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SCAN domains in zinc-finger transcription factors are crucial mediators of protein-protein

interactions. Up to 240 SCAN-domain encoding genes have been identified throughout

the human genome. These include cancer-related genes, such as the myeloid zinc finger

1 (MZF1), an oncogenic transcription factor involved in the progression of many solid

cancers. The mechanisms by which SCAN homo- and heterodimers assemble and

how they alter the transcriptional activity of zinc-finger transcription factors in cancer

and other diseases remain to be investigated. Here, we provide the first description of

the conformational ensemble of the MZF1 SCAN domain cross-validated against NMR

experimental data, which are probes of structure and dynamics on different timescales.

We investigated the protein-protein interaction network of MZF1 and how it is perturbed

in different cancer types by the analyses of high-throughput proteomics and RNASeq

data. Collectively, we integrated many computational approaches, ranging from simple

empirical energy functions to all-atom microsecond molecular dynamics simulations and

network analyses to unravel the effects of cancer-related substitutions in relation to MZF1

structure and interactions.

Keywords: transcription factors, molecular dynamics, protein structure network, TCGA, cancer mutations, FoldX,

saturation mutagenesis, RNAseq

INTRODUCTION

Transcription factors belonging to the SCAN zinc finger family have been implicated in a number
of cellular malignancies (Monaco et al., 1998; Dong et al., 2004; Yang et al., 2011; Eguchi et al.,
2015; Singh et al., 2015). SCAN domains in zinc finger transcription factors are crucial mediators of
protein-protein interactions (Williams et al., 1995; Sander et al., 2003; Edelstein and Collins, 2005;
Noll et al., 2008) and allow SCAN zinc finger proteins to form homo- and hetero-dimers (Edelstein
and Collins, 2005). The importance of dimerization for SCAN zinc finger transcriptional activity
was demonstrated through two-hybrid experiments, using ZNF174. This study demonstrated that
interaction between SCAN domains synergistically activated transcription (Williams et al., 1999).
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SCAN domains have been identified in more than 80 zinc
finger genes throughout the human genome (http://www.ebi.ac.
uk/interpro/entry/IPR003309/proteins-matched?species=9606),
including a number of cancer-related genes. In addition, a subset
of SCAN domain only factors (SCAND), which lack the DNA
binding domains, has been discovered and suggested to function
as regulators of the intact SCAN zinc finger factors (Sander et al.,
2003; Edelstein and Collins, 2005).

SCAN domain is a highly conserved domain of ∼80 residues
and it is usually located in the N-terminal region of transcription
factors (Sander et al., 2003). It is composed by at least three
α-helices separated by short loop regions. SCAN domains have
an extended conformation, also defined as V-shaped structure,
composed by five α-helices arranged in two subdomains. The N-
terminal subdomain comprises the α-helices 1 and 2 that form
one side of the V-shape, whereas the C-terminal subdomain is
composed by the α-helices 3, 4, and 5 that pack together forming
the other half of the V-shape. In some SCAN domains, the N-
terminal subdomain of one monomer packs with the C-terminal
subdomain of the other monomers so the twomonomers interact
in a domain-swapped topology (Peterson et al., 2006).

One example of a SCAN zinc finger transcription factor with a
crucial role in cancer is Myeloid Zinc Finger 1 (MZF1). There are
three known isoforms of MZF1 which may play different roles
in tumorigenesis—these encode protein sequences of different
lengths and domain composition (Peterson and Morris, 2000;
Eguchi et al., 2015). The shortest MZF1 isoform encodes a 290-
residue protein, including the SCAN domain, a portion of the
regulatory linker and a unique C-terminal motif (Eguchi et al.,
2015).

The existence of highly conserved SCAN domains in the
SCAN zinc finger family suggests that interactions between
its family members may occur through hetero-dimerization
(Edelstein and Collins, 2005). MZF1 has been shown to interact
with its family members such as ZNF24, ZNF174, and ZNF202
through SCAN-SCAN interactions (Noll et al., 2008) along with
SCAND proteins such as RAZ1 or SCAND1/RAZ108 (Sander
et al., 2000). The role of the SCAN-SCAND interaction is still
unclear, however in the case of MZF1, it has been suggested
that the “zinc fingerless” SCAND proteins might decrease MZF1
signaling causing a decrease in the affinity for DNA targets or
other interactions (Sander et al., 2000). The N-terminal region
of MZF1, which includes the SCAN domain, can also co-
associate with the promyelocytic leukemia nuclear bodies (PML-
NB, Bernardi and Pandolfi, 2007; Noll et al., 2008) and recruit
other factors, such as ZNF24, to the PML-NBs (Noll et al., 2008).

MZF1 was initially associated with malignancies in studies
on hematopoietic development, as it was found to act as a
transcriptional repressor of essential genes for hematopoietic
differentiation. In addition, MZF1 promotes the emergence of a
leukemic phenotype (Perrotti et al., 1995; Hromas et al., 1996).
On the contrary, Gaboli and co-worker suggested that MZF1
could have a suppressor function on hematopoietic cancer types
(Gaboli et al., 2001). The source of these discrepancies might be
related to the existence of the different MZF1 transcripts, which
may have diverse functions in the cell (Peterson and Morris,
2000).

The cBioPortal database (Cerami et al., 2012) reports the
MZF1 gene to be significantly amplified in certain solid tumors,
such as breast, uterine, lung, and bladder cancers (Eguchi et al.,
2015). A complex and heterogeneous role of MZF1 in tumors is
supported by studies in cellular and animal models of different
types of cancer (Hsieh et al., 2007; Mudduluru et al., 2010; Rafn
et al., 2012; Chen et al., 2014; Tsai et al., 2015; Vishwamitra et al.,
2015; Nan et al., 2016). The effects mediated by MZF1 seem to be
strictly dependent on the cancer type. Thus, the interactions and
functions involving this transcription factor will require further
elucidation on a detailed structural level. Indeed, this is a critical
step for the understanding of themolecularmechanisms involved
in cancer initiation and development, as well as in the design of
new therapeutic approaches.

Despite the many questions surrounding MZF1 and its role in
cancer, no systematic studies have been devoted to understanding
the structural and functional impact of cancer-related mutations
involving this SCAN domain. A NMR structure of the MZF1
SCAN domain [Protein Data Bank (PDB) entry: 2FI2; (Peterson
et al., 2006)] in its dimeric form is publicly available and we here
use it to study the cancer-related mutational landscape of MZF1.

We analyzed the network of experimentally characterized
protein-protein interactions of MZF1 and predicted the
candidates for SCAN-SCAN or SCAN-SCAND interactions
using an in silico high-throughput approach based on the PRISM
energy function (Tuncbag et al., 2011; Baspinar et al., 2014).
The expression levels of MZF1 and its protein partners were
compared in normal and tumor samples using RNASeq data
from cancer patients. In particular, we applied a Pan Cancer
approach to 24 different RNASeq data sets obtained from The
Cancer Genome Atlas (Tomczak et al., 2015).

We also integrated different computational techniques, such
as sequence- and structure-based methods to predict the effects
of mutations on protein stability and protein-protein interactions
(Schymkowitz et al., 2005), microsecond atomistic molecular
dynamics (MD) simulations and methods inspired by graph
theory applied to MD (Invernizzi et al., 2014; Tiberti et al., 2014;
Papaleo, 2015; Papaleo et al., 2016). In addition, we used high
quality NMR data, such as Nuclear Overhauser Effect (NOE)
experiments and chemical shifts (BMRB accession number:
6957, Peterson et al., 2006) to cross-validate our MD structural
ensembles and compare the results achieved by the different MD
force fields.

MATERIALS AND METHODS

Protein-Protein Interactions of MZF1 SCAN
Domain
We used the Interologous Interaction Database (I2D; Kotlyar
et al., 2016), downloaded on January 8th 2016, to retrieve
known interaction partners of human MZF1 (Uniprot identifier
P28698). Gene ontology enrichment was performed using the
gprofiler (Reimand et al., 2007), GOsim (Fröhlich et al., 2007),
and corrplot (Friendly, 2002) packages for R. The interaction
network was filtered to remove redundant edges and visualized
using Cytoscape version 3.3.0 (Shannon et al., 2003). For each
MZF1 partner sequence, we performed a search for SCAN and
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zinc finger domains using InterPro (Mitchell et al., 2014) and
Pfam (Finn et al., 2016).

We then used PRISM (Tuncbag et al., 2011; Baspinar et al.,
2014) which is a template-based software to predict the structure
of protein-protein complexes. PRISM includes a rigid-body
structural comparison of target proteins to known templates
of protein-protein interfaces and a flexible refinement using a
docking energy function. We used the standalone version of
the program to screen all the interactors collected by high-
throughput experimental studies for their interaction with the
SCAN domain of MZF1. The interaction partners selected in
the first PRISM round were then submitted to PRISM 2.0 and
evaluated on the basis of docking energy scores using as a
cutoff for favorable interactions a docking energy value of −2.39
kcal/mol, as previously suggested (Baspinar et al., 2014; Tuncbag
et al., 2011).

The flexible refinement in PRISM was performed using
Fiberdock (Mashiach et al., 2010) including a step to remove
steric clashes. The resulting complexes are then ranked by
binding energy scores (i.e., Docking energy) calculated using the
CHARMM force field (MacKerell et al., 1998).

Analyses of the Cancer Genome Atlas
(TCGA) RNASeq Data
Level 3 RNASeq data (RSEM counts) for all the cancer studies
deposited at The Cancer Genome Atlas (TCGA)were downloaded
and pre-processed using the R-package TCGAbiolinks (Colaprico
et al., 2015; Silva et al., 2016). The RNASeq data used for
analyses had been produced using the Illumina HiSeq 2000
mRNA sequencing platform. For the analysis, we retained only
those data sets for which both tumor and normal samples were
available. A summary of the analyzed samples and cancer types is
reported in Table S1.

Before the analyses, sample outliers were removed using
the TCGAAnalyse_Preprocessing function from TCGAbiolinks,
which is a function that estimates the Pearson correlation
coefficient among all pairs of samples (38). Samples with a
correlation lower than 0.6 within the same cancer study were
discarded (38). Next, we normalized the expression data using
the TCGAnalyze_Normalization function from TCGAbiolinks.
Normalization procedures included adjusting for GC-content,
gene-length effects on read counts and full quantile filtering of
datasets using a cutoff value of 0.25 (Lee et al., 2011; Risso et al.,
2011). Normalized samples were batch-corrected in order to
remove artifacts from well-plates and/or the sequencing center.
The batch correction was performed using Combat (Johnson
et al., 2007) (40), implemented in the R-package, SVA (Leek et al.,
2012). In-house R scripts were subsequently used to extract the
processed data from MZF1 transcripts and for the transcripts
of its interactors. We carried out the analyses using all samples
within a tumor-type, as well as matched paired samples only (i.e.,
tumor and normal samples from the same patient), to evaluate
how this would potentially affect results. The normalized counts
were log2 transformed (pseudo count = 1) to overcome the
problem of extreme values due to differences in sequencing depth
(Lee et al., 2011).

We then incorporated the gene expression data in the MZF1
protein-protein interaction network using Cytoscape version
3.3.0 (Shannon et al., 2003). In each network, the absolute value
of the difference between the medians of the counts per gene in
the normal samples and tumor samples was used to represent
the node colors, upon log2 transformation. The color shade
of the edges represented the value of the Pearson correlation
coefficient calculated for each MZF1 interactor-pair according to
the counts presented in the tumor samples with respect to the
normal samples.

Identification of Cancer Mutations and
Prediction of Cancer Mutation Effects
We collected a subset of cancer-related mutations known to be
located in the MZF1 SCAN domain [residues 35–128, PDB entry
2FI2 (23)] from different cancer genomics databases including
Cbioportal (Cerami et al., 2012), COSMIC (Forbes et al., 2015),
CMPD (Huang et al., 2015), ICGC Portal (Hudson et al., 2010),
and CancerResource (Ahmed et al., 2011) databases. We also
inferred additional MZF1 mutations from HumanSavar (http://
www.uniprot.org/docs/humsavar), CanProVar (Li et al., 2010),
1000 Genomes (Auton et al., 2015), and dbSNP (Sherry et al.,
2001), which all report mutations that have not been associated
with disease and their clinical relevance is still unknown.

Sequence-Based Prediction of Functional
Impact of MZF1 Mutations
Prediction of the functional effects of mutations was carried
out using different sequence-based methods. Specifically, we
integrated Provean (Choi et al., 2012), Mutation Assessor (Reva
et al., 2011), Polyphen2 (Adzhubei et al., 2013), PON-P2 (Niroula
et al., 2015), SNAP2 (Bromberg et al., 2008), AlignGVGD
(Tavtigian, 2005;Mathe et al., 2006), andMutPred (Li et al., 2009).
Each method had different threshold values to discriminate
between pathogenic and neutral mutations. Thus, to compare
them we applied the cutoffs associated with each of them in
the original publications. Specifically, we used threshold values
< −2.5 (Provean), >2 (Mutation Assessor), >0.5 (Polyphen2 and
PON-P2), <0 (SNAP2), and >0.75 (MutPred) to discriminate
between the deleterious/partially deleterious and the neutral
mutations. We considered a mutation as “damaging” if it
was classified as being within C45, C55, and C65 classes of
AlignGVGD.

Structure-Based Prediction of Impact on
Protein Stability and Binding Interface
We employed the FoldX energy function from the newest
release of the FoldX suite (27) to carry out in silico saturation
mutagenesis using a Python wrapper that we recently developed
(to be published and available on request). The wrapper allows
for the introduction of all possible 19 point mutations at
each position of the protein using multithread calculations.
Calculations with the wrapper resulted in an average 11G
(differences in 1G between mutant and wild type variant) for
each mutation over the whole NMR ensemble of 20 conformers
for both the MZF1 monomer (PDB entry 2FI2, chain A or B

Frontiers in Molecular Biosciences | www.frontiersin.org 3 December 2016 | Volume 3 | Article 78

http://www.uniprot.org/docs/humsavar
http://www.uniprot.org/docs/humsavar
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Nygaard et al. The Mutational Landscape of MZF1

only) and the dimer (PDB entry 2FI2, both chain A and B).
The ensemble was used to account for flexibility in the protein
since FoldX energy function only allows for local conformational
changes. We calculated the 11G between mutants and wild
type variants associated with protein stability and in relation to
the formation of the dimeric MZF1 complex. We applied the
BuildModel module from the FoldX suite and five independent
runs for mutations in our scan. The typical prediction error of
FoldX is about 0.8 kcal/mol (Guerois et al., 2002). Twice the
prediction error (i.e., 1.6 kcal/mol) was used as a threshold to
discriminate between neutral and deleterious mutations in the
analyses.

Moreover, we implemented a correction to the FoldX energy
values, as defined by Tawfik’s group (Tokuriki et al., 2007)
to make the 11G FoldX values more comparable with the
expected experimental values (i.e., to achieve more overlapping
distributions). We estimated the 1G of unfolding for each
mutant variant (1Gumutant) from the equation:

1Gumutant = 1GuWT_exp + m∗11GFoldx + b (1)

where 1Gumutant is the estimated unfolding 1G of the mutant
variant, 1GuWT_exp is the experimental unfolding 1G of the
wild type variant, 11GFoldx is the 11G estimated by FoldX,
m and b are correction terms. In particular, m and b where
selected according to the work by Tawfik et al. (Tokuriki et al.,
2007), in which the correlation between the experimental values
11G values and those predicted by FoldX was calculated for
1285 mutations of 10 different proteins available in the ProTherm
database (Kumar, 2006). The authors applied a linear correction
to the FoldX 11G values to optimize the overlap between
the distributions of the experimental and in silico data, using
parameters (m and b) derived either from linear regression or
Principal Component Analysis (PCA). The latter correction led
to essentially identical distribution between the experimental
and computational data, therefore all the FoldX values were
corrected using the PCA equation 11GFoldX = −0.078 + 1.14
11GExperimental (Tokuriki et al., 2007). Therefore, we here used
the inverse of this relation, from which b and m were derived,
to normalize our FoldX 11Gs before adding them to the
experimental unfolding free energies. Reversing the equation
11GFoldX =− 0.078+ 1.14 11GExperimental, we obtained:

11GExperimental = 0.078 + 0.877 11GFoldX (2)

Where b= 0.068 andm= 0.877 to be used in Equation (1).
In our calculations, we cannot use an experimental value of

unfolding 1G for the wild-type variant of MZF1 SCAN domain
since there are no experimental data available in the literature
at the best of our knowledge. Nevertheless, values in the range
of 5–15 kcal/mol are generally obtained for the net free energy
of unfolding of proteins (Privalov, 1979; Fersht and Serrano,
1993). And other helical proteins have folding1G∼5–7 kcal/mol
according to the data reported in ProTherm. We thus here used
as an arbitrary reference a value of 5 kcal/mol as 1GuWT_exp in
the calculation of 1Gumutant .

Generation of the MD Ensembles
We used the first conformer of the NMR ensemble (PDB entry
2FI2, Peterson et al., 2006) as a starting structure for all-atom
explicit solvent MD simulations with Gromacs 4.6 (Hess et al.,
2008). We carried out MD simulations with five different force
fields belonging to different force field families to assess the
robustness of the results, i.e., Amber-ff99SB∗-ILDN (Best and
Hummer, 2009; Lindorff-Larsen et al., 2010), Amber-ff99SB-
NMR-ILDN (Li and Brüschweiler, 2010), CHARMM22 with
the CMAP backbone corrections (herein termed CHARMM27;
Mackerell et al., 2004; Bjelkmar et al., 2010), CHARMM22∗

(Piana et al., 2011), and the modified OPLS-AA/L force field
RSFF1 (Jiang et al., 2014). We used TIP3P adjusted for
CHARMM force fields (MacKerell et al., 1998) and TIP4P-Ew
(Horn et al., 2004) water model for Amber/CHARMM and
RSFF1 force fields, respectively. The protein was solvated in a
dodecahedral box with a minimum distance between protein
and box edges of 1.2 nm applying periodic boundary conditions.
His51 was simulated as the Nε2-H tautomer, according to NMR
CD2-HD2 chemical shift (BMRB accession number: 6957) which
is<122 ppm (Sudmeier et al., 2003). The system was equilibrated
according to a protocol previously applied to other cases of study
(Papaleo et al., 2014b; Tiberti et al., 2015a). Productive MD
simulations were carried out in the canonical ensemble at 298K
using velocity rescaling with a stochastic term (Bussi et al., 2007).
The LINCS algorithm (Hess et al., 1993) was used to constrain
the heavy atom bonds to use a time-step of two fs. Long-range
electrostatic interactions were calculated using the Particle-mesh
Ewald (PME) summation scheme (Essmann et al., 1995). Van der
Waals and Coulomb interactions were truncated at 0.9 nm.

Comparison of MD Ensembles with NMR
Data
We selected 501 frames, which were equally spaced in time,
from each of the five different MD simulations to calculate
backbone and side-chain chemical shifts, as well as NOEs. We
used backbone and side-chain chemical shifts for 90 residues.
Moreover, we employed 4063 NOE-derived distances of which
1018 long-range (i.e., separated by more than four residues in the
primary sequence), 2422 short-range, and 623 intermolecular.

For each of the MD frames, we predicted the chemical shift
using PPM One (Li and Brüschweiler, 2015), after which we
compared the predicted chemical shift with the experimentally-
derived values (deposited in BMRB entry 6957) using a χ2–like
approach according to the following equation:

χ2
=

1

s− 1

∑s

j= 1

(

(

1
n

∑n
i=1 δi,j − δexp

)2

δexp

)

We calculated the pair-wise distances between the atoms for
which experimental NOEs were available and then averaged
them over the 501 frames extracted from each MD ensemble.
Differences between average and experimentally obtained
distances were then calculated.

For each MD ensemble we also predicted the resolution value
using Resprox (Berjanskii et al., 2012) and compared it to the
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predicted resolution of the NMR ensemble deposited in the PDB
(PDB entry 2FI2).

Network Analyses of MD Ensembles
A protein structure network (PSN) approach was used as
implemented in the Pyinteraph framework (Tiberti et al., 2014).
The residues that have zero edges are termed as “orphans”
and those involved in more than three edges are referred as
“hubs.” The node inter-connectivity was used to identify the
so-called “connected components,” i.e., a cluster of connected
residues in the graph. The node clustering procedure was carried
out so that each node was iteratively assigned to a cluster if
the node could establish at least a link with another node of
the same cluster. We tested two different distance cutoffs to
define the existence of a link between the nodes (i.e., 0.5 and
0.55 nm). We then monitored the distribution of the hubs and
the elements belonging to the first five more populated connected
components to identify a suitable cutoff for the analyses. The
distance is measured between the centers of mass of the residue
side chains, except for glycine residues (these are not included in
the analysis). Since MD force fields are known to have a different
mass definition, we used PyInteraph mass databases for each of
the MD ensembles.

To obtain a single PSN for each MD ensemble, we included,
in the final graph, only those edges which were present in at least
20% of the simulation frames (pcrit = 20%), as previously applied
in other cases of study (Papaleo et al., 2012a,b, 2014a; Jónsdóttir
et al., 2014; Tiberti et al., 2014; Lambrughi et al., 2016a,b). For
each pair of nodes in the PSN graph, a variant of the depth-first
search algorithm was employed to identify the shortest path of
communication. The distance between two nodes (i.e., residues)
that are directly connected in the graph was considered to be

one. The shortest path was defined as the path in which the two
residues were non-covalently connected by the smallest number
of intermediate nodes. The calculations were performed using the
PyInteraph suite of tools (Tiberti et al., 2014) and analysis of the
output was performed using in-house Python scripts (available
on request). To evaluate the convergence of the PSN properties
over the simulation time, we used the Jack-Knife resampling
method (Miller, 1974). In particular, we calculated the hubs and
connected components from an average PSN generated by the
whole MD ensemble and by smaller MD ensembles obtained
discarding 10% of the simulation frames at regular time intervals.

RESULTS AND DISCUSSION

The Landscape of Protein-Protein
Interactions Mediated by MZF1 SCAN
Domain
We retrieved 17 MZF1 interaction partners from the I2D
database (Figure 1A). For each of them we collected information
on the experimental techniques used to probe the interaction
and the presence of SCAN or zinc finger domains (Table
S2). Among the identified interactors, five proteins (ZNF202,
ZNF24, ZNF174, and ZSCAN2) were SCAN-containing and
harbored multiple zinc finger motifs, while only SCAND1
was a SCAND protein. Gene ontology analyses of the MZF1
interaction network pointed to a major role in gene transcription
as well as in the regulation of other biosynthetic processes
(Figure 1B).

To identify those interactors, which form a complex with the
MZF1 SCAN domain, we employed the PRISM approach. As a
target ensemble for PRISM, we used the structures of each of the

FIGURE 1 | (A) The direct network of MZF1 protein-protein interactions. Interaction partners of MZF1 were extracted from the Interologous Interaction Database (I2D).

(B) Results of gene ontology (GO) enrichment analysis. Similarity of GO-terms was estimated using the R-package GOSemSim (Yu et al., 2010). The shade and size of

dot indicates relevance (strength) of similarity. The diagonal is similarity with self. Similarity scores range from 0 to 1.0.
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MZF1 SCAN domain monomers (PDB entry 2FI2, chain A and
chain B). Moreover, we used the interaction partners, from I2D,
for which at least one experimental structure was available in the
PDB. We also included two additional SCAN domain proteins,
the Zfp206 and Peg3 [PDB entries 4E6S (Liang et al., 2012)
chain A and 4BHX (Rimsa et al., 2013) chain A, respectively]
to further investigate the role of SCAN-mediated hetero-
dimerization. For analyses, we retained only those complexes
with a predicted docking energy lower than −2.39 kcal/mol
(Figure 2).

The PRISM analyses suggest that all the SCAN domains,
and MZF1 especially, can form homo- and hetero-dimers with
other SCAN domains with a very low predicted docking energy
(< −33.46 kcal/mol; Figure 2E). These results are confirmed by
the fact that the docking energy for MZF1 homo-dimerization,
for which the structure is known (PDB entry 2FI2), is within
the same range of other homo- and hetero-dimeric complexes
of SCAN domains predicted by PRISM. All the predicted homo-
and hetero-complexes of SCAN domains have similar interaction
interfaces mainly comprising residues in the α-helices 2, 3,
and 5 (residues 58–73, 80–95, 112–123 from PDB entry 2FI2).
Residues known to contribute to MZF1 homo-dimerization are
also conserved at the interface of other SCAN-SCAN complexes
predicted by PRISM, such as F47, R48, Y52, P58, A61, L65,
R66, W72, L73, P75, K82, L84, V88, Q93, P97 (2FI2 numbering,
Figure 2). Interactions with the Cdk4 kinase, CD14, and the Nfyc
transcription factor are also predicted within the significance
threshold, suggesting an even broader network of interactions
and diversity in signaling and expression regulation, promoted
by the SCAN module.

Expression Levels of MZF1 and Its
Interactors in 24 Cancer Studies from the
Cancer Genome Atlas (TCGA)
To evaluate the relationship between the MZF1 network (i.e.,
MZF1 and its interactors) and different types of cancer, we
analyzed genomic profiling data from 10173 samples stratifying
into 24 different cancer studies—deposited in TCGA (Table S1).

MZF1 is expressed at an overall higher or lower level in
tumor vs. normal samples in 19 out of the 24 cancer studies
that we analyzed, strongly supporting its crucial but diverse role
in cancer (Figure 3, Figure S1 and Table S1). The majority of
cases are characterized by higher levels of MZF1 within tumors,
with the exception of Adrenal Gland and KICH/KIRC Kidney
tumors, in which MZF1 has lower expression levels in tumor
compared to normal samples. In many cancer types we observed
a high variability in the expression levels of MZF1, emphasizing
the importance of using paired tumor-normal samples in the
comparisons. We then investigated if any correlation was
observed between MZF1 changes and changes in the expression
levels of its interactors. We observed as a common feature that
changes in CDK4 and ZNF688 positively correlate (red dotted
lines in the Figure 3) with changes in MZF1 (Figure 3). MZF1
has a predicted phosphorylation site for CDK kinases in its N-
terminal region (Ser8) and we thus hypothesize that the MZF1
SCAN domain acts as a docking site for CDK4 kinase, which

is in turn able to recruit the MZF1 disordered N-terminal tail
for phosphorylation. The CDK4 binding site on MZF1 predicted
by PRISM (Figure 2) partially overlaps with the SCAN-SCAN
dimerization interface and thus the binding to the kinase would
compete with the dimer formation according to our models.

We also noticed that the correlations between expression
levels of MZF1 and the other SCAN domains vary from one
cancer type to the other, unveiling a complex network of
interactions and diverse cellular signaling that can be elicited in
different cancers. The SCAND-only SCAND1 protein has been
experimentally reported to interact withMZF1 and its expression
levels and MZF1 expression levels are tightly correlated in
the majority of the cancer types according to our analyses
(Figure 3). SCAND1 is thus likely to act as a regulator of MZF1
activity, in agreement with the hypothesis that SCAND1 could
decrease MZF1-mediated signaling by altering its affinity for
DNA targets (12). In certain cancer types, when MZF1 level
increases, SCAND1 is also up-regulated, whereas in other cancer
types they are inversely correlated, i.e., MZF1 levels increase
but SCAND1 expression decreases compared to the normal
samples. The latter scenario occurs in KIRC, LUSC, PRAD, and
STAD cancer studies annotated in TCGA (Table S1, Figure 3).
In these cases, the regulatory function of SCAND1 on MZF1
activity is likely to be lost altering the downstream effects
mediated by this transcription factor. The same heterogeneity in
different cancer types is observed for the other SCAN-containing
proteins.

Sequence-Based Prediction of the Effects
Induced by Mutations in the MZF1 SCAN
Domain
Twenty three cancer-related mutations located within the MZF1
SCAN domain were identified through the analyses of various
cancer databases (see Section Materials and Methods) along with
21 mutations which have not been associated with cancer so far
(Table S3).

We subsequently employed both sequence- and structure-
based methods to predict the impact of these mutations on
function, stability and protein-protein interactions.

We integrated seven sequence-based methods mainly based
on evolutionary information to assess the pathogenic potential
of the mutations in the MZF1 SCAN domain. The methods
employed were in agreement for most of the mutations even if
a complete consensus could only be identified for nine mutations
(Figure 4).MutPred, Provean PON-P2, Polyphen 2, andMutation
Assessor predictors yielded similar results, as illustrated by the
hierarchical clustering reported in Figure 4. A subset of predicted
deleterious amino acidic substitutions included E41K, R44G,
F47S, R48L, Y52H, G57W, P58L, C69Y, R74C, S79P, Q82R,
P97T, and I100N. In addition, most methods (five out of seven)
identified another group of substitutions with neutral effects on
protein function i.e., P40S, R51C, R51H, R70H, R78H, G94S,
A102T, R103C, R103Q, R108L, R124Q, P126L, P126T, G127S,
and G128R. MutPred also predicted with significant p-values
(p < 0.05) a gain or a loss of Post-Translational Modifications
(PTMs) upon certain mutations, such as gain of glycosylation
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FIGURE 2 | Predicted protein-protein interactions mediated by MZF1 SCAN domains. The predicted homo- and hetero-dimeric complexes of MZF1 SCAN

domain (PDB entry 2FI2 chain A orange, chain B blue) and ZNF174 SCAN domain (PDB entry 1Y7Q chain A green) ZNF24 SCAN domain (PDB entry 3LHR chain A

cyan) and Cdk4 (PDB entry 3G33 chain A violet) are represented as cartoon and surface in (A–D), respectively. We calculated the residues of the two proteins in each

complex that have at least one atom within 0.4 nm of distance from the binding partner and we highlighted their Ca as spheres. These residues are shown in bold in

the amino acid sequences of the SCAN domains. (A) Predicted homo-dimer of MZF1 SCAN domain with indicated in green the position of the deleterious mutations

that we identified. The amino acid sequence of MZF1 SCAN domain is reported. (B) Predicted hetero-dimer of MZF1 SCAN domain and Cdk4 (blue and violet,

respectively). (C) Predicted hetero-dimer of MZF1 and ZNF24 SCAN domains (orange and cyan, respectively) (D) Predicted hetero-dimer of MZF1 and ZNF174 SCAN

domains (blue and green, respectively). The amino acid sequence of the MZF1/ZNF24 and MZF1/ZNF174 SCAN domain complexes are reported and the residues at

the interaction interfaces are shown in bold. (E) PRISM docking energies for the dimeric complexes between MZF1 and MZF1 partners from the I2D database and

with Peg3 and Zfp206 SCAN domains. PRISM predicts with similar energies three different SCAN template interfaces (2fi2AB, 3lhrAB, and 1y7qAB) for nearly all the

predicted homo- and hetero-complexes involving SCAN domains, as for example in the case of the homodimer of Znf174 where the three interfaces have docking

energy values ranging from −47 to −45 kcal/mol. In the table we reported the predicted interaction complexes with lowest energies for each pair of interactors.
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FIGURE 3 | (Upper panel) Comparison of MZF1 expression levels as determined by RNASeq experiments comparing paired tumor and normal samples of patients

from different cancer studies deposited in TCGA. (Lower panel) Correlation between changes in the expression levels of MZF1 and its interactors as determined by

RNASeq experiments comparing paired tumor and normal samples. In each network, the absolute value of the difference between the medians of the counts per

gene in the normal samples and tumor samples was used to represent the node colors, upon log2 transformation. The color shade of the edges represented the value

of the Pearson correlation coefficient calculated for each MZF1 interactor-pair according to the counts presented in the tumor samples with respect to the normal

samples. Red and blue dotted lines show positively and negatively correlated pairs, respectively.

in E41K (assuming that the lysine is hydroxylated), gain of
phosphorylation at F47S and loss of methylation at R48 and R51.

Effects of MZF1 Mutations on Structural
Stability and Dimer Formation of the SCAN
Domain
Due to the intrinsic limitations in sequence-based methods
to predict mutational impact, we turned our attention to
structure-based methods. Specifically, we carried out an in silico
saturation mutagenesis scan based on the FoldX energy function
using the whole NMR conformational ensemble of the MZF1
SCAN deposited in the PDB (Figure 5). The FoldX energy

function provides a quantitative description of the intermolecular
interactions that stabilize a protein in order to predict the change
in thermodynamic folding stability or in the free energy of
protein complex formation (11G) with respect to the wild
type. The saturation scan allowed us to assess the impact of the
mutations on protein structural stability (the scan is performed
on the MZF1 monomers) and local effects influencing the
interface for monomer-monomer interaction (when the scan is
performed on the MZF1 dimer). Negative 11G values indicate
variants that are more stable than the wild type, whereas positive
values indicate that the mutant variants are less stable than the
wild type MZF1 protein. Thus, mutant variants with 11G >0
upon the monomer scan have a higher population of (partially)
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FIGURE 4 | Heat-map and clustering of the effects induced by MZF1 mutations on protein function as predicted by sequence-based classifiers. Seven

sequence-based methods have been employed for the prediction, i.e., Align-GVGD (AGVGD), SNAP2, PON-P2, Polyphen2 (PP2), Mutation Assessor, PROVEAN,

MutPred. Deleterious and neutral mutations are depicted in red and white, respectively. A complete consensus is observed only for a small fraction of the mutations.

Nevertheless, the different methods are in reasonable agreement, with most of the mutations showing consensus for five out of seven methods.

unfolded structures that are prone to aggregation, misfolding or
degradation. Mutant variants with 11G >0 upon the protein-
protein binding scan have a decreased monomer-monomer
binding affinity. The high-throughput mutation scan allowed us
not only to assess the impact of MZF1 mutations collected from
the mutation databases, but also to predict the effect of any other
possible amino-acid substitution (Figures 5A–D). Thus, the full
data set provides a valuable source of information such as (i)
the predicted impact of MZF1 mutations potentially identified
in future studies related to disease and (ii) critical hotspots
for protein structural stability and/or protein-protein binding.
The data sets comprised 1786 and 3572 mutated variants for
monomer and dimer scans, respectively. The distribution of
11G values for the data sets (Figure 5E) is similar to those of
other proteins with different folds investigated using the same
pipeline (Papaleo et al., 2014a; Mathiassen et al., 2015). The
distribution of 11G values for complex formation turned out to

be much narrower with values rarely higher than 5 kcal/mol. This
observation may be partially explained by the fact that the FoldX
energy function is only capable of accounting for local effects
of mutations. Indeed, as there are no major conformational
changes of the backbone during FoldX calculations, the method
will neglect the contribution of mutations located at distal
sites with respect to the monomer-monomer interface. The
heatmaps depicting the results of the saturation scan are reported
in Figures 5A–D, while the analyses of the MZF1 mutations
reported in online databases (Table S3) are shown in Figure 5F.
Based on Figure 5F, the only substitutions which did not affect
protein stability but had amarked impact on the dimer formation
were P58L and Y52H. These two sites are predicted to be sensitive
to any amino acid substitution at the interface, as observed from
the heatmap (Figures 5C,D). A proline at position 58, due to
the intrinsic rigidity of its side chain, is crucial for the proper
orientation of the upstream turn motif. This motif allows a
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FIGURE 5 | Effects on thermodynamic protein stability and protein-protein complexes upon in silico saturation mutagenesis of MZF1 SCAN domain.

(A–D) Heatmap based on calculations of 11G associated with monomer protein stability (A,B) and monomer-monomer binding (C,D). (E) The distribution of the

11G values from saturation mutagenesis of the monomer or dimer MZF1 SCAN domain is shown. (F) 11G predictions for mutations in MZF1 SCAN domain that

have been deposited in cancer databases and other databases of genetic variations. (G) Structural constraints induced by P58 rigid side chain promote a cluster of

electrostatic interactions at the dimerization interface.
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glutamate (E54) within one of the monomers (blue in Figure 5G)
to participate in an electrostatic intermolecular network with
the residues R123 and D120 of the other monomer (orange in
Figure 5G). Our scan also pointed to a subset of mutations with
detrimental effects on both protein stability and the formation
of the dimeric complex e.g., C69Y, P112R, and G57W. The
majority of the remaining deleterious mutations including F47S,
I100, L86V, P97S, P40S, R44G, R44H, and R74C mainly had
an impact on protein stability. The deleterious amino acidic
substitutions mentioned above were also located in sensitive
structural hotspots where most substitutions are not tolerated, as
seen by the heatmap (Figures 5A,B).

To better appreciate the effects of these mutations on protein
stability, we also estimated a 1G of unfolding (∆Gumutant) of the
mutant variants reported in Table S3, as explained in details in the
Materials and Methods. The ∆Gumutant values are also reported
in Table S3. These data could be useful for comparisonwith future
experimental determination of changes in the free energies of
folding/unfolding upon mutation of MZF1 and overall confirm
the scenario described above.

Moreover, we noticed that the mutations predicted to be
damaging for protein structure and function had previously
been identified in cancer studies, as well as in databases
that contain mutations not yet classified for their clinical
relevance (Table S3). Our findings suggest that these unclassified
mutations could exert damaging effects on MZF1, highlighting
the need for further experimental studies and greater efforts in
genomic profiling of cancer patients. Collectively, our results
demonstrate the utility of structure-based computational tools
to discriminate between substitutions more likely to be cancer
drivers and those exerting only neutral effects. F47S, G57W,
and C69Y are of particular interest as these were predicted
to affect protein stability or dimerization interface and have
previously been identified in patients with bladder cancer, kidney
cancer, colorectal cancer, and in established cancer cell lines
(Table S3).

Validation of MZF1 MD Ensembles with
NMR Data
One of the limitations of the high-throughput saturation
mutagenesis performed above is that only local structural
changes can be modeled. Thus, the information on structural
changes promoted by distal sites are lacking. To overcome this
issue, we carried out microsecond all-atom explicit solvent MD
simulations using state-of-the-art force fields. We accounted for
differences in the formulation of the physical models employed
in MD on the simulated dynamics, using five different force
fields, i.e., CHARMM22∗, CHARMM27, Amber99-SB∗-ILDN,
Amber99-SB-NMR-ILDN, and RSFF1. Even minor changes in
the torsional potential of protein backbone and side chains in the
force fields have a major impact on the dynamics and structure
described by MD simulations (Guvench and MacKerell, 2008;
Lange et al., 2010; Lindorff-Larsen et al., 2012; Martín-García
et al., 2015; Tiberti et al., 2015b; Unan et al., 2015) and the
structural consequences upon selecting a certain set of force field
parameters are hard to predict.

The MZF1 SCAN domain has been studied by NMR
spectroscopy resulting in a number of high quality probes
of protein dynamics in solution, such as backbone and side-
chain chemical shifts, as well as short- and long-range NOEs
(Peterson et al., 2006). These data are a valuable resource
for experimental validation of the conformational ensembles
collected in our MD simulations as well as for comparison of
MD force fields (Guvench and MacKerell, 2008; Lange et al.,
2010; Beauchamp et al., 2012; Best et al., 2012; Dror et al., 2012;
Lindorff-Larsen et al., 2012; Piana et al., 2014; Papaleo et al.,
2014b; Henriques et al., 2015; Martín-García et al., 2015; Papaleo,
2015; Unan et al., 2015; Tiberti et al., 2015b). Thus, we calculated
these NMR parameters from each MD ensemble and compared
them to the experimental values.

Backbone and side-chain chemical shifts are known to report
on motions occurring on a heterogeneous range of time scales
(Robustelli et al., 2012; Case, 2013; Palmer, 2015). The calculated
chemical shifts from our simulations are in good agreement
with the experimental values as it can be appreciated by the
low χ2 values (Figure 6, Figures S2, S3). They converge rather
quickly during the simulation time (after ∼100–200 ns). NOEs
can be used to report on either secondary structure (short-range
NOEs) or tertiary contacts (long-range NOEs). Also in this case
we did not observe remarkable deviation with respect to the
original NMR ensemble, suggesting that the selected MD force
fields describe with good accuracy the structure and dynamics of
MZF1 (Figure 7).

FIGURE 6 | Differences between predicted chemical shifts from MD

simulations and experimentally measured chemical shifts along the

simulation time. All the simulations are largely in agreement with

experimentally derived chemical shifts. Indeed, the MD ensemble converge to

very low deviation from the experiments after 200–300 ns of simulation. The

chemical shift for different backbone atom types are shown in the panels

(A–D).
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FIGURE 7 | Density plot of the average distance difference of NOE

pairs between MD simulations and measured NOEs. For all the panels,

the distances were averaged over the trajectory and subtracted from the

measured NOE (see Section Materials and Methods). The distance differences

between the all measured NOEs (A) are very similar for all of the force fields

(black; NMR conformers, blue; Amber-ff99SB-NMR-ILDN, green;

Amber-ff99SB*-ILDN, red; CHARMM22*, cyan; CHARMM27, magenta;

RSFF1) as well as for the 20 NMR conformers (PDB:2fi2). Noticeable is a

slightly lower average distance between the NOE pairs compared to the

experimentally obtained values. The similarity between the force fields is

observed when plotting only long range NOEs (B), short range NOEs, (C) as

well as the intermolecular NOEs (D).

The similarity between the different MD ensembles was
also highlighted by the overlap between the first 20 principal
components of the covariance matrix of Cα atomic fluctuations
estimated in terms of Root Mean Square Inner Product (RMSIP;
Hess, 2002). RMSIP was continuously higher than 0.85 for any
pair-wise comparison of the MZF1 MD ensembles, suggesting a
high overlap between the conformational spaces described by our
simulations.

The prediction of structural resolution (R) for the MD
ensemble (Figure 8) allowed us to better discriminate between
the different force fields. We observed a shift to lower R
values and thus higher structural quality in MD ensemble
with the CHARMM force-field family. The predicted R-value
quantitatively accounts for different structural quality parameters
(Berjanskii et al., 2012) such as population of χ1 side-
chain dihedral angles, side-chain rotamers that lie outside
the distribution described by the penultimate rotamer library
(Lovell et al., 2000), outliers in the Ramachandran plot, packing
of the protein core, hydrogen-bond networks and atomic
clashes. Thus, the predicted R-value is sensitive toward different
structural properties with respect to chemical shifts and NOEs
and is a powerful complementary metrics to evaluate MD
ensembles.

FIGURE 8 | Prediction of Resolution values for the different MD

ensemble of MZF1 dimer generated using different atomistic force

fields. A χ2-like score was used to estimate the differences between

experimental and computationally derived chemical shifts as detailed in the

Section Materials and Methods.

MZF1 Cancer-Related Residues Are Hubs
in the Protein Structure Network and
Mediate Long-Range Communication
A protein structure network (PSN) approach (Di Paola et al.,
2013; Papaleo, 2015; Papaleo et al., 2016) was applied in
the analyses of MZF1 molecular dynamics, as detailed in the
Materials and Methods Section. The PSN method employs the
graph formalism to identify a network of interacting residues in
a given protein from the number of non-covalent contacts in the
protein.

Two main properties of a PSN are the hub residues, i.e.,
residues that are highly connected within the network and
the connected components, i.e., clusters of residues which are
inter-connected but do not interact with residues in other
clusters.

We evaluated the convergence of these two properties in
our MD simulations by comparing their distribution in the
average PSN and in PSNs generated by the shortest subsets of the
trajectories (see Section Materials and Methods; Figures S4, S5).
The analyses were carried out using two different distance
cutoffs (0.5 and 0.55 nm) for PSN edge definition. We observed
that if the distance cutoff is higher than 0.55 nm most of the
protein residues are grouped in the same connected component
(Figure S4), suggesting that this value is too high to achieve a
proper network description of the system and that 0.5 nm is a
suitable cutoff for the PSN analyses of the MZF1 MD ensembles.
The result is force field independent since we observed the
same behavior in all the MD simulations, i.e., a loss in the
number of elements in the connected components with indexes
higher than one.

The connection degree of the hub residues in MZF1 is not
higher than five in all the simulations and the hub distribution
profiles are also independent on the force field used for the
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simulations, especially when force fields of the same family
are compared (Figure S5), such as AMBER or CHARMM.
Hubs in the networks have the important role of shortening
the “communication” between distal nodes, and thus, they can
play a crucial role in mediating structural effects over long
distances in the protein structure. Furthermore, hubs preserve
robustness of the network. Changes in the small degree nodes
should not have a marked effect on the network integrity
whereas, if important hubs are affected (especially the largest
one), the network integrity can be easily compromised. We
therefore evaluated if each of themutation sites investigated so far
constitutes a hub in the MD-derived PSNs of MZF1 (Figure 9).
The MZF1 hub residues are generally located at the interface
between the two monomers, highlighting the importance of the
dimer architecture for the function of SCAN domains. Moreover,
MZF1 hub residues are enriched in arginine or proline residues
and mutation sites such as P112, P58, C69, R44, R74, and F47
have been identified as hub residues in the MZF1 simulations
and are among the mutations that are predicted to affect the
monomer stability or the protein-protein interface (Figure 5E).
Of these residues, P112, P58, and C69 are not only the residues
with more deleterious effects in terms of free energy of binding
and stability but also hubs with the highest connection degree
in the PSN.

We then calculated the communication paths between the
MZF1 mutation sites and the interface for SCAN dimerization in
the CHARMM27 simulation that is the MD ensemble associated
to the highest predicted structural resolution (Figure 8). We
selected the residues (Figures 5C,D) that encompass the highest
impact on binding free energies (Y52, P58, L62, C69, L84, L87,
and A95) as interface residues for the path calculation according

to the saturation mutagenesis scan in silico. The mutation sites
involved in distal communication to the SCAN dimerization
interface are mainly proline (P58, P112, and P97) and arginine
sites (R124, R44, R66, and R70) along with C69. C69 is central in
theMZF1 network and has a key role in the path communications
over long distances since it allows the SCAN dimerization region
to mediate effects over long distances to solvent exposed sites,
which might work as recruitment point for other cofactors
(Figure 10). Indeed, C69 allows the dimerization interface to
communicate to three different surface hotspots where R66
(Figure 10A), E41 (Figure 10B), and a cluster of charged residues
(E54, D120, R123, and R124, Figures 10C,D) are located.
The shortest paths that transmit structural effects from the
SCAN dimerization interface to these surface hotspots are
involving inter-molecular contacts between the two monomers
emphasizing the importance of a properly folded dimeric SCAN
domain for MZF1 functionality. The intermediate or the end
nodes of the paths mediated by C69 are also known mutation
sites of MZF1, such as R48 which is mutated in head and neck
cancer, E41 in bladder cancer and F47 that is mutated in different
cancer types.

CONCLUDING REMARKS

We integrated a plethora of different computational methods
to unveil the role of MZF1 alterations in different cancer
types. In particular, we focused on the SCAN domain, which
is an important building block for protein-protein interaction
in transcription factors. A focus on SCAN domains in
cancer is of notable interest if we consider that both SCAN-
only regulatory proteins and a SCAN-only short isoform of

FIGURE 9 | Hub localization on MZF1 dimeric structure upon PSN analyses of the MD simulations. Since in a PSN a hub is defined as a residue connected

by at least three edges, all the residues with a degree lower than three are set at zero. The structure is depicted as ribbon with rainbow shades of colors from blue to

red according to the node degree. The MZF1 residues for which mutations have been collected from different databases reported in Table S2 are depicted as spheres

centered on their Cα atoms. The results for all the MD simulations (A), Amber99-SB-NMR-ILDN (B), Amber99-SB*-ILDN (C), CHARMM22* (D), CHARMM27 (E), and

RSFF1 (F) simulations are shown in the different panels.
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FIGURE 10 | The shortest paths of communications between C69 and P58 (A), E41 (B), E54 (C), and R124 (D) are shown.The initial and terminal residues of

each path are highlighted as spheres. Chain A and B are colored in orange and blue, respectively. The intermediate nodes in each path are shown as sticks and the

residues on the protein surface discussed in the text are shown as dots. The blue, red, and gray colors refer to the different atom types (i.e., N, O, and C, respectively).

The paths are the following: C69A-> V88A->R66B->L62B->A116A->Q59B->P58B (sum of weights 254.2, average weight 42.4); C69A->F47A->Q91B->R48A->

E90A->R44A->E41A (sum of weights 411.6, average weight 68.6); 69CB->88VA->66RB->62LB->A116A->P58B->D120A->R123A->E54A (sum of weights

372.7, average weight 46.6); and C69B ->V88A->R66B->L62B->A116A->P58B->D120A->R124A (sum of weights 336.1, average weight 48).

mzf1 with disordered N- and C-terminal tails are known
to play major roles in cancer biology. The SCAN domain
of MZF1, and SCAN domains in general, can serve as
a powerful combinatorial network for regulation of gene
expression since they can provide a great diversity in the
signaling thanks to their heterodimeric complexes, complexes
with other signaling proteins and further regulation by post-
translational modifications as Cdk4-mediated phosphorylation
predicted here.

Our results show a complex and heterogeneous role of
MZF1 and its interaction network in cancer. The alterations-
and mutational landscape of MZF1 is strongly cancer-type
dependent.We observed amarked variability in the levels of mzf1
among patients with same cancer types. The same observation
holds for several of the MZF1 interactors. Our results highlight
the need for more studies on MZF1 alterations in cancer with
a specific focus on different cancer subtypes and other available
clinical data. The integration of information available about
MZF1 biological partners in the same cancer studies is also
crucial since these proteins can exert marked effects, contributing
to reshape and modulate the MZF1-mediated effects in the cell.

Our work provides a computational framework that allows to
bridge global changes, such as changes in the expression levels or
mutations of a gene and its interactors, to a detailed atomistic

and structural understanding of the effects induced by these
alterations. Moreover, since we performed the mutation scan
at a high-throughput level, we had the possibility to assess the
impact of the cancer mutations and of any other possible amino
acidic substitutions. These data sets provide a valuable source
of information to predict the impact of MZF1 mutations that
will be identified in future studies related to disease. The most
deleterious cancer-mutations are in hotspots where all mutations
would not be tolerated suggesting that any modifications at these
sites could harbor a pathogenic effect. In a broader context,
this also suggests that other similarly critical hotspots (where
no mutations are tolerated) are likely candidates for cancer-
related mutations and structural analyses. The ones presented
here are a valuable addition to the molecular characterization
of the mutational landscape of oncogenes or tumor suppressors.
We could also identify a subset of cancer passenger mutations,
i.e., mutations found in cancer patients but unlikely to have any
major impact on cancer pathways since these have neutral effects
on structure, interactions and protein dynamics.

However, caution has to be taken since the energy function
employed here can only predict local effects and will neglect
all the long-range contributions that can perturb in a cascade
of conformational changes to very distal sites. To overcome
this issue, the integration of experimentally-validated molecular
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dynamics, to better account for conformational heterogeneity
of the protein, and graph analyses, to identify paths of
communication between distal sites, can help to achieve a
more complete description of the intricate structural mutational
landscape of cancer-related proteins.

In particular, our study pointed out a major role of a cysteine
residue (C69) at the biological interface for protein-protein
interactionsmediated by the SCAN domain ofMZF1. Alterations
at this site have only been reported in cancer cell lines so far,
but our predictions suggest that it can be a critical disease-
related hotspot. Indeed, it is at the cross-road between multiple
key paths of communication from the biological interface for
protein-protein interactions to other hotspots on the MZF1
surface which can act as recruitment sites for other biological
partners.
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