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Disease-causing mutations in genes encoding membrane proteins may lead to the
production of aberrant polypeptides that accumulate in the endoplasmic reticulum
(ER). These mutant proteins have detrimental conformational changes or misfolding
events, which result in the triggering of the unfolded protein response (UPR). UPR is
a cellular pathway that reduces ER stress by generally inhibiting translation, increasing
ER chaperones levels, or inducing cell apoptosis in severe ER stress. This process
has been implicated in the cellular pathology of many neurological disorders, including
Pelizaeus-Merzbacher disease (PMD). PMD is a rare pediatric disorder characterized by
the failure in the myelination process of the central nervous system (CNS). PMD is caused
by mutations in the PLP7 gene, which encodes a major myelin membrane protein. Severe
clinical PMD phenotypes appear to be the result of cell toxicity, due to the accumulation of
PLP1 mutant proteins and not due to the lack of functional PLP1. Therefore, it is important
to clarify the pathological mechanisms by which the PLP1 mutants negatively impact the
myelin-generating cells, called oligodendrocytes, to overcome this devastating disease.
This review discusses how PLP1 mutant proteins change protein homeostasis in the ER
of oligodendrocytes, especially focusing on the reaction of ER chaperones against the
accumulation of PLP1 mutant proteins that cause PMD.

Keywords: unfolded protein response, hypomyelinating leukodystrophy, ER chaperone, point mutations, PLP1

CLINICAL AND GENETIC BASIS OF PELIZAEUS-MERZBACHER
DISEASE (PMD)

Pelizaeus-Merzbacher disease (PMD) is a pediatric inherited disorder of the central nervous system
(CNS), mainly affecting oligodendrocytes, cells specialized in generating and maintaining myelin
sheaths. Myelin is a membranous structure that wraps around the neuronal axons, enhancing
the electronic conduction of neuronal circuits in the brain. Myelin also enables rapid and
efficient movement of the body and cognitive function of the brain. Children with PMD thus
show deficiencies in motor and intellectual development at an early stage of life, which usually
continue thereafter. In addition, they present other neurological symptoms including nystagmus
(involuntary rapid eye movement), spastic paraplegia (increased muscle tone and stiffness), ataxia
(abnormal voluntary coordination of muscle movements), and dystonia (involuntary muscle
contractions). PMD shows a wide range of clinical severity (Figure 1A). The most severe cases
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(the connatal form) show the arrest of developmental milestones
such as head control, and are often bedridden for their lifetime.
Milder cases (the classic form) reveal delayed motor and
cognitive development with different degrees; for example, some
patients obtain the ability to walk independently or achieve head
control, but are wheelchair-bound. In general, motor disability
is more severe than cognitive dysfunction. The mildest cases
display spastic paraplegia with mild cognitive impairment, often
diagnosed as spastic paraplegia type 2 (SPG2). The incidence
of PMD with PLPI mutations was estimated to be 1.45 and
1.9 per 100,000 male live births in Japan and USA, respectively
(Bonkowsky et al., 2010; Numata et al., 2014).

The underlying cause of PMD is either an abnormal quality
or quantity of the proteolipid protein 1 (PLP1), which is the
most abundant myelin membrane lipid protein in the CNS
(Inoue, 2005). PLPI is located at Xq22.1 on the long arm of
the X chromosome and encodes tetra-span myelin membrane
lipoprotein; hence PMD shows X-linked recessive pattern of
inheritance. Two alternative splicing variants differ in the
inclusion or exclusion of the latter half of exon 3, to produce
either PLP1 or DM20 protein; the former composes the major
portion in the mature myelin. (Griffiths et al., 1998; Yool et al,,
2000).

Different PLPI mutations cause PMD through distinct
molecular mechanisms (Figure 1A). Point mutations in the
coding exons often lead to amino acid substitutions that alter
protein conformation, resulting in a misfolded protein (Jung
et al., 1996; Dhaunchak et al., 2011). Approximately 30-40%
of PMD patients worldwide have point mutations in their
PLP1 gene (Numata et al, 2014). This review focuses on
the molecular mechanisms underlying this class of mutations.
Genomic duplication events of PLPI also cause the PMD
phenotype (Inoue et al., 1996, 1999), due to the overexpression
of the PLPI transcript. However, the exact cellular mechanism
as to how an extra copy of the wild-type PLPI gene leads
to a severe hypomyelinating phenotype, remains unknown.
Duplication of the PLPI gene is the most common mutation
that causes the PMD phenotype, since 60-70% of PMD patients
have it and this proportion appears to be quite similar worldwide
(Inoue, 2005; Numata et al., 2014). Rare null mutations, such
as gene deletions or nonsense/frame shift mutations that result
in premature terminations (presumably degraded by nonsense
mediated mRNA decay) leading to no PLP1 production can cause
amild but slowly progressive PMD phenotype (Inoue et al., 2002;
Garbern, 2007). Intronic and splicing mutations have been found
in a considerable amount of patients, who also show variable
PMD phenotype severity (Hobson et al., 2000, 2002; Lassuthova
et al,, 2013; Kevelam et al., 2015). Each of these mutations is
associated with a specific clinical phenotype of PMD, as detailed
in a previous review (Inoue, 2005).

Many PLPI point mutations cause amino acid substitutions,
leading to the production of misfolded PLP1 that accumulates
in the endoplasmic reticulum (ER) (Gow and Lazzarini, 1996;
Swanton et al., 2005). In humans, production of wild-type PLP1
rapidly increases upon the maturation of oligodendrocytes in the
process of myelination to produce massive amounts of myelin
after birth. The secretory system runs at full capacity in the
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FIGURE 1 | PLP1 mutations, associated phenotypes, and molecular
mechanisms. (A) Different PLP1 mutations result in distinct molecular
mechanisms underlying a wide variety of clinical phenotypes (Inoue, 2005).
(B) Mutant PLP1 and associated cellular pathology. Misfolded mutant PLP1
(mUtPLPU accumulates in the ER and evokes ER stress, which triggers
unfolded protein response to rescue the cells by reducing translation and
increasing ER chaperones, or to turn on the proapoptotic pathway to induce
cell death (Southwood et al., 2002; D’Antonio et al., 2009; Clayton and Popko,
2016). Disease-causing mutations in PLP1 is known to cause oligomer
formation in the ER (Swanton et al., 2005), binding to CNX and delayed
clearance from the ER (Swanton et al., 2003), and impaired ER-Golgi
trafficking (Numata et al., 2013).

maturating oligodendrocytes to produce both myelin proteins
and lipids. Therefore, in PMD patients, a large amount of PLP1
mutant proteins accumulates in the ER of oligodendrocytes,
eventually leading to apoptotic cell death and myelination
failure; however, the exact pathological mechanism is currently
unknown. Mutant PLP1 proteins do not form aggregates or
insoluble amyloid-like structures, but they form SDS-resistant
homo oligomers, which is more prominent in mutations
associated with severe clinical phenotype (Swanton et al., 2005).

ER STRESS AND UNFOLDED PROTEIN
RESPONSE (UPR)

Recent studies have revealed that mutant PLP1 may cause PMD,
not by lack of functional protein, but by eliciting a cytotoxic
effect (Schneider et al., 1995; Swanton et al., 2005; Numata et al.,
2013). Especially, unfolded protein response (UPR) has been
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FIGURE 2 | A schematic picture of unfolded protein response and ER
chaperones. GRP78 binding to unfolded proteins accumulated in ER results
in dissociation from and activation of ER stress sensors, ATF6, PERK, and
IRE1 (Szegezdi et al., 2006). Downstream signaling molecules function either
to maintain cellular homeostasis or promote apoptosis. UPR result in increase
of ER chaperones (CRT, CNX, GRP78, and PDI are depicted here) to enhance
the protein folding capacity.

suggested to play a central role in the molecular pathology of
PMD (Figure 2; Southwood et al., 2002; D’Antonio et al., 2009;
Clayton and Popko, 2016). Regardless of the cell’s pathological
or physiological state, unfolded/misfolded proteins accumulate
in the ER, causing ER stress; hence, these aberrant proteins need
to be removed from the ER to maintain cellular homeostasis. The
cellular signaling cascade that plays this role is the UPR, a stress-
induced eukaryotic signaling cascade that serves as a cellular
quality control (Walter and Ron, 2011). UPR protects cells from
the toxicity of accumulated proteins in the ER by reducing
translation, increasing retrotranslocation and degradation of ER-
localized proteins, and bolstering the protein folding capacity
of the ER to maintain cellular homeositasis. However, when
the ER stress exceeds the capacity of this intrinsic quality
control, apoptosis is induced through the up-regulation of the
proapoptotic branch of the UPR pathway (Lin et al., 2007).

UPR activation is triggered by three distinct pathways:
ATF6, IRE1, and PERK (Szegezdi et al, 2006) (Figure 2).
These pathways are negatively regulated by GRP78 (also
known as BiP), an ER chaperone that plays a critical role in
the initiation of UPR (Schroder and Kaufman, 2005). When
unfolded/misfolded proteins accumulate in the ER, GRP78 binds
to these unfolded/misfolded proteins leading to the dissociation
of the ER stress sensors (i.e., ATF6, IRE1, and PERK), thereby
triggering UPR. ATF6 induces the transcription of major ER
chaperones and XBP1 (Yamamoto et al., 2007). The endonuclease
activity of IRE1 promotes the splicing of XBPI mRNA, producing
its active form that encodes a transcription factor that regulates
the expression of UPR-related genes (Calfon et al, 2002).

ATF6 and IRE1-XBP1 axes promote the expression of ER
chaperones, facilitating the correct folding and/or assembly of
proteins in the ER, preventing ER protein aggregation, thereby
improving cell survival (Yoshida et al., 2001; Szegezdi et al., 2006;
Yamamoto et al., 2007). However, when this intrinsic quality
control system fails to eliminate unfolded/misfolded proteins,
UPR activates a proapoptotic signaling cascade, which is initiated
by the dissociation of GRP78 from PERK. Phosphorylated PERK
decreases global protein translation by phosphorylating the
eukaryotic initiation factor 2a (eIF2a), reducing the ER protein
load, while PERK also increases the translation of some UPR-
related genes including ATF4, which leads to the transcriptional
activation of CHOP. CHOP is a transcription factor that induces
apoptosis by directly repressing the expression of anti-apoptotic
factor Bcl-2 (Hetz, 2012).

The activation of the UPR-induced apoptotic pathway, caused
by the accumulation of mutant PLP1, may cause massive cell
death of oligodendrocytes, which is suspected to occur in the
brains of patients with PMD.

ER STRESS AND UPR IN PMD

Clinical and genetic observations of patients with PMD have
raised two questions in terms of the molecular pathology of
PLPI point mutations. First, PMD patients with point mutations
show a wide range of clinical severity; the mildest end of this
clinical spectrum shows as spastic paraplegia type 2 (SPG2),
which is considered to be milder disease than PMD, while the
most severe end is the connatal form PMD, which can cause
premature mortality (Inoue, 2005). The exact reason as to why
different point mutations located in various positions of PLP1
result in different clinical severity remains unknown. Second,
it has been speculated that mutant PLP1 may act as gain-of-
function proteins, because many patients with point mutations
in PLPI show much severer phenotypes than those lacking a
functional PLP1 protein, due to deletion or truncating mutations.
However, the molecular basis by which mutant PLP1 elicits
toxicity to oligodendrocytes remains to be determined.

The initial evidence addressing the question of cell toxicity
due to the production of the mutant PLP1 was given by a
cell biological study that demonstrated that the PLPI mutations
associated with severe phenotypes led to the accumulation
of both PLP1 and DM20 isoforms in the ER, while those
associated with milder phenotypes resulted in the traverse of
DM20 isoform through the secretory pathway to the cell surface
(Gow and Lazzarini, 1996). Furthermore, the accumulation of
mutant PLP1 was found to trigger ER stress and activate UPR
(Figure 1B) (Southwood et al., 2002). During the maturation of
oligodendrocytes, these cells produce a large amount of myelin
sheath, and PLP1 abundance increases drastically. Nearly half of
the entire protein content of mature oligodendrocytes is made up
of PLP1. Therefore, it is not difficult to speculate that a significant
amount of mutant PLP1 accumulates in the ER, causing an
increased ER stress, resulting in the acute activation of the
UPR apoptotic signaling cascade. In fact, CHOP, a proapoptotic
transcription factor, is upregulated in the brains of patients with
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PMD and mouse models (Southwood et al., 2002). Upregulation
of UPR was also recapitulated in the PMD patient-derived
iPS cells after differentiation into oligodendrocytes in vitro
(Numasawa-Kuroiwa et al., 2014).

The genotype-phenotype correlation in PLP1 mutations-PMD
severity has been partly explained by studies showing how
different mutations trigger UPR differently. In these studies,
mouse models that recapitulate the different levels of PMD
severity in humans have been utilized (Yool et al., 2000). The
myelin synthesis deficient (msd) mice carry an A243V mutation,
which results in a very severe phenotype in both humans
and mice. The rumpshaker (rsh) mice with an 1187T mutation
serve as a model for the mildest end of the PLP1-associated
severity spectrum, SPG2. These mutants, along with the classic
PMD mouse model jimpy (jp), have largely contributed to the
understanding of the molecular pathogenesis of PMD. The
mutant PLP1 protein associated with mild PMD phenotypes
appear to be cleared quickly from the ER, via the proteasomal
degradation pathway and/or ER exit, while the mutant PLP1
protein associated with severe PMD phenotypes is resistant to
protein degradation and/or exclusion from the ER, triggering
UPR activation (Roboti et al., 2009). The position of mutations in
PLP1 also contributes to the cellular pathology that triggers UPR.
For example, the retention of the mutant PLP1 in the ER that
carry mutations in the extracellular domain, where two disulfide
bridges are located, depends on the cysteine residues that play
a critical role in protein cross-linking (Dhaunchak and Nave,
2007).

It has been suggested that mutations leading to severe PMD
phenotypes may enhance the CHOP proapoptotic pathway
more markedly than mild PMD phenotype-associated mutations;
hence, a more severe dysmyelinating phenotype may occur
(McLaughlin et al., 2007; Roboti et al., 2009). If this is the case,
the genetic removal of CHOP may rescue the PMD phenotype in
the mouse model. However, this scenario was not that simple.
Rather than rescuing the phenotype, rsh mice crossed with a
CHOP null line revealed a higher premature mortality rate and
an increased number of oligodendrocyte cell death (Southwood
et al,, 2002). The prominent worsening of PMD phenotype in
mice lacking CHOP shows a sharp contrast in another disease
model of peripheral demyelinating neuropathy, Charcot-Marie-
Tooth disease (CMT), which is caused by mutations in the MPZ
gene. The genetic removal of CHOP from the CMT model mice
carrying S63del MPZ mutation ameliorated the demyelination
and apoptotic cell death of Schwann cells (Pennuto et al., 2008).
The exact reasons for these opposite outcomes resulting from
CHOP ablation in central and peripheral myelin gene mutants
remain unknown. One hypothesis is that the CHOP downstream
genes in Schwann cells (and probably most other cell types)
are maladaptive and CHOP induction leads to cell death and
demyelination; however, CHOP may regulate a different set
of downstream genes in oligodendrocytes, which presumably
function as adaptive, or protective against cell death (Southwood
et al., 2002; D’Antonio et al., 2009).

Interestingly, genetic ablation of ATF3 or caspase-12, both
known to function in the proapoptotic pathway downstream
of CHOP, showed no effect on disease severity in msd and rsh

mice (Sharma and Gow, 2007; Sharma et al., 2007). The findings
suggest that these genes are not related to oligodendrocyte
survival in PLP1 mutant mice.

CELLULAR PATHOLOGY BEYOND THE
UPR

Although, the central role of UPR in the cellular pathology of
PMD caused by point mutations in the PLPI gene is indisputable,
the relationship between CHOP upregulation and the apoptotic
cell death of oligodendrocytes in PMD should be reconsidered.
In order to understand the effect of mutant PLP1 accumulating
in the ER, studies beyond the UPR are required to elucidate
specific characteristics of the mutant PLP1 molecule, especially
its interaction with other ER proteins, such as ER chaperones.

If the activation of PERK-CHOP branch of UPR is
not responsible for the oligodendrocyte cell death and
dysmyelination, which is the major pathology in PMD, then,
who is playing the major role? The answer to this question is still
unknown, but some interesting findings suggest critical roles of
ER chaperones in myelinating oligodendrocytes. Mice lacking
GRP78, in either developing or mature oligodendrocytes, showed
neurological phenotypes and dysmyelination accompanied by
oligodendrocyte cell death, all of which are surprisingly similar
to those observed in PMD mouse models (Hussien et al., 2015).
GRP78 facilitates the proper protein folding and regulates UPR
by keeping the three UPR sensors (PERK, IREI, and ATF6)
inactive. In fact, these mutant mice showed activation of PERK
and ATF6, and induction of CHOP expression, suggesting that
the genetic ablation of GRP78 leads to persistent activation of
UPR (Hussien et al., 2015). It has not been elucidated if these
drastic phenotypes are associated with a perturbed physiological
function of GRP78, including protein folding or induction of
CHOP-mediated apoptosis.

Another example showing the critical role of ER chaperones
in myelination was demonstrated by deleting calnexin (CNX)
in mice (Kraus et al, 2010). CNX is a lectin-like chaperone,
and together with calreticulin (CRT), promotes the folding
of glycosylated proteins (Caramelo and Parodi, 2015). Despite
its critical role in quality control of the secretory pathway,
the genetic ablation of CNX resulted in surprisingly limited
peripheral and central myelin phenotypes. CNX-deficient mice
are viable, with no discernible effects on other systems,
presumably because of the functional redundancy of CRT.
However, in myelin systems, the mice showed apparent
dysmyelination in both CNS and PNS, indicating that CNX is
essential for proper myelin formation (Kraus et al., 2010). At this
point, it is not clear if CNX has unique functions in myelinating
oligodendrocytes and Schwann cells, or increasing the protein
load in the ER during the myelination process causing insufficient
folding capacity by only CRT.

Mutant PLP1 not only triggers UPR but also changes the
dynamics of ER chaperones. Although, PLP1 is not a glycosylated
protein and normally is not a substrate for CNX/CRT, CNX, but
not CRT, stably binds to the misfolded PLP1 mutant protein
(Swanton et al, 2003). Surprisingly, this CNX-mutant PLP1
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binding delays the elimination of mutant protein from the
cells through the ER-associated degradation (ERAD), suggesting
that this glycan-independent binding of ER chaperones possibly
contributes to the pathology of PMD.

CNX may not be the only chaperone involved in the pathology
of PMD. Our in vitro study showed that mutant PLP1 reduces the
ER localization of GRP78, CRT, and PDI, but not CNX (Numata
et al., 2013). The exact mechanism for this apparent reduction
of ER chaperones from the ER, while the ER is under stress
induced by the massive production of misfolded mutant PLP1,
is unknown. It has become apparent that the mutant PLP1 not
only accumulates in the ER but also inhibits the transport of
other proteins in the secretory pathway from ER to the Golgi
apparatus. This includes the KDEL receptor, which plays a critical
role in carrying ER chaperones that contains the KDEL sequence
(i.e., GRP78, CRT, and protein-disulfide isomerase (PDI), but
not CNX) from the Golgi apparatus back to the ER after post-
translational modifications. These findings highlight the effect of
mutant PLP1 on global transport of secretory proteins.

IMPLICATION FOR POTENTIAL PMD
TREATMENT

Considering the evidence in terms of the involvement of UPR
and ER chaperones in the molecular pathology of PMD caused by
mutant PLP1, some therapeutic interventions targeting the UPR
and ER chaperones have been evaluated using cellular and animal
models.

Curcumin, a polyphenol dietary compound derived from
curry spice turmeric, has been evaluated for its therapeutic
potential in some diseases in which ER stress and UPR have been
implicated in the pathogenesis, such as cystic fibrosis (targeting
CFTR), Charcot-Marie-Tooth disease (targeting PMP22 and
MPZ), retinitis pigmentosa (targeting RHO), and PMD (Egan
et al., 2004; Khajavi et al., 2005, 2007; Vasireddy et al., 2011;
Yu et al., 2012). Msd mice treated with oral curcumin showed
an extended life span and a reduced number of apoptotic
oligodendrocytes, showing an apparent but modest therapeutic
effect. However, the expression of ER stress markers including
CHOP, GRP78, myelin protein MBP, and motor function showed
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