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Multifunctional Mitochondrial AAA
Proteases
Steven E. Glynn*

Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States

Mitochondria perform numerous functions necessary for the survival of eukaryotic cells.
These activities are coordinated by a diverse complement of proteins encoded in both
the nuclear and mitochondrial genomes that must be properly organized andmaintained.
Misregulation of mitochondrial proteostasis impairs organellar function and can result
in the development of severe human diseases. ATP-driven AAA+ proteins play crucial
roles in preserving mitochondrial activity by removing and remodeling protein molecules
in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and
m-AAA, are anchored to either face of the mitochondrial inner membrane, where they
engage and process an array of substrates to impact protein biogenesis, quality control,
and the regulation of key metabolic pathways. The functionality of these proteases is
extended through multiple substrate-dependent modes of action, including complete
degradation, partial processing, or dislocation from the membrane without proteolysis.
This review discusses recent advances made toward elucidating the mechanisms of
substrate recognition, handling, and degradation that allow these versatile proteases to
control diverse activities in this multifunctional organelle.
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INTRODUCTION

Mitochondria provide eukaryotic cells with a stage for performing essential activities, including
mass ATP production, calcium ion storage, and fatty acid oxidation (Chan, 2006; McBride et al.,
2006). These activities are coordinated by a diverse composite proteome encoded by genomes in
both the nucleus and mitochondrial matrix (Anderson et al., 1981; Sickmann et al., 2003; Rhee
et al., 2013; Calvo et al., 2016). Proteins synthesized in the cytosol must be imported into the
organelle via a complex network of translocases, chaperones, and processing peptidases (Neupert
and Herrmann, 2007). Once inside, mitochondrial proteins are exposed to damaging reactive
oxygen species (ROS), by-products of oxidative phosphorylation (Beckman andAmes, 1998; Ugarte
et al., 2010). Preserving mitochondrial function thus requires precise systems of proteostasis to
balance the entry and exit of proteins into the organelle, remove damaged components to maintain
uninterrupted activity, and respond to the changing energetic needs of the cell (Diaz and Moraes,
2008; Ugarte et al., 2010). One route for the removal of mitochondrial proteins is degradation by
a network of proteolytic enzymes (Koppen and Langer, 2007). Together, these proteases select and
destroy proteins to achieve a constant recycling of the mitochondrial proteome (Augustin et al.,
2005). Absence of proper mitochondrial proteostasis is linked to the development of severe human
diseases, including cancer and a host of neurodegenerative disorders (Bulteau and Bayot, 2011;
Rugarli and Langer, 2012; Konig et al., 2016; Levytskyy et al., 2016). A recent report has suggested
that the proteolytic capacity of mitochondria is used to clear cytosolic protein aggregates that are
associated with aging (Ruan et al., 2017).
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Mitochondria are enveloped by outer (MOM) and inner
membranes (MIM), which enclose the aqueous intermembrane
space (IMS) andmatrix, respectively. Consequently, both energy-
dependent and independent proteases are located across the
organelle operating in both polar and non-polar environments
(Koppen and Langer, 2007). Two AAA+ family members,
collectively named the mitochondrial AAA proteases, are
anchored to the MIM and engage substrates on either side of
the membrane (Leonhard et al., 1996). A number of recent
studies have provided insight into the diverse roles played by
the mitochondrial AAA proteases in maintaining function of the
organelle. This review will focus on our current understanding
of the structural and mechanistic principles that allow these
enzymes to recognize, engage, and process protein substrates.

AAA+ Proteins in Mitochondria
Mitochondria contain a number of AAA+ ATPases that
can be traced to ancestral bacterial enzymes present during
symbiogenesis (for review see Truscott et al., 2010). These
proteins contain the family-specific sequence motifs responsible
for ATP binding and hydrolysis, and presumably assemble
into canonical ring-shaped oligomers (Hanson and Whiteheart,
2005). A feature of the AAA+ family is the coupling
of the energy of ATP hydrolysis to power highly diverse
functions. In mitochondria, these activities include non-
proteolytic chaperones, such as Hsp78, a functional homolog of
Hsp104/ClpB that promotes disaggregation of matrix proteins
(Leonhardt et al., 1993). Mitochondria also contain a number of
AAA+ proteases, including homologs of the well-studied soluble
proteases, Lon (Pim1) and ClpXP, which remove oxidatively
damaged proteins from the matrix (Wang et al., 1993; Suzuki
et al., 1994; van Dyck et al., 1994; Corydon et al., 2000).
Interestingly, yeast do not contain the ClpP proteolytic subunit
and instead, the ClpX ATPase (Mcx1p) performs important non-
proteolytic functions (van Dyck et al., 1998; Kardon et al., 2015).
In bacteria, FtsH is a AAA+ zinc-metalloprotease that degrades
substrates at the face of the plasma membrane. Two ATP-
dependent proteases, which are evolutionarily related to bacterial
FtsH, are found anchored to the mitochondrial MIM (Leonhard
et al., 1996). Named i-AAA and m-AAA, these mitochondrial
AAA proteases are positioned to interact with substrates in the
IMS, matrix, or MIM (Leonhard et al., 1996, 2000; Koppen and
Langer, 2007; Tatsuta and Langer, 2009; Gerdes et al., 2012;
Figure 1).

ORGANIZATION OF THE MITOCHONDRIAL
AAA PROTEASES

Both i-AAA and m-AAA proteases encode multiple domains on
a single polypeptide: small distal domains located across theMIM
from the main body of the protease; an insoluble transmembrane
(TM) domain; and a catalytic core comprising a AAA+ ATPase
domain and a zinc metalloproteinase domain(Leonhard et al.,
1996). The major architectural difference between them lies in
the organization of the TM domains. The i-AAA contains a
single transmembrane helix that, when inserted into the MIM,

projects the ATPase and protease domains into the IMS. In
contrast, the m-AAA protease contains two transmembrane
spans that project the catalytic domains into the matrix. These
opposing orientations allow both faces of the MIM and both
aqueous compartments of the mitochondrion to be scrutinized
for the appearance of substrates (Leonhard et al., 2000). In all
eukaryotes, six identical i-AAA subunits assemble into an active
proteolytic complex (YME1L in mammals; Yme1 in yeast). In
contrast, multiple isoforms of m-AAA exist with distinct subunit
compositions. In yeast, m-AAA is an obligate heterohexamer
of alternating Yta10 and Yta12 subunits (Yta10/12; Arlt et al.,
1996). In mammals, the protease can either form AFG3L2
homohexamers or heterohexamers of alternating AFG3L2 and
Paraplegin subunits. The distribution of these two isoforms is
tissue specific, with a greater proportion of heterohexamers
present in mitochondria of neuronal cells (Koppen et al., 2007).

The broad structural resemblance to the ancestral FtsH-
like protease was confirmed by a moderate resolution cryoEM
structure of Yta10/12 revealing an arrangement of stacked
hexameric AAA+ and protease rings surrounding an axial pore
(Suno et al., 2006; Bieniossek et al., 2009; Cha et al., 2010; Lee
et al., 2011; Su et al., 2016; Figure 2A). As with other family
members, the six ATP binding sites are predominately formed
within individual AAA+ domains with important additional
interactions provided by neighboring subunits (Hanson and
Whiteheart, 2005; Karlberg et al., 2009). The interfaces between
AAA+ domains provide a surface for communication and
coordination between protomers. An elegant in vivo study using
S. cerevisiae Yta10/12 demonstrated that ATP binding to Yta12
inhibits nucleotide hydrolysis in the neighboring Yta10 subunit
(Augustin et al., 2009). Suppressor mutations and homology
modeling revealed that the presence of a nucleotide γ-phosphate
bound to Yta12 is sensed by a patch of conserved inter-subunit
signaling residues on Yta10 and transmitted via the pore-2 loop
to the Walker-B motif of Yta10. This allosteric coordination is
proposed to create an alternating power stroke that maximizes
the unfolding force while maintaining grip of the translocating
substrate. The observation of similar coordination in Yta12
variants capable of forming homooligomers suggested that this
phenomena could exist in related homohexameric proteases.

The lower ring sequesters the proteolytic active sites inside a
compartment that can be accessed upon translocation through
the axial pore. The active sites are formed by a canonical
HEXXH motif that coordinates the water-activating zinc ion
(Rawlings and Barrett, 1995; Leonhard et al., 1996). While
peptide cleavage by many proteases is strongly influenced by
the pattern of residues surrounding the scissile peptide bond, it
remains to be seen if such cleavage site preferences exist for the
mitochondrial AAA proteases. The protease domain of human
AFG3L2 has been identified as a hotspot for mutations linked
to the development of the human neurodegenerative diseases
(Cagnoli et al., 2010; Di Bella et al., 2010; Pierson et al., 2011). For
example, at least 17 single amino acid substitutions in AFG3L2
have been linked to the development of spinocerebellar ataxia
type 28 (SCA28), a disorder characterized by imbalance, slurred
speech and lack of limb coordination (Mariotti et al., 2008; Di
Bella et al., 2010; Lobbe et al., 2014; Qu et al., 2015; Zuhlke et al.,
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FIGURE 1 | Diverse functions of the mitochondrial AAA proteases. Cartoon showing a diverse array of substrates targeted by either yeast or mammalian i-AAA
(cyan arrows) and m-AAA (pink arrows) proteases. Changes in substrate structure or arrangement are shown as black arrows.

2015; Svenstrup et al., 2017). Homology modeling using crystal
structures of FtsH reveals these mutations largely cluster to
positions surrounding themetalloprotease active site and subunit
interfaces (Figure 2B) and thus are likely to cause defects in
polypeptide cleavage and hexamer assembly rather than substrate
binding or ATP hydrolysis.

Assembly of many AAA+ oligomers is driven by interactions
between ATPase domains. However, truncations of both human
and yeast i-AAA lacking the TM and N-terminal domain (ND)
fail to form active hexamers, highlighting the importance of
interactions within these domains to oligomerization (Leonhard
et al., 1999; Shi et al., 2016). Furthermore, replacement of
these domains with a synthetic hexamerization sequence was
sufficient to drive assembly of active i-AAA proteases in vitro
(Shi et al., 2016; Rampello and Glynn, 2017). FtsH also requires
the TM domain to promote oligomerization (Akiyama and Ito,
2000). In contrast, assembly of m-AAA hexamers appears to
involve additional interactions in the metalloprotease domain
(Lee et al., 2011). Truncations of Yta10/12 lacking the distal IMS
domain (IMSD) and TM could complement respiratory defects
in 1yta10/1yta12 cells but displayed impaired degradation
of integral membrane substrates, indicating the presence of
unanchored but assembled hexamers in the matrix (Korbel et al.,
2004). The interactions that specify the formation of defined
heterooligomeric arrangements of different m-AAA proteases
also appear to be located in the metalloprotease domain as

substitution of only two residues was sufficient to drive assembly
of homo-oligomeric Yta12 proteases (Lee et al., 2011).

The distal domains of both proteases contain ∼70–80
folded residues but are positioned differently in their respective
primary structures. The i-AAA ND immediately follows the
mitochondrial targeting sequence and arranges in the matrix,
whereas the m-AAA protease IMSD is encoded between the
two transmembrane spans. Despite low sequence homology,
a solution structure of the human AFG3L2 IMSD displays a
strikingly similar α+β fold to the periplasmic domain (PD)
of FtsH (Ramelot et al., 2013; Figure 2A). Highly conserved
residues between these regions map to the interfaces of the FtsH
PDs, implying the AFG3L2 IMSDs form a similar hexameric
structure in the assembled protease (Scharfenberg et al., 2015).
However, in detergent-solubilized full-length Yta10/12, the
IMSDs do not interact directly but instead fan out from the TM
domain (Lee et al., 2011; Figure 2A). NDs of i-AAA display no
homology with domains of other metalloproteases and cluster
into two distinct and evolutionarily unrelated families (Frickey
and Lupas, 2004; Scharfenberg et al., 2015). Plant and fungal NDs
belong to the tetratricopeptide repeat (TPR) fold, whereas NDs
from animal sources have no known homologs and no structures
have been determined (D’Andrea and Regan, 2003; Scharfenberg
et al., 2015; Figure 2A).

In both cases, the functions of these distal domains remain
unclear. The apparent diversity in the sequence and structure
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FIGURE 2 | Structures studies of mitochondrial AAA proteases (A)

Combined structural information on the mitochondrial AAA proteases. A 12 Å
resolution cryoEM envelope is shown from full-length S. cerevisiae Yta10/12
(EMD-1712; Lee et al., 2011). Crystal structure of the AAA+ domain of human
paraplegin bound to ADP at 2.2 Å (green) (2QZ4; Karlberg et al., 2009). Crystal
structure of the truncated FtsH from T. maritima at 2.6 Å (AAA+ domains,
blue; protease domains, orange) (3KDS; Bieniossek et al., 2009). Solution
structures of IMSD from human AFG3L2 at (red) (2LNA; Ramelot et al., 2013)
and ND from S.cerevisiae Yme1 (pink) (2MV3; Scharfenberg et al., 2015). The
figure was produced using UCSF Chimera (Pettersen et al., 2004). (B)
Structure of T. maritime FtsH (3KDS) (Bieniossek et al., 2009) showing the
positions of 17 mutations identified in SCA28 (green spheres).

of these domains may imply they simply act as anchors
to stabilize the protease in the membrane during substrate
extraction. Indeed, active reconstituted i-AAA proteases lacking
the ND and TM domain demonstrated that these domains are
dispensable for ATP-dependent proteolysis (Shi et al., 2016).
One possible function for these domains is the recognition of
substrates on the opposite face of the membrane. Substrates
presenting domains on both sides of the MIM appear to be
fully degraded, implying translocation of polypeptides across the
membrane leaflet but not necessarily transmembrane substrate
recognition (Leonhard et al., 2000). The distal domains may
also act as interaction surfaces for large protein assemblies that
modulate protease function. The analogous FtsH PDs interact
with the HflKC complex to promote degradation of uncomplexed
subunits of the SecY protein translocase (Kihara et al., 1996, 1997;
Akiyama et al., 1998). In all eukaryotes, two related prohibitin
subunits, PHB1 and PHB2, form MIM-anchored heterodimeric
ring structures with diameters of 20–25 nm (Tatsuta et al., 2005;
Merkwirth and Langer, 2009). Both prohibitin subunits bear
large C-terminal domains that project into the IMS where they
are capable of interacting with the m-AAA IMSDs. Although,
the precise interactions between the prohibitin ring and the

protease are unclear, deletion of either subunit in yeast accelerates
the degradation of non-assembled Cox3 by Yta10/12 (Steglich
et al., 1999). In mammals, deletion of PHB2 increases the
proteolytic processing of the mitochondrial fission regulator,
OPA1 (Merkwirth et al., 2008). Thus, in both cases, the prohibitin
ring appears to restrict the activity of the m-AAA protease. A
recent study identified a multi-subunit proteolytic hub formed
between mammalian YME1L and the MIM rhomboid protease
PARL, mediated by the membrane scaffold protein SLP2 (Wai
et al., 2016). Presence of this supramolecular SPY complex
increased cleavage of the PINK1 kinase by PARL and processing
of OPA1 by the nearby OMA1 protease. The location of SLP2 in
thematrix invites suggestions of an analogous arrangement to the
prohibitin ring, positioned on the opposite face of the MIM and
interacting with the NDs of YME1L.

MODES OF SUBSTRATE PROCESSING

A commonly highlighted feature of the mitochondrial AAA
proteases is the contrasting fates of different substrates. Proteins
may be completely degraded to small peptide fragments,
undergo partial processing to a fixed point in the structure, or
be dislocated from the membrane without proteolysis. These
outcomes are dependent on the identity of the substrate and allow
just two proteases to control a wide variety of mitochondrial
operations.

Complete Substrate Degradation
It has long been established that both mitochondrial AAA
proteases can provide house-keeping functions by fully degrading
damaged, misassembled, or unnecessary proteins in their
respective compartments. Most of these substrates undergo
processive proteolysis to generate small peptides that can
be exported from the organelle or further processed by
oligopeptidases (Alikhani et al., 2011; Quiros et al., 2015).
This class of substrates includes misassembled components of
the respiratory chain and F1–F0 ATP synthase complexes that
must be precisely balanced to coordinate expression of both
mitochondrial and nuclear encoded subunits (Nakai et al., 1995;
Weber et al., 1995; Arlt et al., 1996; Kaser et al., 2003). Rapid
turnover of these proteins is essential to prevent the buildup of
potential aggregating proteins within the organelle. Accordingly,
genetic loss of either protease results in severe phenotypes,
including respiratory defects, loss of mitochondrial structure,
and increased sensitivity to oxidative stress (Campbell et al.,
1994; Tzagoloff et al., 1994; Stiburek et al., 2012). Recently,
several more examples of this activity have been identified in
a human embryonic cell line, including Ndufb6, ND1, and
Cox4, important components of the oxidative phosphorylation
machinery (Stiburek et al., 2012).

An increasingly clear role for these proteases is in
the protection against mitochondrial stress arising from
the accumulation of misfolded proteins (Rainbolt et al.,
2014; Bohovych et al., 2015). Both i-AAA and m-AAA in
mammals, and i-AAA from Arabidopsis are reported to degrade
carbonylated proteins resulting from damage by ROS (Maltecca
et al., 2009; Kicia et al., 2010; Stiburek et al., 2012; Smakowska
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et al., 2014). Additionally, stress-sensitive degradation of
YME1L is used to reorganize the proteolytic capacity of the IMS
(Rainbolt et al., 2015, 2016). Mitochondrial stress has significant
consequences for the import of nuclear-encoded polypeptides
from the cytosol. Mammalian YME1L actively attenuates protein
import into the matrix in response to stress by degrading
Tim17A, a subunit of the TIM23 MIM translocase complex
(Rainbolt et al., 2013). In yeast, Yme1 provides surveillance for
at least two soluble import components, Tim9 and Tim10. These
homologous IMS proteins form a heterohexameric chaperone
complex that shuttles imported hydrophobic proteins across
the aqueous compartment (Koehler et al., 1998; Bolender et al.,
2008). Both subunits contain two internal disulfide bonds
encoded by Cx3C motifs, which form in the oxidative IMS
environment. Improper formation of these disulfide bonds due
to oxidative stress induces degradation of both subunits by
Yme1, likely to prevent the accumulation of covalently-linked
aggregates (Baker et al., 2012; Spiller et al., 2015). In vitro
degradation of purified Tim9 and Tim10 by a solubilized Yme1
protease (hexYme1) confirmed an increased degradation rate
upon disulfide bond disruption but also indicated that Tim10 is
highly preferred as a substrate to Tim9 (Rampello and Glynn,
2017).

In addition to clearing destabilized proteins to prevent the
formation of toxic aggregates, the mitochondrial AAA proteases
can also target and remove specific proteins as a means of
controlling important metabolic pathways. Ups1 and Ups2 are
yeast IMS lipid carrier proteins related to the MSF1’/PRELI
family conserved across eukaryotes (Dee and Moffat, 2005;
Potting et al., 2010). Both proteins form a complex with the
small Cx9C protein, Mdm35, to catalyze the transfer of lipid
precursors from the MOM to the MIM to promote synthesis
of cardiolipin (CL) and phosphatidylethanolamine (PE) (Sesaki
et al., 2006; Osman et al., 2009; Tamura et al., 2009; Potting
et al., 2010; Connerth et al., 2012). Lack of CL accumulation in
the MIM impairs the function of numerous complexes involved
in respiration, mitochondrial fusion, protein translocation, and
apotosis (Choi et al., 2007; DeVay et al., 2009; Gebert et al.,
2009;Wenz et al., 2009). When complexed toMdm35, both Ups1
and Ups2 are resistant to proteolysis but are rapidly degraded
by Yme1 in the absence of the binding partner (Potting et al.,
2010). Crystal structures of Ups1-Mdm35 and the homologous
mammalian complex, PRELID-TRIAP1, revealed the tertiary
structure of Ups1/PRELID is stabilized by complex formation
(Miliara et al., 2015; Yu et al., 2015). The degradation of
uncomplexed Ups1 and Ups2 allows mitochondria to control the
flux of phospholipid precursors across the compartment while
the presence of conserved disulfide bonds in Mdm35 suggests
that degradation may occur in response to oxidative stress.

Limited Proteolysis and Chaperone
Activities
In recent years, an increasing number of substrates that
encounter an alternative proteolytic fate have been identified.
Rather than undergoing complete degradation into small
peptides, these substrates are partially processed to yield intact
fragments that perform further functions. An example of this
mode of action that is conserved across yeast and mammals is

the maturation of MrpL32, a nuclear-encoded subunit of the
mitochondrial ribosome. MrpL32 is imported into the matrix
bearing an extensive unstructured N-terminal region that must
be removed by m-AAA prior to ribosome assembly (Nolden
et al., 2005; Bonn et al., 2011; Woellhaf et al., 2014). More
recently identified examples include Atg32, the MOM-anchored
regulator of mitophagy in yeast (Kanki et al., 2009; Okamoto
et al., 2009). The C-terminal domain of Atg32 projects into
the IMS where it is removed by Yme1 to yield a fragment
that remains fixed in the membrane. Blocking the proteolytic
processing of the Atg32 by Yme1 results in defects in mitophagy
(Wang et al., 2013). An example of partial processing observed
in mammals is the cleavage of OPA1, a dynamin-related GTPase
that regulates mitochondrial dynamics in mammalian cells
(Delettre et al., 2000; Praefcke and McMahon, 2004; Lee and
Yoon, 2016). Initiation of mitochondrial fission occurs after
successive cleavage of OPA1 by the OMA1 and YME1L proteases
to generate distinct short isoforms. The balance of mitochondrial
fusion and fission is controlled by the relative abundance of
the unprocessed long form (L-OPA1) and processed short forms
(S-OPA1) (Anand et al., 2014). An analogous regulator found
in yeast, Mgm1, does not appear to be cleaved by Yme1 but
rather by the MIM rhomboid protease Pcp1 (Herlan et al., 2003;
McQuibban et al., 2003).

What is the mechanism that prevents these partially processed
substrates from being degraded completely? Maturation of
MrpL32 in yeast requires the removal of 71 N-terminal residues
and is dependent on the integrity of a cysteine-rich zinc-binding
motif located in a tightly folded C-terminal domain (Bonn et al.,
2011). In this case, m-AAA appears to processively degrade
MrpL32 from the N-terminus until it encounters the highly
stable zinc-binding motif, resulting in stalling of the protease
and release of the mature ribosomal subunit. Insertion of spacer
sequences prior to the folded domain repositioned the N-
terminus of the mature protein, implying that cleavage occurs at
a site determined by structural rather than sequence constraints.
In crystal structures of the assembled mitochondrial ribosome,
the distance between theMrpL32 N-terminus and the C-terminal
domain is ∼35 residues (∼50 Å), likely reflecting the distance
between the contact site on the outer surface of the protease
and the internal proteolytic active sites (Greber et al., 2015).
It is an attractive possibility that partial processing of other
substrates occurs through a similarmechanism toMrpL32. Atg32
does not contain metal coordination sites but extraction of its
transmembrane domain from the MOM could act as a similar
barrier to complete degradation, resulting in removal of only
the exposed IMS domain. Whereas, extraction from the MIM
by Yme1 has been demonstrated conclusively, this model would
require the protease to dislocate polypeptides from the MOM
with lower efficiency. The presence of the Yme1 transmembrane
domains or accessory proteins, such as the prohibitins, in MIM
but not the MOMmay provide an explanation for this difference.

The final mode-of-action displayed by these proteases involve
the remodeling of substrates in the absence of proteolysis.
Cytochrome c peroxidases (Ccp1) is dislocated from the MIM by
m-AAA followed by degradation by a secondary protease, Pcp1
(Tatsuta et al., 2007). In yeast, Yme1 was shown to aid the import
of a mammalian polynucleotide phosphorylase into the IMS
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(Rainey et al., 2006). Evidence also exists that i-AAA is capable
of chaperone-like activity to prevent formation of aggregates by
protein refolding rather than degradation (Leonhard et al., 1999;
Schreiner et al., 2012).

SUBSTRATE RECOGNITION

The studies described above clearly demonstrate that the
mitochondrial AAA proteases can act as both general house-
keeping enzymes and targeted proteases, processing and
degrading specific substrates. Resolving this apparent dichotomy
requires understanding the precise mechanisms used to identify
and engage substrates. The in vivo degradation by yeast
Yme1 of a thermolabile variant of mouse dihydrofolate
reductase (mDHFR) fused to the terminus of the integral MIM
protein Yme2p generated a number of potential models for
substrate recognition (Leonhard et al., 2000). Here, increasing
temperature destabilized the solvent accessible mDHFR domain
and initiated degradation of the entire fusion protein. The
protease could be failing to unfold the folded mDHFR domain
at low temperature, sensing the appearance of unstructured
polypeptides in proximity to the membrane face, or recognizing
specific patterns of residues that only become accessible
after domain unfolding at high temperature. Domain swap
experiments between i-AAA proteases from Sacchromyces
cerevisiae and Neurospora crassa revealed that specificity for
certain substrates for could be transplanted, suggesting a
mechanism other than sensing folding state (Graef et al., 2007).
Moreover, a solubilized human YME1L protease (hexYME1L)
was used to demonstrate that simple protein unfolding is
not sufficient to initiate degradation and that the protease is
capable of unfolding circularly-permuted GFP variants with
varying thermodynamic stabilities in vitro, indicating that
the enzyme possesses moderate unfolding power (Shi et al.,
2016).

Maximal degradation by hexYME1L required substrates to
display unstructured terminal tags of 10–20 residues, consistent
with in vivo experiments defining a minimal length of 20
residues needed to project from the membrane face to initiate
degradation (Leonhard et al., 2000; Shi et al., 2016). Many
AAA+ proteases select substrates by recognition of defined
sequences, known as degrons (Baker and Sauer, 2006). A
survey of model degron sequences identified a phenylalanine-
rich motif that was preferentially recognized by hexYME1L
(Shi et al., 2016). Furthermore, a solubilized yeast hexYme1
protease was used to identify a phenylalanine-rich degradation
signal present at the N-terminus of mitochondrial Tim10
(Rampello and Glynn, 2017). This sequence was necessary
and sufficient to promote degradation by hexYme1 and the
presence of similar N-terminal motifs in additional small Tim
family members predicted their degradation by the protease.
Together, these studies demonstrated unambiguously that i-
AAA can recognize specific sequences located at accessible
termini and opened the possibility that conserved recognition
motifs may be found across diverse mitochondrial substrates.
Intriguingly, a similar motif was found to target substrates to

the bacterial Lon protease (Gur and Sauer, 2008). As with
the mitochondrial AAA proteases, Lon has a hybrid function
of general surveillance and specific protein degradation. A
preference for hydrophobic residues such as phenylalanine,
which become exposed after domain unfolding, would allow
these proteases to select damaged proteins from among the
crowdedmitochondrial proteome. The presence of these residues
at accessible termini in certain constitutively degraded proteins
would then allow both themitochondrial AAA proteases and Lon
to bridge the gap between quality control and targeted proteolysis
(Figure 3).

Substrates of AAA+ proteases are classically recognized by
N-terminal domains found at the apical face of the AAA+
ATPase module or by elements within the central translocating
pore (Baker and Sauer, 2006). Substrate binding sites on yeast
Yme1 have been mapped to conserved helical regions located
at distinct positions on the AAA+ (NH) and protease rings
(CH) (Graef et al., 2007). Involvement of each binding site is
substrate dependent with a more stringent requirement for the
CH sites in the degradation of peripheral membrane proteins.
The preference for phenylalanine-rich sequences identified in
vitro could imply the presence of similarly hydrophobic substrate
binding sites on the enzyme. However, the NH sites of Yme1
contain multiple negatively charged residues, inconsistent with
interaction with aromatic side chains. Again, this is reminiscent
of bacterial Lon that uses distinct binding sites to recognize highly
divergent degron sequences (Gur and Sauer, 2009). Further
experiments are required to elucidate the precise mechanisms
used by the mitochondrial proteases to capture specific degron
sequences.

The identification of multiple substrate binding sites on Yme1
may also provide an explanation for how the mitochondrial

FIGURE 3 | A model for substrate recognition by hydrophobic degrons.

Hydrophobic recognition sequences (blue) may be found in transmembrane
segments or hydrophobic cores of proteins that become exposed after
damage induced folding. Alternatively, degrons may be present at the termini
of substrates to promote constitutive recognition and degradation. This
recognition logic could allow the mitochondrial AAA proteases to operate both
as house-keeping and selective proteases.
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AAA proteases overcome a geometric handicap when degrading
soluble and peripheral membrane proteins. The entrance to the
central pore of each protease directly faces the bilayer, limiting
the opportunity for interaction the pore and extramembrane
substrates. Whereas integral membrane proteins can be easily
engaged by NH sites and fed directly into the proteolytic
chamber, substrates located far from the membrane face may be
held in place by CH sites to increase their effective concentration
close to the translocating pore. To further facilitate substrate
engagement, both proteases contain unstructured linkers of
typically 20–25 residues that traverse from TM to the exterior of
the AAA+ ring, creating amaximal space between themembrane
face and the central pore of∼30–45 Å.

Many AAA+ proteases use adaptor proteins to enhance both
substrate selectivity and degradation (Levchenko et al., 2000;
Dougan et al., 2002a,b). In addition to the prohibitin rings and
SPY complex discussed previously, Mgr1 and Mgr3 have been
identified as possible adaptors for Yme1 in yeast (Dunn et al.,
2006, 2008). These MIM anchored proteins form a subcomplex
that interacts with Yme1 and are required for efficient binding of
unfolded polypeptides that project from the MIM (Dunn et al.,
2008). Few substrates that require the action of Mgr1/Mgr3 have
been directly detected but Yme1-dependent degradation of Cox2
is severely attenuated by deletion of the putative adaptors (Elliott
et al., 2012).

MECHANISMS OF EXTRACTION FROM
THE MEMBRANE

The degradation of integral membrane proteins requires
the extraction of transmembrane domains from a favorable
phospholipid environment into an unfavorable aqueous
compartment. The mechanisms used by the mitochondrial AAA
proteases to overcome this barrier remain elusive. Two possible
approaches that can be envisioned are: (1) forced dislocation
of the transmembrane regions powered by ATP hydrolysis
and (2) destabilization of the interactions between substrate
transmembrane domains and the bilayer. Many AAA+ proteins
translocate proteins across membranes and it is reasonable to
assume that similarities exist in their mechanisms of extraction.
For example, the degradation of multiple integral membrane
proteins by FtsH has been demonstrated in bacteria (Bittner
et al., 2015; Hari and Sauer, 2016). In eukaryotes, Msp1 is
a membrane-anchored AAA+ protein that lacks proteolytic
activity and extracts improperly localized tail-anchored proteins
from the cytosolic face of the MOM (Chen et al., 2014;
Okreglak and Walter, 2014). Endoplasmic-reticulum associated
degradation (ERAD) requires the translocation of ubiquitinated
polypeptides across the ER membrane by a group of proteins
involving the p97/Cdc48 motor protein (Wolf and Stolz, 2012;
Ruggiano et al., 2014). Recently, the extraction of mitochondrial
proteins from the MOM has been demonstrated by cytosolic
p97/Cdc48 (Heo et al., 2010; Tanaka et al., 2010). The mechanism
of translocation in ERAD is debated but may involve passage
through a hydrophobic protein channel (Stein et al., 2014).
Similarly, the possibility remains that the transmembrane
domains of the mitochondrial proteases form a hydrophobic

channel through which polypeptides can pass en route to the
central pore.

The force required to mechanically extract transmembrane
helices from lipid bilayers of varying composition has been
measured between 90 and 200 pN (Oesterhelt et al., 2000;
Ganchev et al., 2004). It has been noted that the hydrophobicity
of integral MIM proteins is generally lower than those in the
bacterial inner membrane or eukaryotic plasma membrane,
suggesting a lower force is required for extraction (von Heijne,
1986). A study examining the retention of simple transmembrane
sequences in the MIM demonstrated that sequences required
>3:1 leucine:alanine residues to escape dislocation from the
membrane by m-AAA. Under this scheme, the protease could
extract most MIM proteins (Botelho et al., 2013). The central
pores of both proteases contain loops bearing the canonical
aromatic-hydrophobic (Ar-φ) motif that are proposed to deliver
the translocating force (Graef and Langer, 2006; Martin et al.,
2008). Mutation of the Ar-φ motif impairs the translocation and
degradation but not binding of membrane proteins by Yme1,
indicating defects in the power stroke (Graef and Langer, 2006).
A rigorous in vitro analysis demonstrated that E. coli FtsH
lacks significant unfolding power and suggested the protease
targets already destabilized proteins as a means of selecting
damaged substrates (Herman et al., 2003). While hexYME1L is
capable of unfolding stable proteins, a comparison with other
AAA+ proteases placed the unfolding power between FtsH and
robust unfoldases such as ClpXP and Lon (Shi et al., 2016).
Possession of an intermediate power stroke may provide the
mitochondrial AAA proteases with a pulling force too weak to
unfold the C-terminal domain of MrpL32 or fully remove Atg32
from the MOM but sufficient to extract substrates from the
MIM.

CONCLUDING REMARKS

Significant progress has been made in recent years in expanding
the repertoire of functions performed by the mitochondrial
AAA proteases and understanding how these enzymes select
and process substrates. However, the answers to many important
questions remain elusive. What are the precise interactions used
by these enzymes to recognize and engage protein substrates
and do they differ for substrates that undergo different fates?
What mechanisms exist in mitochondria to modify protease
activity to provide further regulation to the mitochondrial
proteome, either in form of environmental changes, allosteric
modulators, or cofactors such as adaptor proteins? The recent
emergence of degron sequences that target substrates for
degradation greatly expands the constellation of potential
experiments that can be used to elucidate substrate recognition
both in vivo and in vitro. Furthermore, the involvement
of both proteases in supramolecular complexes mediated by
scaffolding proteins presents a clear avenue to understand
how protease activity may be altered by association with
other mitochondrial proteins. To date, a lack of structural
information has hampered our understanding of the precise
mechanisms of the mitochondrial AAA proteases but recent
advances in cryoelectron microscopy offer the opportunity
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to visualize these ATP-fueled proteolytic machines at high-
resolution and gain insight into the molecular details of the
degradation process used to preserve the essential functions of
mitochondria.
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