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Determining Complex Structures
using Docking Method with Single
Particle Scattering Data
Hongxiao Wang and Haiguang Liu*

Complex Systems Division, Beijing Computational Science Research Center, Beijing, China

Protein complexes are critical for many molecular functions. Due to intrinsic flexibility
and dynamics of complexes, their structures are more difficult to determine using
conventional experimental methods, in contrast to individual subunits. One of the major
challenges is the crystallization of protein complexes. Using X-ray free electron lasers
(XFELs), it is possible to collect scattering signals from non-crystalline protein complexes,
but data interpretation is more difficult because of unknown orientations. Here, we
propose a hybrid approach to determine protein complex structures by combining XFEL
single particle scattering data with computational docking methods. Using simulations
data, we demonstrate that a small set of single particle scattering data collected at
random orientations can be used to distinguish the native complex structure from the
decoys generated using docking algorithms. The results also indicate that a small set
of single particle scattering data is superior to spherically averaged intensity profile in
distinguishing complex structures. Given the fact that XFEL experimental data are difficult
to acquire and at low abundance, this hybrid approach should find wide applications in
data interpretations.
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INTRODUCTION

In crowded cellular environment, protein molecules often form complexes to fulfill their functions.
Thus, the study of protein complex structures and dynamics is critical for the understanding of
molecular mechanism (Eisenberg et al., 2000; Bader et al., 2003; Krissinel and Henrick, 2007).
Because protein complexes are mostly stabilized by non-covalent interactions, their stability is
under strong influence of solvent conditions, making it difficult to form molecular crystals that
can yield strong diffraction signals. The nuclear magnetic resonance (NMR) spectroscopy has been
widely applied to structure determination of relatively small molecular systems, but the degeneracy
of NMR signals in large protein complexes challenges themodel reconstructions (Bax andGrzesiek,
1993; Mainz et al., 2013; Göbl et al., 2014; Shen and Bax, 2015). Other experimental approaches
that do not require crystallization include small angle X-ray scattering (SAXS) methods that obtain
rotational averaged scattering intensity profile, from which structural information can be extracted
to build low resolution 3D models (Konarev et al., 2006; Liu et al., 2012). Biochemistry techniques,
such as cross-linking, mutagenesis, or single molecule fluorescence experiments can reveal critical
interacting regions at complex interfaces, for example. The SAXS and biochemistry assay data bear
a common problem: the information deficiency, compared to X-ray crystallography or NMR, does
not allow a high resolution 3D structure determination. The data interpretation therefore heavily
depends on computational modeling.
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Recent advances in single particle imaging (SPI) methods
using cryogenic electron microscopy (cryo-EM) or the emerging
X-ray Free Electron Laser (XFEL) provide a new opportunity
to study the molecular complex structure and dynamics (Emma
et al., 2010; Chapman et al., 2011; Seibert et al., 2011; Cheng,
2015; Cheng et al., 2015; Schlichting, 2015). The cryo-EM
single particle imaging technology has achieved significant
breakthroughs, mostly thanks to the development of direct
electron detecting device, model reconstruction algorithms,
and sample handling, and automated data collection (Scheres,
2012; Cheng, 2015; Cheng et al., 2015). The resolution of 3D
reconstruction models from cryo-EM data has been reported to
atomic resolution, and the molecular size can be smaller than 100
kDa (Merk et al., 2016). The XFELs with their unprecedented
peak brilliance realized a new experimental mode, “diffract before
damage,” to overcome the X-ray dosage limitations, making
it possible to collect high resolution X-ray diffraction signals
from non-crystal single molecule samples in principle (Neutze
et al., 2000; Bogan et al., 2008; Seibert et al., 2011; Munke
et al., 2016). Since the commissioning of the world’s first hard
XFEL facility, the Linac Coherent Light Source (LCLS), collective
efforts have been made to push forward the application of
XFEL in structure determination using single particle diffraction
approach, and progress has been achieved toward high resolution
structure determinations (Aquila et al., 2015; Munke et al.,
2016). Nevertheless, both cryo-EM single particle imaging and
XFEL single particle diffraction require tremendous amount of
data measured at orientations that span SO(3) rotation space
to assemble into a finely sampled 3D diffraction volume, from
which 3D structures can be reconstructed. It is still a limiting
step to obtain such experimental datasets, especially for XFEL
single particle diffraction cases (Aquila et al., 2015). Experimental
challenges include sample purification, injection, and alignment
to the X-ray incidence beam etc., making the data collection
very tedious and inefficient. Because of the low hit-rate (the
chance for XFEL pulses hitting on individual clean sample
particle) and the limited XFEL resources all over the world (only
LCLS in SLAC national laboratory and the SACLA in RIKEN
SPring-8 center are currently commissioned), collecting a full
dataset which may include millions of single particle scattering
patterns is still beyond present reach as routine experiments.
Therefore, the data analysis methods in cryo-EM single particle
imaging is not yet practical for XFEL single particle scattering
data interpretation. The computational challenges for XFEL data
analysis are summarized in a recent review (Liu and Spence,
2016).

Computational docking methods have been developed for
protein complex structure prediction based on the structures
of protein subunits. The Critical Assessment of PRedicted
Interactions (CAPRI) contests have been organized and progress
has been reported in the proceedings published after each
evaluation (Janin, 2005; Lensink et al., 2016). One of the major
challenges in protein complex structure prediction is to design
reliable scoring functions for model quality assessment. The
scoring functions for docking usually incorporate the following
terms to rank the predicted models: the shape complementary
between protein subunits, electrostatic interactions, solvation

energy, and statistical potential energy derived from protein
structure databases. Although encourage progress is obtained,
a satisfactory scoring function is still needed (Gray et al., 2003;
Vreven et al., 2015). The aforementioned XFEL single particle
scattering data can be valuable in improving the ranking of
protein complex structures generated using docking method,
even for the cases that the dataset is not sufficient for high
resolution structure determination. As a matter of fact, similar
ideas have been implemented for SAXS data, which can be
incorporated in model evaluation (Mattinen et al., 2002; Zheng
and Doniach, 2002; Förster et al., 2008; Schneidman-Duhovny
et al., 2012; Schindler et al., 2016). In this work, we extend this
approach to XFEL single particle scattering data, inspired by the
application of XFEL data in modeling of protein conformation
changes (Tokuhisa et al., 2016). Using Zdock program(Chen
et al., 2003), structure decoy sets are generated for several selected
protein complexes, and the power of ranking using the original
Zdock score, the SAXS score, and the single particle scattering
score is studied. The simulation results suggest that the XFEL
single particle data has the most information that best distinguish
the correct models from the rest in the decoy sets. The problems
in experimental data based model selection and the challenges in
scoring function calculation are discussed.

METHODS

Single Particle Scattering Pattern
Simulations
The scattering pattern simulation for a given protein structure
is a forward problem, which is straightforward by using the
Fourier transform of the electron density represented with
atomic positions. In this work, the structural form factors
F(q) is calculated using the direct summation of scattered
wavefunctions, i.e.,

F(q) =
∑

j

fj(q)e
iq · rj (1)

where the q is a vector in Fourier space, corresponding to the
momentum transfer of the X-rays, defined as q = 2π(K0 –Ki),
Ki and K0 are the incidence and scattered wave vectors. fi(q)
and rj are the form factor and position of atom j. The atomic
form factor depends on the magnitude of momentum transfer
q= |q|; the values can be looked up in the International Table
for Crystallography. For a forward scattering experiment, the
momentum transfer q can be calculated as

q =
4 π sin θ

λ
(2)

and 2θ is the scattering angle that can be calculated based
on the distance between sample and detector and the pixel
location information, λ is the wavelength of X-rays. Based on the
construction of Ewald sphere, for a given model at any specified
orientation, the structure form factor F(q) at momentum transfer
q that is mapped to the pixel position on 2D detector can
be calculated using Equation (1). Then the squared modulus
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of the structure factors is taken for scattering intensity, i.e.,
I(q)= ||F(q)||2. For experimental data, Poisson noise was added
to simulate the statistics error occurred during photon detection.
On top of this, background noise was simulated by adding
random photons following a Gaussian distribution at desired
noise levels.

The key parameters for the pattern simulations can be
found in Table S1 in the Supplementary Material. Experimental
scattering intensity is proportional to the incidence beam
intensity I0, which can be used to scale the intensity values
recorded with detector. Therefore, I0 in this study has an
immediate impact to the resolutions of scattering signals. In the
simulations presented here, the incidence beam intensity was
not explicitly considered. Instead, I0 was used as a scaling factor
to set the highest measurable resolutions. In the simulations
presented in this paper, we set the highest measurable resolution
shell to be 4Å, where the average number of photons recorded
at each pixel in this resolution is 1. This requires the photon
flux is 1–2 order of magnitudes higher than the current XFELs,
such as the LCLS, whose photon flux is about 1012 photons/
pulse/µm2.

The patterns for the native structures of the complexes
are first simulated at random orientations in SO(3) rotation
space (or a subspace) as the “experimental data”; then
the patterns for the predicted models are generated with
two orientation sampling approaches: (1) using the same
orientations as the “experimental data” to study the ranking
power of the scoring functions under ideal situations; and
(2) using orientations specified by Euler angles spanning
SO(3) rotation space. In the latter case, the orientations will
be determined by computing the cross-correlation between
“experimental patterns” and “model patterns,” therefore the
discretizing step size is important for finding the correctly
matched orientations. All patterns are simulated to 4 Å
resolution.

Protein Complex Generation Using Z-dock
Program
The protein complex structures were generated using the Z-
dock program developed by Weng’s group in University of
Massachusetts. Using Z-dock program, protein complexes were
generated and 1,000 structures with high Z-dock scores were
saved for single particle scattering pattern simulations. The root-
mean-square-deviation (RMSD) values of these predictedmodels
compared to the native (correct) complex structure are also
recorded.

Scoring Function Based on X-ray
Scattering Data
The scoring function for Z-dock program is based on molecular
shape complementary, electrostatic interaction, and solvation
energy etc. Higher scores indicate better chance to be the
correct model. With simulated X-ray scattering data, the chi-
score is used to measure the difference between datasets to
reflect the structural differences. For single particle scattering
data composed of N scattering patterns, having intensity values

inM pixels, the SPI chi-score is defined as:

χ2
spi =

1

N

N
∑

n= 1

1

M

M
∑

m= 1

(

I
(n,m)
model

− I
(n,m)
data

σ
(n,m)
data

)2

(3)

where I(n,m) is the intensity value in n-th pattern at pixel
position m, and σ (n,m) is the associated standard deviation in
the simulation data, σ (n,m) = (I(n,m))1/2according to the Poisson
noise distribution. The subscripts, model and data, refer to the
values corresponding to the structures generated by Z-dock, and
the values corresponding to the correct model (data means the
simulated experimental data; while model means the theoretical
value calculated from the predicted models). Note that the n-
th model pattern must be in the same orientation as the n-th
“experimental” pattern for Equation (3) to be valid. In reality,
orientation is unknown during the chi-score calculation for
real experimental data. Therefore, orientation matching must be
carried out by minimizing the chi-score for each experimental
pattern with respect to all possible orientations of the model. The
Equation (3) becomes:

χ2
spi =

1

N

N
∑

n= 1

min
n′





1

M

M
∑

m= 1

(

I
(n′ ,m)
model

− I
(n,m)
data

σ
(n,m)
data

)2

 (4)

where {n′} is the set of patterns computed for any predicted
model. For finer sampled orientation space using discretized
euler angles, the number of model patterns grows rapidly, so the
pair-wise orientation matching is very time consuming, and we
offer a possible remedy in the following sub-section.

Instead of comparing single particle patterns at matched
orientations, the SAXS profiles can be obtained from
experiments, or from the virtual “SAXS” pattern by summing
the single particle patterns. Specifically, SAXS profile is obtained
by aggregating the single particle scattering data, then averaging
over the angular direction, i.e.,

ISAXS(q) =
1

N

N
∑

n= 1

∫ 2π
φ = 0 I

n(q,φ)dφ
∫ 2π
φ = 0 dφ

=
1

2πN

N
∑

n= 1

∫ 2π

φ = 0
In(q,φ)dφ (5)

In(q,φ) is the intensity value at polar coordinate (q,φ) specified
by the radial component q and the azimuth angle φ for the n-th
pattern. The chi-score can be calculated as:

χ2
SAXS =

1

K

K
∑

k= 1

(

ISAXS,model(qk)− ISAXS, data(qk)

σSAXS, data(qk)

)2

(6)

Orientation Matching
In order to find the orientation that best matches each
“experimental” pattern, it is necessary to generate an orientation
grid that spans SO(3) rotation space by discretizing three Euler
angles. The step size for discretization is critical to the accuracy
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of orientation match. The step size can be estimated by matching
the highest resolutions of 2D scattering patterns.

In order to find the best matched orientations, theoretical
patterns must be simulated for all discretized orientations (after
removing symmetric redundancies if there are any). Then each
“experimental” pattern must be compared to all theoretical
patterns for the theoretical model. The best matched pattern
is identified by finding the lowest chi-scores compared to each
experimental pattern. It is very computational expensive to
evaluate chi-scores for all “experiment-model” pattern pairs
at pixel levels. For example, if each rotational Euler angle is
discretized to n values, to find orientations of m experimental
patterns, there will be n3m evaluations of 2D matrix comparison.
This computational challenging problem can be sorted out in
several approaches, and here we offer two solutions.

First, for the simulation case, as a proof-of-principle, we
artificially confine our rotational degree of freedom within a
subspace of SO(3) defined by the Euler angles (−22.5◦≤ α,β,γ ≤

22.5◦). This does not solve the problem in actual applications
to experimental data, which are certainly not confined to this
subspace, yet this operation allows quick assessment of the effects
of grid size.

The second solution is to reduce the “experimental” pattern
to its angular auto-correlation, which does not depend on the in-
plane rotation angle (Kam, 1977; Liu et al., 2013; Huang and Liu,
2016). The angular auto-correlation function (AC) is defined as:

AC(q,1φ) =

∫ 2π

0
I(q,φ)I(q,φ + 1φ)dφ (7)

where I(q,φ) is the intensity at pixel specified using polar
coordinate (q,φ). This requires a pre-processing of the
“experimental” patterns and the theoretical patterns computed
from predicted models. The AC transformation removes the in-
plane rotation dependence of the scattering pattern, making the
AC function depend on two Euler angles that specify a direction
perpendicular to the scattering pattern. Then the AC functions
are used for pairwise comparison for scoring (i.e., chi-scores
of AC functions are calculated), rather than comparing each
scattering pattern with every reference pattern. It can be shown
that the extra overhead calculation has benefit in reducing the
computational complexity from O(n3M) to O(n2M), where n is
the number of grids for each Euler angle, and M is the number
of experimental patterns. The computational complexity for
overhead computing of AC function is O((n3+M)∗k), where n3,
M are the numbers of theoretical patterns and “experimental”
patterns respectively, k is the number of discretization of in-plane
rotation angle. The advantage is obvious if M>>k.

RESULTS

In this section, using simulation data with the docking decoys,
we will answer four questions: (1) how many single particle
scattering patterns are needed for the scoring function to
converge; (2) how do the scoring functions compare to
each other in terms of ranking the predicted models; (3)
how does the orientation mismatching affect accuracy of

the scoring functions; (4) how to speed up the orientation
matching by using reduced representations of scattering
patterns.

The molecular complex systems are selected from Benchmark
5.0 on Z-dock server (Vreven et al., 2015). The models are
depictured in Figure 1 and major features are summarized in
Table 1. The native structures are available at http://liulab.csrc.
ac.cn/download/zdock/.

The Convergence of Scoring Function
Both the SPI-score and SAXS-score (Equations 3, 6) need a
good number of patterns to reach convergence. The first task is
to determine the lower limit of this number using simulation
data. Experimentally, the SAXS profile can be obtained without
too much technical challenge, and even high throughput data
collection is possible for standard SAXS experiments. We focus
on the convergence of SPI-score in this section, because high
quality single particle scattering patterns are still very difficult to
obtain, even at X-ray free electron laser facilities. This is also one
of the major motivations of this work, through which we hope
to demonstrate that the hybrid approach for data analysis can
improve the performance of both computational modeling and
the XFEL data interpretation using a small set of data.

Regarding the convergence question, the SPI-score was
computed with different numbers of single particle scattering
patterns. The convergence can be monitored by plotting SPI-
score as a function of pattern numbers. The purpose of the
convergence test is to ensure that the scores are consistent
and independent of number of measurement. Figure 2A shows
the convergence of scoring function for 60 decoy structures
of complex#1 (3AAD). Here, the goal is to find the minimum
number of patterns required to yield a reliable scoring function.
To rule out other factors, the orientation for each pattern was
taken as known information, i.e., the exactly matched orientation
was used for comparison. The actual cases where orientation
assignment is required are considered in the following sections.
As shown in Figure 2A, the SPI-scores have large fluctuations
when the number of patterns is small, then converges quickly
when the number approaches 1,000. Similar trends were
observed for other complexes, and for this reason we use 1,000
scattering patterns in the SPI-score calculations through the
study. It is worthwhile to note that the minimum number of
scattering patterns required for a converged SPI-score varies
for each system, depending on complex size, binding mode,
and complex structure. The number 1,000 is a compromised
choice between accuracy and speed. The SPI-scores for different
predicted models are well separated when the SPI-score reach
convergence, indicating that the converged SPI-scores can be
used to assess the quality of the molecular complexes. In
Figure 2B, for each decoy model, we compared the SPI-scores
with 1,000 patterns and those with 2,000 patterns, the two sets of
scores are perfectly lined up around y= x. Therefore, simulation
results indicate that the convergence can be reached when
number of patterns is above 1,000. In other words, the minimum
number of patterns required to reliably scoring the predicted
models is 1,000, which is feasible with current instruments at
XFEL facilities.
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FIGURE 1 | The native structures for the molecular complexes used in this study. Two subunits are colored in blue and red in each complex, where the blue
subunit is fixed and the red subunit moves around the blue subunit to generate complex structures.

TABLE 1 | The characteristics of the molecular complexes.

ID Complex

PDB code

Subunit 1

(S1)

Subunit2

(S2)

No. atom

of S1

No. atom of

S2

No. Residue

of S1

No. Residue

of S2

Difficulty

in Zdock

No. atom

of complex

No. Residue

of complex

1 3AAD_A:D 1EQF_A 1TEY_A 2,164 1,231 243 144 Difficult 3,395 387

2 2B42_B:A 2DCY_A 1T6E_X 2,604 1,443 341 171 Easy 4,047 512

3 1E6J_HL:P 1E6O_HL 1A43_ 3,275 577 397 69 Easy 3,852 466

4 1IRA_Y:X 1G0Y_R 1ILR_1 2,499 1,139 294 138 Difficult 3,638 432

5 1JTG_B:A 3GMU_B 1ZG4_A 2,021 1,234 242 155 Easy 3,255 397

6 3BX7_A:C 3BX8_A 3OSK_A 1,389 897 163 111 Middle 2,286 274

7 2VDB_A:B 3CX9_A 2J5Y_A 4,345 436 528 52 Easy 4,781 580

8 1M10_A:B 1AUQ_ 1M0Z_B 1,601 2,087 184 254 Middle 3,688 438

The complex structures are shown in Figure 1, labeled with the complex ID.

The Comparison of Three Scoring
Functions
The power of ranking for each scoring function can be evaluated
by studying the correlation between the scores and model
differences. The RMSD is one of the most commonly used
measurements for model comparison. In Figure 3, the ranking
power for SPI-score and SAXS-score are summarized for the
complex#1, which belongs to “difficult” docking case. As shown
in Figure 3, the scattering plots clearly show that both SPI-
scores and SAXS-scores are positively correlated with the RMSD

values in general. For the case of complex#1, the correlation
coefficients between SPI-score and RMSD is 0.59, and the
correlation coefficient between SAXS-score and RMSD is smaller,
giving a value of 0.36. To better quantify the ranking power of the
scoring functions, a probability distribution function of RMSD,
P(RMSD,n), was computed for top n selected models. Specifically,
the probability for a model differing from the native structure
by a particular RMSD value was calculated for n models with
lowest scores. The probability distribution functions are plotted
in (Figures 3B,E), where the P(RMSD,n) for n = 25, 100, 1,000
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FIGURE 2 | The convergence of SPI-score for patterns with correct orientations. 60 decoys from complex#1 are used to demonstrate the convergence
progress of SPI-score. (A) the SPI-score is plotted as a function of pattern quantity, each line represent the SPI-score of one predicted decoy model by comparing
model patterns to “experimental” data. (B) The comparison of SPI-scores computed using 1,000 or 2,000 scattering patterns, whose orientations are random.

FIGURE 3 | The ranking power comparison between SPI-score and SAXS-score. (A,D) the scatter plot of scores as a function of RMSD. (B,E) the probability
distribution function of RMSD for the selected models. The three curves correspond to the distribution function of top 25, top 100, and all models. (C,F) The
accumulative probability functions corresponding to the three distributions in (B,E). The green and blue shaded area indicates the gain of ranking power by selecting
subsets of models.

(all) are calculated and compared. Based on the probability
distribution and the correlation coefficients between the scoring
function and the RMSD, it is clear that both SPI-scores and
SAXS-scores are capable of selecting models that have lower
RMSD values with respect to the native structure, while the SPI-
scores have stronger selecting power. The probability of selecting

models with lower RMSD values is increased after model ranking
using either SPI-score or SAXS-score. This increasing trend
is more pronounced for the ranking using SPI-scores. The
probability function is converted to accumulative probability
function by integration, as shown in (Figures 3C,F). On the
other side, the scoring function from the Z-dock can select a few
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best matched models from predicted models, the overall ranking
power is not as good as the SPI or SAXS scoring functions (data
not shown). Thismakes the z-dock scoring function vulnerable to
insufficient model generation. The SPI-score is a more powerful
function not only because it can be used to select the lowest
RMSD models, but also because the model ranking is consistent
with structure differences.

The same analyses were carried out for eight complexes,
as described in Figure 1 and Table 1 (for the other seven
complexes, see Supplementary Material). To quantify the
ranking power, we define a new parameter, the area under
the accumulative probability curve (AUC, area under curve),
similar to the measure of classification power. For each
accumulative probability distribution curve, the area is calculated
by integration. The x-axis, the range of RMSD, can be normalized
to the fraction of the largest RMSD value in the decoy sets.
Therefore, the AUC has a largest possible area of 1.0, as
an extreme case when all models are ranked in the same
order as the RMSD with respect to the native structure.
Under this definition, larger AUC values correspond to more
powerful ranking method. We calculated AUC at three levels
of selection (top 25, top 100, and all models) for each method
(SPI-scoring, SAXS-scoring, and Z-dock scoring), same as
the demonstration example in Figure 3. In Table 2, the AUC
statistics are summarized, suggesting that SPI-score has better
performance in terms of ranking power, compared to SAXS-
score. There is one exception in the case of complex#2, where the
ranking power of SAXS-score is slightly better than that of the
SPI-score.

The Effects of Orientation Mismatching
As mentioned in the previous section, the scoring functions
can be reliably obtained from about 1,000 single particle
scattering patterns, which are feasible to collect with the current
XFEL experimental technologies. However, the results in the
previous section are obtained based on a strong assumption
that the orientations of the models are “exactly” matched
to the orientation of native structure. It is known that
orientation determination is challenging using computational
methods, which utilize cross correlations between patterns by

matching “experimental data” to the “model data” at discretized
orientations.

During the orientation matching, the actual orientation
can be deviated from the computational matched orientation.
The mismatching can happen at two levels, as schematically
illustrated in Figure 4: (1) the discretized orientations for the
“model” patterns are not fine enough to match the “exact”
orientation but rounding up to the nearest orientations of the
“exact” orientation, and this finite discretization is unavoidable
due to the limitation of computing power; (2) the orientations

FIGURE 4 | Orientation mismatching scenarios. Two rotation angles can
be mapped to the points on a sphere, the third angle is the in-plane rotation
indicated using the arrow at each point. The red solid circle and the associate
arrow indicate the orientation of one experimental pattern, the blue circles and
arrows indicate possible orientations. The orientation deviation of solid blue
circle from the correct values (red solid circle) is due to the discretization of
SO(3) rotation space; and the orientation mismatching to the open blue circle
is attributed to large conformational difference. For the models that are similar
to the correct complex structure, the orientations are likely to be identified to
the vicinity of correct orientations (see Figure 5).

TABLE 2 | The performance of scoring functions.

Complex ID Z-dock SAXS SPI

Top 25 Top 100 All Top 25 Top 100 All Top 25 Top 100 All

1 0.53 0.55 0.55 0.71 0.64 0.54 0.74 0.65 0.54

2 0.77 0.78 0.78 0.86 0.83 0.78 0.84 0.83 0.78

3 0.68 0.65 0.57 0.78 0.65 0.56 0.83 0.71 0.56

4 0.54 0.46 0.37 0.76 0.69 0.36 0.77 0.70 0.36

5 0.68 0.57 0.52 0.75 0.63 0.53 0.85 0.65 0.51

6 0.78 0.75 0.62 0.72 0.68 0.51 0.83 0.75 0.51

7 0.69 0.63 0.60 0.82 0.74 0.58 0.88 0.85 0.58

8 0.59 0.56 0.48 0.73 0.64 0.49 0.78 0.67 0.48

The numbers are the AUC values for the selected models using the corresponding scoring functions. The numbers in bold font indicate the highest ranking power for top 25 models.
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for the best “experimental-model” pattern pairs judged by the
chi-score or correlation functions are not matched, meaning
that the matching is messed up by conformational differences.
In this section, we implicitly considered both factors by not
providing orientation information during pattern matching
process. The SPI-score is calculated using the modified formula
(Equation 4).

Using complex#1 (3AAD) as an example again, the orientation
mismatching effects are studied. The matching results are
summarized in Figure 5, which shows the deviation of the
Euler angles from the correct orientation. For models with
smaller RMSD values, most of the recovered orientations
are indeed close to the orientations of “experimental” data,
suggesting that the major orientation mismatching is due to
the discretization of SO(3) rotation space. For the models
with larger RMSD values, the success rate of determining
the pattern orientations are lower, which can be explained as
the consequences of conformational changes that overwhelm
orientation variation effects. The statistics of the orientation
deviation are summarized in Table S2. It is interesting to observe
that the second rotation angle, β, is more accurately recovered
using the reference matching approach than the other two angles.
Using simulation data, we mapped the landscape of SPI-score
due to the orientation differences. The results reveal that the
SPI-score landscape around the β rotation is smoother relatively,
suggesting thatmismatching due to finite discretization of β angle

can be tolerated. In other words, the chance of recovering the
orientation within the vicinity of correct β angle is higher.

Using the subset of SO(3) rotation space, we studied the case
of discretized representations of the orientations using step size
of 3 degrees. The results show that the orientation matching is
reasonable, and the ranking power is similar to the ideal cases
discussed in the previous section. The AUC for top 25 models
is 0.72 vs. 0.74 for the ideal case for complex#1 (see Table 3).
Nevertheless, as the discretization step size increases, the SPI-
score becomes less accurate. As a result, the ranking power of
the SPI-score is reduced. When the orientation sampling is fine
enough (step size of 3 degrees is sufficient in this simulation), the
SPI-score outperforms the SAXS-score, which does not depend
on orientation matching. The optimal discretization of SO(3)
rotation space has to be chosen under the considerations of
(1) the computational cost and (2) the accuracy of orientation
matching. For the latter concern, the discretization step size
should match the resolution of the scattering signals. For low
resolution data, larger discretization step sizes can be tolerated.
This may provide an opportunity of implementing multilevel
model selection method to speed up the overall computing: using
low resolution data to rule out a set of very unlikely models,
and using higher resolutions to narrow down the best matched
models.

In order to quantify the effects of background noise to
the ranking results, the signal-noise-ratio (SNR, defined as

FIGURE 5 | Orientation matching results. The dependency of matching accuracy on the conformational differences, the deviations from correct orientations for
three models: left to right, the RMSD values are 2.2, 10.5, and 15.1 Å. Larger RMSD values correspond to larger deviation from correct orientations.

TABLE 3 | Comparison of three methods for orientation matching.

Scattering pattern Radial profile Correlation pattern

Number of selected models 1,000 100 25 1,000 100 25 1,000 100 25

AUC (RMSD)* 0.54 0.66 0.72 0.54 0.63 0.73 0.54 0.62 0.72

AUC (s-score)# 0.37 0.69 0.80 0.37 0.63 0.74 0.37 0.59 0.73

Computing time (seconds)$ 211.47 1.07 14.30

*The AUC (area under curve) using RMSD as the measure for model difference.
#The AUC (area under curve) using s-score as the measure for model difference.
$Computing time needed for orientation matching for one pattern: for raw patterns, comparing to 4,096 (16ˆ3) patterns; for radial profile, comparing to 256 (16ˆ2) lines; for correlation

function, comparing to 256 (16ˆ2) auto-correlation patterns.

The results are for complex#1, and the reference patterns from models are in subspace of SO(3), with discretized euler angles cover a range of [−22.5◦, 22.5◦ ] using step size of 3◦.
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the ratio between variances of signals and noise) was varied
from 100 to 0.1 logarithm spaced. The results presented in
the previous sections were essentially the same with small
variations in the ranking, although the absolute values of scores
are larger for low SNR (i.e., larger noises for same level of
signals).

Speed Up the Matching of Orientations
The pairwise pattern comparison requires the exhaustive
sampling SO(3) rotation space using three euler angles. The
pairwise 2D pattern comparison is expensive computationally,
limiting the applications of this approach to large dataset. It has
been found that some preprocessing of the raw scattering data
can reduce computational cost for downstream analysis. First,
the in-plane rotation angle can be decoupled from the other two
rotations, by using an angular auto-correlation function (Huang
and Liu, 2016). In this case, the computational complexity can be
reduced significantly by converting the raw scattering patterns
to auto-correlation functions, which are used for comparison
instead of the scattering patterns. We compared the performance
of the new SPI-score based on the auto-correlation functions to
original SPI-score in Table 3. The results show that the ranking
power is maintained to be similar, and the computational time
is reduced by a factor of 14.8. Furthermore, each pattern can be
reduced to a radial profile (1D) by integrating over the azimuth
angle, yielding a curve that is similar to SAXS curve. Because
the scores computed using the radial profile representation are
essentially an average of chi-scores between matched patterns
(i.e., additional information are obtained by minimizing the
differences between experimental data and reference model),
it is different from SAXS curve that is the average of radial
profiles (by assuming random orientation distributions). The
results show that this radial profile, although with compressed
information, can be used for pairwise pattern comparisons. The
score computed from radial profiles after orientation matching
has a ranking power comparable to the SPI-score, as shown in
Table 3. This radial profile representation further reduces the
computing time by another 13.4 folds (∼200 times faster than
using raw pattern comparison). It is worthwhile to point out
that both reduced representations do not need to sample the in-
plane rotation, therefore, significantly reducing computing time
of generating model patterns as well.

DISCUSSIONS

X-Rays Only See Electron Distributions,
Not Sequential Information
X-ray scattering/diffraction is due to the interaction with
electrons, so the subject under probing is the electron density
map. In crystallography, the atomic models are built to the
electron maps by incorporating information of amino acid
sequences. Without considering the sequences, the information
from X-ray scattering is not sufficient to describe full features of
atomic models, especially when the resolution of X-ray scattering
signal is worse than atomic resolution. We observed several cases
that the low SPI-scores correspond to the predicted models with
large RMSD values (see Figures 3A,D). A closer examination
of the corresponding models reveals that the predicted docking
site is correct, but the docking pose (i.e., the orientation of the
docking subunit) is opposite to the correct model. The symmetry
of proteinmolecules can also introduce confusions in the analysis
of X-ray scattering data. For example, in Figure 6, the fixed
subunit molecule has a 2-fold pseudo symmetry, making it hard
to distinguish the native binding modes from its symmetric
counterpart. This explains some observations where the SPI-
score (or SAXS-score) positively correlates to the RMSD values
for models that are similar to the native structure, but the trend
becomes reversed for very large RMSD values (lower SPI-scores
correspond to models with larger RMSD).

An alternative measurement for structural differences is to
treat eachmodel as a point cloud, which ignores the sequence and
connections between these points. Then, the spatial correlations
between two models can be computed by maximizing their
overlaps. The correlation coefficients can be calculated as the
following:

cc =
〈ρ1(r)ρ2(r)〉 − 〈ρ1(r)〉〈ρ2(r)〉

σ1σ2
(8)

where ρ1/2(r)is the electron density of model 1 or 2 at position
r, σ21/2 is the variance of model 1 or 2. We applied the model
alignment method described in SASTBX programs (Liu et al.,
2012). Briefly, the models are shifted such that the centers of mass
coincide with the real space origin, then the relative orientations
of the models are optimized by finding the largest overlaps

FIGURE 6 | The effects of symmetry. The dimer complex has a pseudo-symmetry (blue color), which may reduce the model ranking power of scattering data
based scoring functions. (A) the correct structure for the complex; (B) the model that has similar electron density to (A) after rotation, but differs significantly from (A)

in terms of RMSD.
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between models. The computing is sped up by sampling three
Euler angles with fast fourier transform (FFT) algorithm. In
order to be consistent with RMSD that is a distance measure,
we define a model difference parameter, s-score s = 1.0 – cc,
to gauge the ranking power of SPI-score or SAXS-score. Using
complex complex#1 (3AAD) as an example, the ranking power
for scattering based scoring functions is summarized in Figure 7.
The comparison to Figure 3 suggests that the X-ray scattering
data is more useful in describing electron density maps. In
order to compare structures that have sequential and connection
information, it is necessary to incorporate knowledge of physics
and chemistry. When considering the docking problem, the
biochemical properties at the interface are crucial, so the model
evaluation should include physicochemical terms.

Joint Scoring Function Is Needed to
Outperform Individual Functions
We examined the relation between SPI-scores and the
SAXS-scores by computing the correlation coefficients (See
Table S3 in Supplementary Material). The results suggest positive
correlation between the two scoring functions, with varying
correlation strength (0.12 to 0.81). This variation suggests
that the two scoring functions contain different structural
information. As shown in the Result section, the SPI-score is
better in ranking the models, so it is natural to include the
SPI-score in the joint scoring function.

The built-in scoring function of Z-dock is not sufficient
in ranking the models, but it has its merit by design,
which incorporates physicochemical terms and geometry

complementary properties. The model ranking by each scoring
approach is unlikely to outperform the combined scores. The
optimized IRAD (integration of residue- and atom-based
potentials for docking) function was reported to improve the
model ranking by combining several scoring functions (Vreven
et al., 2011). We re-ranked the models using z-rank program
where IRAD functions are implemented (Pierce and Weng,
2007). However, the model ranking power is increased modestly
in this case, mainly because the Z-dock program has a built-in
scoring function that give comparable ranking power as IRAD
scores.

In order to explore the potential of joint scoring functions,
we experimented one method of combination using SPI-score
and Z-dock score using a voting system: first, the Z-scores are
calculated for each model with either SPI-score or Z-dock score,
then the Z-scores are combined to give an overall ranking.
The experiment for complex model (#1) dataset does not yield
significant improvement. This suggests that it is not trivial to
combine the scores from different evaluation methods, because
hybrid does not mean simple linear combination. Designing
better ways to combine different scoring functions are subjects
of future studies.

Hybrid Approach Can Be Applied to
Incomplete Dataset
Although the idea in this work is about applying experimental
data in SPI or SAXS in the ranking of docking models, the impact
of modeling to the data interpretation is equally significant. As
mentioned, the XFEL facilities are scarce resources, although

FIGURE 7 | The ranking power revisited using electron density map differences. The figure (A–F) caption is the same as Figure 3, except that the model
difference is measured using s-score, instead of RMSD.

Frontiers in Molecular Biosciences | www.frontiersin.org 10 April 2017 | Volume 4 | Article 23

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Wang and Liu Protein Docking with SPI Data

more XFEL facilities will be commissioned in the near future,
there are still some technological challenges to carry out high
throughput single particle scattering experiments. It is not
practical to collect complete datasets for model reconstructions
that are solely based on experimental data yet. If computational
modeling, such as molecular docking or protein structure
prediction, is integrated in the data interpretation, it is possible
to determine structures from a much smaller dataset (∼1,000
patterns in the simulation cases). In other words, the hybrid
approach turns a reverse modeling (from intensity to electron
density map) problem to a ranking problem of the predicted
models. Given the advances in high performance computing,
sampling algorithms will be capable of generating diversemodels,
in which the correct structure is very likely to be included. Then
the model ranking and selection criteria is the key to model
determination.

In a related research field, the cryogenic electron microscopy
(CryoEM), the projection images of molecules are detected.
Several algorithms have been developed to reconstruct detailed
3D structures based on projection images. In general, such
dataset must be composed of a large number of images (at the
order of 10 thousands to 100 thousands), in order to obtain
high resolution structures. For relative low resolution model
reconstruction, it is feasible to obtain an ab initio density map
with <1,000 patterns using the maximum likelihood method
(Ekeberg et al., 2015). A global assignment of orientations is also
reported for simulation data using common line algorithm for
fewer than 1,000 patterns (Singer and Shkolnisky, 2011). The
hybrid approach reported here can potentially be used to select
the models at higher resolutions with similar amount of data,
given the availability of high resolution structures of docking
subunits.

CONCLUSION

The development of XFEL and its application in single
particle imaging requires fast and reliable methods to interpret
experimental data, especially when the dataset is not sufficient
to convert scattering signals to a unique structural model. In
this work, we demonstrated that single particle experimental data
is valuable in ranking the predicted models, and this hybrid
approach can be one solution for structure determination with
limited XFEL data.
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