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In cellular immunity, clonally distributed T cell receptors (TCRs) engage complexes of

peptides bound to major histocompatibility complex proteins (pMHCs). In the interactions

of TCRs with pMHCs, regions of restricted and variable diversity align in a structurally

complex fashion. Many studies have used mutagenesis to attempt to understand

the “roles” played by various interface components in determining TCR recognition

properties such as specificity and cross-reactivity. However, these measurements are

often complicated or even compromised by the weak affinities TCRs maintain toward

pMHC. Here, we demonstrate how global analysis of multiple datasets can be used

to significantly extend the accuracy and precision of such TCR binding experiments.

Application of this approach should positively impact efforts to understand TCR

recognition and facilitate the creation of mutational databases to help engineer TCRs

with tuned molecular recognition properties. We also show how global analysis can be

used to analyze double mutant cycles in TCR-pMHC interfaces, which can lead to new

insights into immune recognition.

Keywords: T cell receptor, peptide/MHC, binding, mutagenesis, global analysis, double mutant cycle

INTRODUCTION

T cell receptors (TCRs) are clonotypic membrane proteins on the surface of T cells. TCRs are
responsible for recognizing peptide antigens bound and “presented” by major histocompatibility
complex (MHC) proteins. TCR recognition of a peptide/MHC complex (pMHC) drives the
initiation and propagation of a cellular immune response as well as the development and
maintenance of the T cell repertoire. TCR recognition of pMHC is also involved in conditions
such as autoimmunity and transplant rejection and is central to new biologic and cellular therapies
for cancer and infectious disease. Given the central role these interactions play in human health,
there has been significant interest in the physical mechanisms underlying TCR-pMHC recognition.

The TCR–pMHC interaction is marked by the structural and genetic complexity of its interface
(Miles et al., 2015). Structurally, TCRs are similar to antibodies, comprising four immunoglobulin
domains and an antigen binding site with complementarity determining region (CDR) loops
generated through genetic recombination and nucleotide editing. However, TCRs and antibodies
differ in the nature of the antigen they recognize. Whereas antibodies can be elicited against
antigens of nearly unlimited structural diversity, TCRs recognize a composite surface consisting of
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the antigenic peptide bound in a groove formed of flanking α

helices and a β sheet floor (Figure 1A). The peptide contributes
∼30% of the recognized surface (Rudolph et al., 2006), indicating
a significant contribution from the MHC to binding. This
combined recognition of a highly diverse non-self-component
(the peptide) in the context of a less-diverse self-component (the
MHC) is a fundamental aspect of cellular immunity (Zinkernagel
and Doherty, 1974).

To engage this combined ligand, the TCR often, although not
exclusively, aligns its most diverse “hypervariable” CDR3 loops
over the peptide, and the less diverse “germline” CDR1/CDR2
loops over the α helices of the MHC peptide binding groove. This
alignment, however, does not always translate into interatomic
contacts, as numerous contacts are typically formed to the
peptide by germline loops and contacts to the MHC by
hypervariable loops. Understanding the “roles” played by the
different loops, the peptide, and theMHC protein in driving TCR
selection of ligand and ultimately T cell biology has remained
a long-standing immunological challenge, and has become even
more relevant with the advent of engineered TCRs as therapeutic
reagents.

Much of the current understanding of TCR recognition of
pMHC has come from the growing collection of structures
and subsequent interrogation by binding experiments (Rossjohn
et al., 2015). Mutational analysis is regularly used to probe
the contributions of different components of the TCR and
pMHC. Alanine scanning mutagenesis has revealed binding
“hot spots” on TCR and MHC surfaces (e.g., Manning et al.,
1998; Baker et al., 2001; Borg et al., 2005). More targeted
mutagenesis has been used to explore particular hypotheses
(e.g., Wu et al., 2002; Feng et al., 2007; Borbulevych et al.,
2009; Piepenbrink et al., 2009a), or in conjunction with
computational design, generate variant TCRs with engineered
binding properties (Zoete et al., 2013; Malecek et al., 2014;
Pierce et al., 2014; Riley et al., 2016). Recently, double mutant
cycles have been used to explore TCR recognition of pMHC
(Piepenbrink et al., 2013; Blevins et al., 2016). Common to
these and dozens of other mutational studies is quantitative

FIGURE 1 | TCR-pMHC structural overview and simulated binding

data. (A) Structure of a TCR-pMHC complex, showing the TCR bound to the

composite pMHC ligand. (B) Simulated TCR-pMHC binding data. The

wild-type data is simulated with a KD of 2 µM and reaches 99% saturation,

and mutant data with a KD of 100 µM reaches ∼50% saturation.

assessment of the impact mutations have on binding energy, or
the 11G◦.

A challenge in studying TCR-pMHC binding is that the
affinities are generally weak, with KD-values in the micromolar
range or weaker (Matsui et al., 1994; Davis et al., 1998;
Cole et al., 2007). Weak affinities can lead to difficulties in
measuring the effects of mutations, resulting in inaccurate and
imprecise 11G◦-values. Although “thresholds” can be helpful
(i.e., the 11G◦ is greater than a cutoff; Borg et al., 2005),
accurate measurements permit better comparison with structural
information and relationships between structural properties
and binding energies. With inaccurate measurements, incorrect
conclusions about the functional roles positions play in TCR
binding and T cell biology can even be made (Gagnon et al.,
2005).

Fortunately, there are ways to design binding experiments
that avoid the common pitfalls of low affinity interactions. A
commonly applied method is to perform a global analysis of
multiple data sets collected simultaneously (Beechem, 1992).
This can be used with a range of experimental approaches, such
as titration calorimetry and surface plasmon resonance (SPR),
two common methods for studying TCR–pMHC interactions.
Another approach is to fix an unknown experimental parameter
by pre-determining it in a separate experiment. For example, in
SPR, pre-determining the functional density of a sensor chip and
constraining this parameter in subsequent experiments allows
measurements with fixed surface densities that reach only 30%
saturation to have the accuracy of those that reach 90% saturation
when both 1G◦ and surface density are fitted parameters
(Piepenbrink et al., 2009b). Combined, global analysis of multiple
datasets with constrained (or shared) experimental parameters
should be expected to allow further gains in accuracy. Thus,
appropriate experimental design and analysis can be used to
obtain accurate 11G◦-values for very low affinity interactions,
such as those seen with mutant TCRs and pMHC complexes.

Here, we used simulated and real TCR binding data to show
how accurate and precise 11G◦-values can be obtained for
very low affinity TCR–pMHC interactions. We demonstrate that
global analysis with shared parameters significantly increases
accuracy and precision, and can easily be applied to low
affinity interactions. We also show how this procedure can be
extended in the design and execution of double mutant cycle
experiments, which can be used to probe TCR-pMHC interfaces
and determine the contributions of various regions inmore detail
than traditional single amino acid mutagenesis (Piepenbrink
et al., 2013; Blevins et al., 2016).

RESULTS AND DISCUSSION

Global Analyses Yield More Accurate and
Precise 11G◦ measurements for
Perturbed Data
Global analysis of multiple datasets with shared parameters
has long been used to extend the accuracy and precision of
binding experiments (Beechem, 1992). To establish a baseline
of the applicability of this approach for studying TCR–pMHC
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interactions, we simulated TCR-pMHC binding data reflective of
a TCR-pMHCbinding experiment that uses SPR to determine the
11G◦ associated with a MHC or peptide mutation (Figure 1B).
The KD for the wild-type measurement was set at 2 µM (1G◦

= −7.77 kcal/mol), characteristic of a “high affinity” TCR
recognizing a viral antigen. The KD for the mutant measurement
was set at 100 µM (1G◦ = −5.45 kcal/mol). The TCR surface
activity (RUmax) was set at 150 response units (RU). Data for both
datasets included 10 pMHC injections over the concentration
range of 0.25–100 µM. The wild-type dataset reached >99%
saturation, whereas the mutant dataset reached only ∼50%
saturation.

The simulated data was then fit individually to determine
the 1G◦ for the wild-type and mutant data and thus the
11G◦. Individual fits floated both RUmax and 1G◦. The same
two datasets were also fit globally, in which the RUmax was
a global (or shared) parameter and the two 1G◦-values were
local parameters. The 11G◦-values determined either way were
indistinguishable, and identical to the actual value of 2.32
kcal/mol, with negligible error. This is expected as the simulated
data were unperturbed, lacking the experimental noise that
would arise in real experiments. To better test the robustness of
global vs. individual analysis, a series of perturbations were added
to the data to simulate noise/error arising from the instrument
or user. To ensure that any introduced noise would be reflective
of that seen in real experiments, the reduced χ2-values from
50 separate, individually fit actual TCR-pMHC SPR binding
experiments (described below) were averaged, yielding a value
of 22%. Based on this value, Gaussian-distributed random noise
between 5 and 30% of the value of each data point was applied
to the simulated data in a series of steps. This yielded 10 sets of
perturbed wild-type and mutant datasets with increasing noise as
shown in Table 1.

Figure 2 shows the 11G◦-values obtained from individual
and global fitting of the pairs of perturbed wild-type and mutant
simulated datasets. While the average 11G◦-value for both
individual and global fitting sets is similar (individual fitting
average of 2.29 kcal/mol, global fitting average of 2.35 kcal/mol),
global fits more faithfully reproduced the actual value of 2.32
kcal/mol and showed far less variance across the 10 datasets
(standard deviation of 0.51 kcal/mol from individual fitting,
almost 5-fold larger than the standard deviation of 0.11 kcal/mol
from global fitting). The error associated with global fitting was
substantially smaller than the error associated with individual
fitting (average of 0.56 kcal/mol for individual fitting, average
of 0.18 kcal/mol for global fitting). F-tests confirmed that the
variances of the values and their error differed significantly. Thus,
with appropriate experimental design, global fitting is both more
accurate and precise for determining 11G◦-values.

Discrepancies Between Individual and
Global Fits for Experimental
Determinations of 11G◦-Values
We next examined individual vs. global fitting for determining
11G◦-values in actual experimental data. We used the two
fitting approaches with data for 25 pairs of wild-type/mutant

TABLE 1 | Data perturbations to simulate noise and error.

Perturbation name Effect on data

Normal No change

5a 5% Gaussian distributed noise

7 7% Gaussian distributed noise

10a 10% Gaussian distributed noise

12 12% Gaussian distributed noise

15a 15% Gaussian distributed noise

18 18% Gaussian distributed noise

20 20% Gaussian distributed noise

22b 22% Gaussian distributed noise

25 25% Gaussian distributed noise

30 30% Gaussian distributed noise

W1 First three wild-type points removed

W2 Middle three wild-type points removed

W3 Last three wild-type points removed

M1 First three mutant points removed

M2 Middle three mutant points removed

M3 Last three mutant points removed

a Used on experimental data sets.
b Average seen in experimental data.

binding experiments from three different TCR-pMHC interfaces.
The data, comprising 50 separate titrations, were from SPR
experiments in which wild-type or mutant pMHC was injected
over the same TCR surface, facilitating parameter sharing for
surface activity. The complexes analyzed included both published
and unpublished data for the A6, DMF5, and Mel5 TCRs
interacting with HLA-A∗0201 presenting the Tax (for A6) or
MART-1 (for DMF5 and Mel5) peptides, with various mutations
or peptide substitutions (Table S1 and Figure S1; Piepenbrink
et al., 2013; Blevins et al., 2016). In some cases, TCRmutations or
peptide variants were used that enhanced affinities (Piepenbrink
et al., 2009a; Ekeruche-Makinde et al., 2012; Cole et al., 2014;
Pierce et al., 2014).

The datasets spanned a wide range of affinities, with individual
fits giving KD-values ranging from nanomolar to micromolar.
For the 25 pairs of data, we determined the 11G◦-values using
both individual and global fits as above, and calculated the
absolute value of11G◦ global fit –11G◦ individual fit, referred
to as |1(11G◦)|. As shown in Figure 3, there is wide variation
in |1(11G◦)|. Some datasets showed essentially no difference
between individual and global fitting (e.g., datasets 1, 3, 14),
while others hadmuchmore substantial differences (e.g., datasets
10, 19). The average |1(11G◦)|-value among the 25 pairs of
experiments was 0.48 kcal/mol. To determine cases of particular
interest, a 90% confidence cutoff of the standard deviation, equal
to a Z-score of 1.64, was used. Eight datasets fell outside of this
range, which amounts to a |1(11G◦)| of 0.62 kcal/mol (asterisks
in Figure 3).

There was no correlation between the eight datasets with
|1(11G◦)| ≥ 0.62 kcal/mol and the apparent affinities of one or
more of the binding experiments, as these sets included apparent
affinities ranging from 100 nM to 200 µM. The range of the
measured 11G◦-values was similarly wide, ranging from small
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FIGURE 2 | Global analysis of simulated wild-type and mutant datasets perturbed with added noise outperforms single analyses. While the average

value of both is close to the real value, the average error of the global fits is 0.11 kcal/mol, compared to 0.51 kcal/mol for the individual fits. The columns correspond

to increasing amounts of added noise as indicated; “Ref” refers to the actual 11G◦ of 2.32 kcal/mol.

FIGURE 3 | Fitting wild-type and mutant experimental data individually or globally can lead to significant differences in the 11G◦. The absolute value of

the difference between individual and global fits, referred to as in the text as |1(11G◦)| is shown for 25 pairs of experimental datasets. The dashed line represents a

Z-score of 1.64 (90% cutoff of one standard deviation), revealing the eight datasets where the difference between individual and global fitting was most significant

(noted by asterisks).
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(0.05 kcal/mol) to large (3 kcal/mol). The remaining 17 datasets
were also dispersed within these ranges. This suggests that the
large differences in fitting methods for the nine outlier datasets
result from the influence of noise and error that is unique to
individual experiments, as opposed to being directly correlated
with strength of binding or 11G◦.

Effects of Additional Noise and Missing
Data Points on Experimental Data
To further probe the differences seen between individual and
global fitting, the eight experimental datasets with large 11G◦

discrepancies when fit with individual vs. global fitting were
further perturbed. Additional Gaussian error was introduced in
stepwise increments (5, 10, and 15%) to both wild-type and
mutant datasets as described above, and partial datasets for either
wild-type or mutant were generated by deleting three consecutive
points at the beginning, middle, and end of the wild-type or
mutant titrations (Table 1; missing points may arise, for example,
when bubbles occur during a sample injection). For all eight
experimental datasets, this generated nine additional pairs (three
pairs with noise added to wild-type and mutant data, three pairs
with deleted data in the wild-type experiment, and three pairs
with deleted data in the mutant experiment). The resulting 72
highly perturbed datasets were fit individually or globally to
determine 11G◦-values.

For all eight datasets, the 11G◦-values for individual fitting
were once again highly sensitive to perturbations, whereas the
global fits were more robust. The individually fit 11G◦-values
differed from their original, non-perturbed values by anywhere
from 51 to 123%. For global fitting the range was 0.1–38%. The
standard deviation of the average11G◦-values for the individual
fits was 0.65 kcal/mol, 5-fold greater than the value of 0.14
kcal/mol for global fits.

Figure 4 illustrates this outcome for two datasets. In
Figure 4A (dataset 17), the individually fit data shows much
larger deviations from the original11G◦-value than the globally
fit data. The standard deviation of the 11G◦-values is three
times larger for the individually fits compared to the global
fits (0.3 kcal/mol for individual vs. 0.1 kcal/mol for global).
Figure 4B (dataset 2) shows another example of discrepancies
in 11G◦-values from the two fitting methods. Two of the
perturbed series fit individually have excessively large 11G◦-
values (+8 and −7.9 kcal/mol). These are undoubtedly incorrect
and highlight the propensity of individual fitting to yield gross
inaccuracies with noisy data. In comparison, all nine of the global
fitting perturbation series showed reasonable 11G◦-values with
a standard deviation of only 0.08 kcal/mol. Notably, the two
datasets that were wildly inaccurate when fit individually were
not distinctive when fit globally.

Inaccurate Single Fitting Stems from
Overfitting of Lower Affinity Measurements
It is notable that the average 11G◦ for all 25 datasets was
smaller for individual fitting than global fitting (0.81 kcal/mol for
individual vs. 1.25 kcal/mol for global). This was also reflected
in the average 11G◦-values for the eight “outlier” datasets in

FIGURE 4 | Perturbations to experimental datasets can significantly

impact accuracy and precision whereas global analysis is substantially

more robust. (A) The impact of added noise and deletion of data points for

dataset 17 in Figure 3. Unlike individual fitting, global fitting handles the

perturbations robustly. (B) A similar result is seen for dataset 2 in Figure 3. Of

note are the instances in which perturbations to the last three wild type data

points were removed (W3) or the middle three mutants removed (M3), in which

the 11G◦-values were dramatically impacted for single fitting. The same

perturbations however had little impact with global fitting.

Figure 3. Upon examining the results of each trial in the series of
perturbed experimental datasets, it became clear that a significant
portion of the differences between individual and global fitting
could be attributed to fitting of the lower-affinity mutant data.
In most cases, there was good agreement between the wild-
type KD (or 1G◦) values when obtained through individual
or global fits as the average difference between individual and
global fitting for wild-type measurements was 0.1 kcal/mol. In
contrast, there was substantial variation for the lower affinity
mutant datasets: the average difference in 1G◦-values here was
0.8 kcal/mol.

This discrepancy arose because when singly fit, the mutant
datasets appeared to overestimate the saturation levels. This was
indicated by the fitted RUmax-values, which were reduced by
nearly half in the eight outlier data sets in Figure 3 (RUmax for
individually fit mutant data was on average 59% of the RUmax-
value in the wild-type or globally fit data). As lower-than-true
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RUmax-values indicated greater saturation, this led to stronger
mutant KD-values. An example of this occurrence is shown
in Figure 5 for dataset 17 of the experimental data. Dataset
17 involves a variant of the DMF5 TCR interacting with both
wild-type and mutant HLA-A2 protein presenting the MART1
peptide. In the titration with wild-type HLA-A2, good saturation
is achieved, yielding a RUmax of 378± 14. However, whenmutant
HLA-A2 complex is injected over the same surface, the individual
fit to the data yields a reduced RUmax of 190 ± 15. The apparent
increase in saturation yields a KD of 80± 13 µM, for a 11G◦ of
−1.27 ± 0.15 kcal. With global fitting, the RUmax for the mutant
is determined at 377 ± 11. The KD for the mutant interaction is
then determined instead to be 250 ± 15 µM, and the 11G◦ is
−1.97± 0.09 kcal/mol.

This tendency to overestimate the degree of saturation and
thus affinities of mutant interactions was not observed with the
individually fit, error-modified simulated data, despite varying
the 11G◦ between high and low affinity data and adding
additional noise. While individually fit simulated data did show
greater fitting errors and larger ranges for the recovered mutant
1G◦-values (off by 2- to 5-fold from the actual value value), there
was an even distribution between values above and below the
actual 1G◦-value. The fitted RUmax-values matched this trend:
approximately half of the noisy data sets had RUmax-values higher
than the actual value while half were lower.

The reason for the apparent enhancement in saturation for the
lower affinity experimental data could have multiple causes. As
all data were collected using SPR, it is possible that the sensor
chip surface is deteriorating during the experiment. However,
this would be expected to impact both high and low affinity
experiments, and should impact both global and individual fits,
which was not observed. Further, control experiments altering
the order of injections (i.e., mutant then wild-type) and TCR
vs. pMHC orientations on the sensor surface did not alter the
outcome. Amore likely possibility is that injection of high protein
concentrations leads to surface aggregation, blocking available
receptor binding sites and altering the shape of the curve, while

simultaneously leading to higher RU units with each injection.
As the curve shape and saturation point is restricted by the
greater information content (curvature) in the higher affinity
data, global fitting would be less subject to this occurrence.
This is related to the “pseudo-saturation” profiles discussed by
Myszka and colleagues in their review of SPR literature (Rich
and Myszka, 2006, 2008). Regardless of the underlying causes,
however, the results are clear that global fitting minimizes the
impact of experimental artifacts present in SPR-based analysis of
wild-type/mutant TCR–pMHC interactions.

Extending the Applicability of Global
Analysis to Perform Double Mutant Cycle
Experiments
Double mutant cycle experiments are frequently used to
determine the interaction free energy between two sidechains
(Horovitz, 1996). Double mutant cycles can be particularly
helpful in studying TCR–pMHC interactions, as they allow
investigators to isolate side-chain interactions and study
interactions between separate components of the interface, such
as the peptide, MHC α helices, or the various TCR CDR
loops (Piepenbrink et al., 2013; Blevins et al., 2016). Double
mutant cycles require three 11G◦ measurements: two with
two single mutants (one on the TCR, one on the pMHC),
and one with a double mutant (mutations on both molecules).
As a construct of 11G◦ measurements emerging from four
separate binding experiments, global analysis can therefore be
used to enhance accuracy and precision of double mutant
cycles.

Global analysis of SPR-based double mutant cycle
experiments is simply an extension of the 11G◦ measurements
described above. Both wild-type and mutant TCRs can be
coupled to adjacent flow cells, over which wild-type and mutant
pMHC will be injected. This design allows for parameter sharing,
with the RUmax constrained for both surfaces. A single global
fit can thus be used for all four 1G◦ measurements that make
up the cycle. An example is shown in Figure 6, which illustrates

FIGURE 5 | Individual analysis of mutant datasets tends to overestimate degree of saturation, inflating KD and reducing 11G◦. (A) Individual fits of the

DMF5 TCR binding to wild-type (black) and mutant (red) pMHC. Although the exact same surface was used for both titrations, the fitted RUmax differed between the

wild-type and mutant experiments. The lower value for the mutant interaction led to an inflated KD and smaller 11G◦. (B) When both datasets are fit globally with

RUmax as a shared parameter, the reported value is the same as the high affinity value in the wild-type single analysis. The mutant KD was thus weaker and 11G◦

smaller.
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FIGURE 6 | Example of a double mutant cycle analysis in a TCR-pMHC interface. When the double mutant cycle exploring the interaction between Trp101 of

the A6 TCR and Ala69 of HLA-A2 was fit globally, the reported interaction free energy was 0.0 ± 0.3 kcal/mol. If the four datasets making up the interaction were

individually fit, the resulting interaction free energy was −1.0 ± 0.2 kcal/mol.

a double mutant cycle measuring the interaction between
Trp101of CDR3α of the A6 TCR and Ala69 of the α1 helix of
HLA-A2 presenting the Tax peptide. The four data sets are fit
simultaneously, and the free energy of interaction between the
two side chains is measured as 0.0 ± 0.3 kcal/mol. Fitting each
experiment independently yields a very different value of −1.0
± 0.2 kcal/mol, but is subject to the errors and complexities
described above.

Previously published data further illustrates the robustness of
global analysis in double mutant cycles (Piepenbrink et al., 2013).
The free energy of interaction between Glu30 of CDR1α of the
A6 TCR and Tyr8 of the Tax peptide presented by HLA-A2 was
measured as −1.7 ± 0.1 kcal/mol. In this case the 11G◦ for
the double mutant interaction was very weak. This measurement
was therefore repeated in the background of a variant of the
A6 TCR that bound with 100-fold higher affinity (Haidar et al.,
2009; Cole et al., 2013). The resulting free energy of interaction
was −1.6 ± 0.2 kcal/mol, identical within error to the first
measurement.

Concluding Remarks
Here, we demonstrated how global analysis of multiple binding
datasets can be used to substantially extend the accuracy and
precision of TCR-pMHC binding experiments. We emphasized
SPR experiments, which continue to dominate quantitative
assessments of TCR-pMHC binding. However, the approaches
described herein can be applied to other experimental techniques,
such as calorimetric and fluorescence experiments (Piepenbrink
et al., 2009b). Beyond improving 11G◦ measurements, the
approach facilitates more complex experimental designs such as
double mutant cycles, which provide the opportunity for novel
insight into TCR recognition properties. As experimental studies
of TCR-pMHC binding segues into rational design for new
biologics and therapeutics, which often require the generation
of large training sets (Riley et al., 2016), the improved reliability
available through global analysis should be expected to have a
direct influence on progress.

MATERIALS AND METHODS

Creation and Perturbation of Simulated
Data
To determine the accuracy of 11G◦-values obtained by either
single or global fitting methods, a simulated data set was created.
An RUmax of 150 was selected along with KD-values of 2 and 100
µM for the wild-type and mutant interaction, respectively. Ten
pMHC concentration points were selected ranging from 0.25 to
100 µM and response units calculated for the two TCR-pMHC
interactions using a simple 1:1 binding model.

Simulated data was subjected to Gaussian-distributed noise
ranging from 5 to 30% of the response values in 2.5%
steps, applied to each data point. Error was added using the
“white_noise” function in Origin 9.0. These noisy datasets were
fit individually and globally to compare effects on 11G◦-value
and error. Averaging the reducedχ2-values from 25 experimental
TCR-pMHC SPR fits allowed for an estimate of the noise typically
seen in experimental data (amounting to 22% of the RUmax).
To mimic this, the simulated data was perturbed by adding
Gaussian-distributed noise ranging from 5 to 30% of the 150
RUmax as shown in Table 1.

Additional simulated datasets were created to explore effects
on affinity and the spread of11G◦. These sets included widening
the spread between the high and low affinity interactions and
using the RUmax- and KD-values from an experimental dataset
to develop a simulated set. This data was also subjected to both
single and global fitting as well as noise and error propagation.

Fitting Data Using Individual and Global
Fitting Methods
Datasets were fit using both individual and global fitting. For
individual fitting, both RUmax and 1G◦ were fitted parameters.
For global fitting, RUmax was a shared parameter between
the high and low affinity interactions while 1G◦-values were
individually floated. For global fitting, both wild-type andmutant
datasets were fit simultaneously using a custom function in
Origin 9.0. Errors were calculated by standard error propagation
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using the fitting errors obtained from Origin. Student’s t-tests
were performed to ensure differences between individual and
global fitting were statistically different. F-tests were used to
quantify differences in distribution of 11G◦-values and error.

Collection of Experimental Data and
Perturbations
Twenty-five sets of TCR-pMHC binding experiments were
utilized (Table S1). Ten of the datasets were from previously
published work using double mutant cycles (Piepenbrink et al.,
2013; Blevins et al., 2016), whereas 15 new datasets were
collected. Pairs of these datasets were used for “wild-type”
and “mutant” conditions to create 11G◦-values. In addition
to serving as primary data, these data were subjected to
perturbations, including adding additional Gaussian-distributed
noise and removing data points as shown inTable 1. For the eight
data sets with 11G◦ differences outside the threshold of ±0.62
kcal/mol, averages and standard deviations for the whole set of
72 perturbed data sets were obtained by calculating the average
11G◦-value and standard deviation for each experimental
sample, and then averaging the eight resulting averages and
standard deviations.

Surface Plasmon Resonance to Determine
Binding Affinity
Soluble TCRs and pMHC complexes were produced from
bacterially expressed inclusion bodies and purified as previously
described (Davis-Harrison et al., 2005). Experiments to
determine binding affinity were performed as previously
described unless otherwise noted (Davis-Harrison et al., 2005).
Briefly, steady state equilibrium binding experiments were
performed on a Biacore 3000 instrument. Purified TCR was
diluted in 10 mM sodium acetate pH 4.0 and immobilized on the
surface of a CM5 chip to a density of∼1000 RU. Purified pMHC
was serially injected over the surface in concentrations ranging
from 0.5 to 200 µM in duplicate. Experiments were carried out
at 25◦C. Alternatively, pMHC was immobilized on the chip to
densities of ∼2000 RU and TCR was serially injected over the
surface in concentrations ranging from 0.5 to 300 µM. These
experiments were performed at 10◦C. All data was first processed
in BiaEvaluation 4.1 prior to fitting in Origin 9.0.

Double-mutant cycles were performed analyzed as described
previously (Piepenbrink et al., 2013; Blevins et al., 2016).
Wild-type TCR and mutant TCR were immobilized on the
surface of a CM5 chip. Soluble wild-type and mutant pMHC
complexes were injected over the chip surface in a series of
increasing concentration points until steady-state binding was
attained. Each injection series was repeated twice. In any one
experiment, three flow cells were used: a blank, wild-type TCR,
and mutant TCR. The output of one single experiment thus
consisted of two sets of all four measurements that comprise
a double-mutant cycle. Data were processed in BiaEvaluation
4.1, and all eight datasets were simultaneously analyzed in
Origin 9.0 using a custom function. The wild-type and mutant
TCR surface densities and the four 1G◦-values that make
up the cycle were parameters in the global fitting function.
Data sets that shared a common flow cell shared an RUmax-
value, with the KD- and 1G◦-values being fit locally. Errors
were propagated using standard statistical error propagation
methods.
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