178 ranked common features were directly
selected from the original dataset, except for ANOVA where
only 107 features with p-value lower than 0.1 were filtered.
Then, to analyze the relative importance of individual features
and to enable a comprehensive interpretation of the results, the
reduced subsets of features rDSi were combined for comparison.
This feature-technique binary table was used to emphasize the
most stable features presented in the Supplementary Table 2 (see
Supplementary Data), on which the FCA technique was applied.
Two hundreds and seventy six concepts were obtained from the
derived concept lattice.

In this study, we were looking for the most stable features
according to the different data analysis techniques. The feature
selection process is not a simple task in biomarker discovery, as
it requires optimization of the biomarker usefulness regarding
the biological relevance, but also the number of metabolites used
in the predictive models. A subset of features common to at
least 6 techniques was selected. This choice allowed obtaining
results from complementary methods, ensuring the selection
of some relevant features that could have been removed by
filters, while keeping a reasonable dataset size. It resulted in the
identification of 48 features (Figure 5). In the present study, as
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FIGURE 5 | The concept hierarchy derived from 48 × 10 binary table of Supplementary Table 1. It highlights the relationships existing between top-ranked

features and selection methods. It allows visualizing the common features (ions) selected by a set of methods.

logistic regressions were used, this number of selected features
looks adequate for being introduced in the process of predictive
model construction. Among the 48 features, 39 were significant

after ANOVA (with BH correction). Similar results were obtained
with a non-parametric test in comparison with ANOVA (see
Supplementary Data).
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Prediction
To meet the final objective of usefulness of the discovered
markers in clinical practice, two main parameters need to
be optimized: the biomarker performance and the number of
metabolites used in the predictive models.

Using Random Forest
The impact of each feature on the model accuracy is essential
in a biomarker discovery approach. Thus, the RF classifier was
trained on the subset containing the 48 features based on LOOCV
and using the MdAcc method to rank the predictive variables.
A confusion matrix was generated enabling the evaluation of
the model performance. A new subset “48-Rf-acc” of the ranked
features was generated. From this, 5 additional subsets “40-Rf-
acc,” “30-Rf-acc,” “20-Rf-acc,” “10-Rf-acc,” and “5-Rf-acc” were
obtained, containing respectively 40, 30, 20, 10, and 5 highly
ranked features.

Table 1 summarizes the obtained scores from the six common
evaluation metrics, starting from the subset of 1195 of the whole
dataset, to the one of 200 variables (including the 200 best
ranked features according to RF with MdAcc from the original
data set) and to the most reduced one of 5 variables (obtained
from the selection of the 5 best ranked features according to RF
MdAcc on the subset of 48 stable features). The performance of
biomarker selection methods can be assessed by these evaluation
criteria which measure the ability of the aforementioned learning
algorithms to select a feature set that allows a good prediction
regarding the group of interest. They are calculated from the
confusion matrix constructed from the distribution of true
positives (right prediction as positive), false positives (predicted
positive but in reality negative), true negatives (right prediction
as negative), and false negatives (predicted negative but in reality
positive).

The results showed that training RF from the whole data set
provided the lowest performance model. However, by reducing
the data dimensionality to 48 features allowed obtaining better
values for most of the metrics. No subset outperformed all the
others. Thus, the smallest subset of the 5 top ranked stable
variables (“m/z 219,” “m/z 268,” “m/z 145,” “m/z 97,” and “m/z
325”), enabling a good accuracy classification of case-control
subjects, was retained.

Using VarSelRf
Since 48 features still represent a consequent number of variables,
and all may not necessarily be crucial in the RF prediction,
VarSelRf was applied from this subset to obtain a RF model on
a reduced number of features. The stable variables were retained
from the different replications. The results revealed 5 predictive
variables common to all repeated tests: “m/z 145,” “m/z 162,” “m/z
263,” “m/z 268,” and “m/z 97.”

Two features were common with the results from the RF
method: “m/z 268,” and “m/z 97.”

Using Logistic Regression
The variable selection from logistic regressions performed on the
48 feature dataset resulted in 10 features, and 5 top variables were
retained for the best model: “m/z 148,” “m/z 167,” “m/z 198,” “m/z
268,” and “m/z 288.”

The variable “m/z 268” was found to be the only common
feature to all models. All final predictive models included
5 variables, partially different depending on the technique.
Finally, a total of 11 predictive features were obtained using the
three approaches. Table 2 presents the rank of these variables
according to the feature selection methods. All the SVM-based
feature selection methods did not achieve a good ranking. For
the RF-based methods, RF-Gini gave the best results. However,
the best ranking was obtained using ANOVA.

Prediction Evaluation
Table 3 shows the identified predictive metabolites ranked by the
AUC of their univariate ROC curves. The data revealed that five
features presented AUC values higher than 0.75 considered as fair
values, and t-test lower than 10E-5.

In multifactorial diseases as T2D, a combination of a
multiple “weak” multivariate model instead of a single “strong”
individual markers often provides the required high levels of
discrimination and confidence. Therefore, the three multivariate
model performances were evaluated and compared (Table 4)
using ROCCET models (RF with inner parameters: 500 trees and
one third of the features at each node). The results showed that
themultivariate models are more accurate than the ones obtained
with the single features, with AUC higher than 0.82. Prediction
based on logistic regression from the 48 feature reduced dataset
showed a better performance with a lower misclassification rate

TABLE 1 | Performances of the models trained by RF.

Metrics Sensitivity Specificity Accuracy Precision Misclassification (%) OOB error

1195-Rf-acc 0.81 0.65 0.73 0.71 27 0.261

200-Rf-acc 0.86 0.82 0.84 0.84 16 0.154

48-Rf-acc 0.93 0.80 0.87 0.83 13 0.131

40-Rf-acc 0.85 0.88 0.87 0.87 13 0.131

30-Rf-acc 0.83 0.90 0.87 0.90 13 0.131

20-Rf-acc 0.90 0.85 0.88 0.86 12 0.119

10-Rf-acc 0.85 0.86 0.85 0.85 15 0.142

5-Rf-acc 0.86 0.85 0.85 0.86 14 0.142

Table of performance of 9 models trained by RF on different datasets. Six common evaluation metrics were used.
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TABLE 2 | Ranking of the 11 best predictive features.

Features RF-MdAcc RF-MdGini Cor-RF- Cor-RF- Cor-RF- Cor-RF MI-SVM- MI-SVM- SVM-RFE- Anova-

MdGini MdAcc RFE-Acc RFE-Kap RFE-Acc RFE-Kap W p-value

m/z 145 1 1 1 2 46 53 100 125 323 2

m/z 97 2 2 3 1 142 185 63 67 159 3

m/z 325 5 5 7 5 210 220 38 37 1118 8

m/z 268 9 6 – – – – 168 181 22 4

m/z 263 8 7 5 7 198 249 28 27 166 5

m/z 219 13 13 13 12 84 76 61 65 1022 12

m/z 162 104 31 20 26 211 221 39 38 103 17

m/z 288 167 36 25 29 140 152 – – 976 22

m/z 148 43 47 27 86 87 98 66 70 471 38

m/z 198 101 71 150 496 48 36 70 84 167 34

m/z 167 48 50 45 24 505 586 144 154 13 39

Ranking of the 11 best features according to 10 feature selection methods.

TABLE 3 | Table of performance of the 11 best features.

Features AUC t-tests 95% CI

m/z 145 0.795 1.448E-6 0.657–0.896

m/z 97 0.787 1.597E-6 0.657–0.898

m/z 325 0.773 2.233E-5 0.627–0.896

m/z 268 0.759 4.564E-6 0.614–0.866

m/z 263 0.753 5.996E-6 0.642–0.874

m/z 219 0.712 1.177E-4 0.162–0.798

m/z 162 0.656 0.00195 0.225–0.710

m/z 288 0.634 0.00499 0.252–0.708

m/z 148 0.630 0.01778 0.238–0.624

m/z 198 0.619 0.01368 0.197–0.594

m/z 167 0.541 0.01796 0.190–0.715

Ranking of the 11 best predictive features by the AUC value from univariate ROC curves.

(18%) and the lowest false positive value. The same analysis
performed on the ANOVA significant metabolites showed a
much lower performance (27% misclassification).

For comparison, we selected the five first features which
have an AUC higher than 0.75, and a significant small t-test
value for building a multivariate ROC curve. The combination
of these single features did not show any improvement in
prediction accuracy in comparison with multivariate models
(Table 4).

To go deeper in the understanding of the results, the degree
of relationship between each pair of variables was assessed by
computing the correlation coefficient between all possible pairs
of the 11 features. Figure 6 presents the deduced correlation
network. The results showed that the “m/z 145,” “m/z 97,” and
“m/z 325” features were highly correlated with a correlation
value higher than 0.9. Moreover, “m/z 268” and “m/z 263”
were also positively correlated between each other with a
correlation value equal to 0.85 and formed another group of
features.

This link was also confirmed by the following association rules
that highlighted strong relationships and implications existing
between the values of the 5 most correlated features, in the form
of a numerical interval for each of them. The association “m/z
325” = (−inf −0.183386] “m/z 97” = (−inf − (−0.369165)] →
“m/z 145”= (−inf− 0.004732] was obtained with a confidence1

value equals to 0.97. The same ascertainment for “m/z 268”
and “m/z 263” was found according to the following association
rule “m/z 268” = (0.944719 − inf) → “m/z 263” = (0.667287
− inf), with a higher value of the confidence metric (0.9).
The combination of these best features revealed another strong
association rule (confidence = 1) with the following implication:
“m/z 268” = (−1.17646 – −0.115871] “m/z 325” = (0.183386 −
2.305548] “m/z 145” = (0.004732 − 2.127673] → “m/z 263” =
(−1.588695 –−0.460704].

DISCUSSION

Feature Selection
One of the objective of untargeted metabolomics in clinical
studies is to provide a global view of biological processes involved
in the development of pathologies. However, even if thousands
of molecular features are quite useful for understanding involved
pathways, they are not ideal for developing tests for clinical use.
Therefore, performing feature selection is essential to discover
new robust biomarkers being used for patient identification
and/or stratification. In the present study, we assumed that a
given biological phenomenon is not represented by all measured
metabolites but simple sub-structures existing in the data that can
be mathematically modeled.

In the context of identification of early/predictive biomarkers,
our results showed that only a small fraction of detected
features are discriminant, and they highlighted the importance of
feature selection methods for obtaining the best performances of
predictive models. In fact, despite RF is able to handle thousands
of variables, when performed on the original dataset, it did not

1 The rule X→ Y holds with confidence c if c% of the transactions in D (the set of
all transactions) that contain X also contain Y.
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TABLE 4 | Table of performance of the 5 predictive models.

AUC 95% CI Misclassification (%) False positive False negative

RF 0.830 0.72–0.94 19.8 9 13

VarSelRF 0.845 0.76–0.94 22.5 14 11

Logistic regression 0.820 0.75–0.89 18.0 10 10

Univariate analyses—top 5 0.831 0.73–0.93 23.4 12 14

Univariate analyses—top 11 0.869 0.67–0.96 18.9 12 9

Results from RF-based ROC curves.

FIGURE 6 | Correlation network between the 11 top-predictive features. Network built using Pearson correlation coefficient (indicated on the edges) between

the best predictive features. Red edges: positive correlations, Blue edges: negative correlations. It highlighted two highly correlated sub-networks (yellow and green).

achieve a good accuracy in the prediction (27%misclassification).
This result is in accordance with the observation made by Menze
et al. (2009), with a stronger difference in the performance before
and after feature selection. This could be related to the nature of
the noisy data.

Univariate analyses showed a good ability to rank important
features which is quite logical as this approach is considering
each variable individually and therefore is non-sensitive to noise.
Post-hoc corrections allowed avoiding false positive rate when
multiple tests are performed. However, these approaches are
remaining quite limited as they are not considering interactions
between variables and only evaluate independent changes in
metabolite levels. Untargetedmetabolomics is a method of choice
to detect thousands of metabolites reflecting the complexity
of metabolism. In this context, multivariate methods are of
great interest as they make use of all variables simultaneously
and deal with the simultaneous relationship between variables,
reflecting the orchestrated biological processes (Saccenti et al.,
2014). However, these multivariate methods use correlations and

co-variances between independent variables to predict the class
belonging and they are sensitive to non-informative variables that
affect the interpretation.

Our study illustrated the interest of RF-Gini as a
complementary approach in addition to ANOVA for feature
selection. These two techniques only could allow selecting the
48 best candidate features for prediction (nine of them were not
selected with ANOVA alone). Moreover, the results showed that
RF-Gini, as well as ANOVA, was one of the best method for
feature ranking, especially for the best top-5 predictive features.
Indeed, these top features were ranked among the 10 first
ones with each techniques. This was also observed in previous
published studies (Menze et al., 2009; Guo and Balasubramanian,
2012; Chen et al., 2013; Scott et al., 2013) with high dimension
datasets from omics data. In particular, RF was shown to be
robust to noise and outliers, and a technique of choice to avoid
overfitting.

The choice of appropriate feature selection method is
highly dependent of the dataset characteristics. And it is
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clear that so far, there is no universal classifier and feature
selection is still not currently widely use (Scott et al., 2013;
Gromski et al., 2014). Therefore, from these results, our
recommendation would be to explore the combination of
ANOVA and RF-Gini methods for reducing the dimensionality
of such datasets, especially when predictive models are being
built.

Prediction
For clinical purposes, a short list of very limited number of robust
biomarkers is necessary and therefore our objective was to end
up with a predictive model showing good performances. In this
area, classical approach is based on linear logistic regression,
removing correlated features but needing a small number of
variables. Using this technique on a reduced dataset enabled
us to obtain the best performances in terms of accuracy and
number of false positive. In contrary, RF can handle lots of
variables but we realized that the performances of the model
were better on a reduced subset of features. At the same
time, as modeling complex pathological processes requires the
use of large enough set of features/variables for prediction,
models using too restrictive datasets are also not the most
powerful ones (e.g., RF-based ROC curve models with 11 vs.
5 features). Moreover, a close examination of the relationships
between the best predictive features could contribute to a better
understanding of the results. In fact, within the 11 best features,
quite strong correlations and associations were found. These
additional data could contribute firstly, in structural elucidation
of metabolites (one parent ion should be strongly correlated
to its in-source fragments), and secondly in the biological
interpretation as metabolites from a same involved metabolic
pathway should be linked. This will allow having a vision
of patterns of changes, complementary to the contribution
of each identified metabolites in prediction of the clinical
outcome.

In the present experimental conditions and using the
same number of features (Gromski et al., 2015), univariate
and multivariate modeling gave similar predictive results.
However, in this study, we worked with standard/default RF
parameters that could gain being optimized for better predictive
performances.

When comparing predictive models obtained from logistic
regression and RF-based methods, similar levels of accuracy and
sensitivity were obtained. This observation is in concordance
with the systematic review of Barber et al. (2014) on risk
assessment tools for identification of prediabetes. The choice
of a specific prediction tool can be motivated by the need of
integrating other type of variables. RF could be recommended
for high dimensional datasets from multi-omics, whereas logistic
regression is more appropriate for clinical datasets in the
objective of clinical use.

CONCLUSION

Better understanding of complex biological mechanisms
involved in pathological processes requires global approaches
based on powerful analytical techniques as well as appropriate

data mining methods able to handle large and complex datasets.
The objective of this study was to explore alternative algorithms
for feature selection from untargeted metabolomics data and
evaluate the capacity of these methods to select the relevant
ones for further use in prediction models. To fulfill this
objective, one of the main issue is the optimization of two
main parameters namely the biomarker performance and the
number of metabolites used in the predictive model. Our results
showed the interest of feature selection methods to identify
hidden information in such high dimensional datasets. We
have to keep in mind the challenge of biomarker selection
with the identification of which variables (out of the many
detected) are related to the observed discrimination between
phenotypes. Due to the nature of metabolomic data (highly
correlated and noisy), the results highlighted the importance
of working on reduced datasets to obtain better performances
in predictive models. Indeed, a combination of univariate and
multivariate methods remains the best approach, as it allows
combining the strengths of both techniques. In this study,
RF-Gini combined with ANOVA provided the best feature
selection for predictive biomarker discovery that will allow
patient stratification few years before disease development. Our
recommendation would then be to explore such techniques
to process untargeted metabolomic data and reveal subtle
metabolic changes. Even if they are still not usually applied, these
data mining methods are essential tools to deal with massive
datasets and contribute to elucidate complex phenomena. With
this help, the experts of the scientific field will go deeper in
interpretation, attesting the success of the knowledge discovery
process.
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