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Extracellular vesicles are a heterogeneous population of microparticles released by

virtually all living cells which have been recently widely investigated in different biological

fields. They are typically composed of two primary types (exosomes and microvesicles)

and are recently commanding increasing attention as mediators of cellular signaling.

Indeed, these vesicles can affect recipient cells by carrying and delivering complex

cargos of biomolecules (including proteins, lipids and nucleic acids), protected from

enzymatic degradation in the environment. Their importance has been demonstrated

in the pathophysiology of several organs, in particular in kidney, where different cell types

secrete extracellular vesicles that mediate their communication with downstream urinary

tract cells. Over the past few years, evidence has been shown that vesicles participate in

kidney development and normal physiology. Moreover, EVs are widely demonstrated to

be implicated in cellular signaling during renal regenerative and pathological processes.

Although many EV mechanisms are still poorly understood, in particular in kidney, the

discovery of their role could help to shed light on renal biological processes which are

so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus

becoming a great resource for disease or recovery markers and a promising non-invasive

diagnostic instrument for renal disease. In the present review, we discuss the most recent

findings on the role of extracellular vesicles in renal physiopathology and their potential

implication in diagnosis and therapy.

Keywords: extracellular vesicles, intercellular communication, kidney, physiology, pathology, biomolecules,

biomarkers

INTRODUCTION

Cell-to-cell communication is a very complex and finely regulated system which ensures proper
signaling among different cell types in tissues. Aside from soluble factors, cell-derived extracellular
vesicles (EVs) were described as a new mechanism of communication between cells (Ratajczak
et al., 2006; Cocucci et al., 2009). It has been widely proven that EVs confer stability to enclosed
proteins and nucleic acids, by protecting them from enzymatic degradation, and mediate the entry
into specific recipient cell types (Bobrie et al., 2011; Chaput and Théry, 2011; Lee et al., 2012;
Ratajczak et al., 2012; Hoshino et al., 2015). Since their discovery roughly 30 years ago (Trams
et al., 1981; Pan and Johnstone, 1983; Harding et al., 1984), EVs were purified not only from nearly
all mammalian cell types and body fluids, but also from lower eukaryotes, prokaryotes, and plants
(Yáñez-Mó et al., 2015). This suggests that EV-mediated cell signaling emerged very early during
evolution as a primitive and essential mechanism of cell communication (Ratajczak et al., 2006).
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Importantly, EVs have been involved in the pathophysiology
of different organs. In pathological conditions, for example,
EVs take part in tumorigenesis. They may modulate cell-to-cell
communication within the tumor microenvironment, play a role
in drug resistance and, migrating from the tumor to distant
niches, promote metastasis formation (Wendler et al., 2017). EVs
were also shown to carry and spread through the brain misfolded
proteins involved in several neurodegenerative diseases, such as
prion, Alzheimer’s, and Parkinson’s disease, and amyotrophic
lateral sclerosis (Quek and Hill, 2017). Evidence showed EVs’
involvement in pathophysiology of several liver diseases (Maji
et al., 2017) and autoimmune diseases like Systemic Lupus
Erythematosus and Multiple Sclerosis (Ulivieri and Baldari,
2017).

On the other hand, EVs participate in many physiological
processes, such as adaptive and innate immunity (Maas
et al., 2017), stem cell maintenance (Ratajczak et al., 2006),
bone calcification, central processes of embryogenesis, liver
homeostasis (Yáñez-Mó et al., 2015), and the coagulation cascade
(Del Conde et al., 2005). EVs are involved in reproductive
processes, such as gametogenesis, fertilization, and implantation
of the embryo (Machtinger et al., 2016). Regarding their
role in organs, it was demonstrated that EVs mediate the
communication between neurons in the brain, contributing
to local and distal synaptic plasticity (Budnik et al., 2016).
In the kidney, EVs were recognized to participate in the
pathophysiology by mediating intercellular communication,
transferring their content, activating signaling pathways in target
cells, or just representing a route of disposal for cellular contents
(Hogan et al., 2009; Borges et al., 2013). Although the presence
of urinary EVs (uEVs) was first reported in the early 1990s (Sato
et al., 1990), these vesicles were fully characterized only in 2004
(Pisitkun et al., 2004). Recently, it has been shown that uEVs are
actively released by almost all renal cells along the nephron and
the urogenital tract as well as by infiltrating inflammatory cells
(Ranghino et al., 2015). EVs can be uptaken along the urogenital
tract and can affect the function of recipient cells (Knepper
and Pisitkun, 2007). Initially, it was thought that their main
physiological role is the excretion of cell debris, such as proteins
and lipids (van Balkom et al., 2011). However, the significant
amount of energy probably required for EVs excretion and
their impact in other different physiological functions (Knepper
and Pisitkun, 2007) suggested EVs as potential mediators of
intra-renal signaling. Moreover, variations in number, origin or
content of EVs isolated from urine may signal an alteration in the
physiopathological state of the kidneys (Ranghino et al., 2015).
For this reason, uEVs raised a great interest as a putative useful
tool for non-invasive diagnosis. Furthermore, EVs derived from
stem cells showed regenerative properties that may be applicable
in renal pathologies. For instance, it has been demonstrated
that mesenchymal stem cells (MSCs) have a renal regenerative
activity and MSC-derived EVs have been implicated as the main
paracrine players (Bruno et al., 2016).

In this review, we will give an overview of EV features and we
will discuss their role in renal physiology and disease. Moreover,
we will describe the potential of uEVs as biomarkers of renal
diseases.

EV BIOGENESIS AND COMPOSITION

EVs represent a mixed population of microparticles commonly
categorized on their biogenesis, size and surface markers.
The main classes of non-apoptotic EVs are exosomes and
microvesicles (El Andaloussi et al., 2013; Katsuda et al., 2013;
Helmke and von Vietinghoff, 2016). Exosomes are derived from
the endosomal compartment and show a variable size ranging
approximately from 40 to 150 nm (Greening et al., 2015). They
are stored within multivesicular bodies (MVBs) of the late
endosome that fuse with the cell membrane and release their
content (Théry et al., 2009; Mathivanan et al., 2010; György et al.,
2011). The exact mechanism of exosome assembly and sorting
is not completely elucidated. However, different mechanisms
of exosome biogenesis have recently been identified (Raiborg
and Stenmark, 2009; Bobrie et al., 2011; Baietti et al., 2012;
Nabhan et al., 2012). The endosomal sorting complex required
for transport (ESCRT)-III forms spirals that induce the inward
budding and fission of vesicles to form MVBs (Chiaruttini
et al., 2015; Lee et al., 2015; McCullough et al., 2015). The
ESCRT machinery also seems to be recruited by viruses for
budding at the plasma membrane of host cells and release (Gan
and Gould, 2011; Lindenbach, 2013). Small GTPases (such as
RAB11, RAB27A, and RAB31) are implicated in the fusion of
MVBs with the cell membrane (Ostrowski et al., 2010; Bobrie
et al., 2011). Cytoskeleton activation, under the regulation of
p53 protein, was showed to regulate the exocytosis of exosomes
(Yu et al., 2006). Moreover, ceramide formation is important
in exosome biogenesis (Trajkovic et al., 2008), and ceramide
synthesis modifies exosomes cargo (Gatti et al., 2011; Maas et al.,
2017).

Microvesicles, also known as shedding vesicles, are larger
than exosomes and represent a more heterogeneous population
of vesicles originated by budding of cell surface (Théry et al.,
2009; El Andaloussi et al., 2013; Greening et al., 2015). This
process is regulated by membrane lipid microdomains and
the dynamic contraction of the plasma membrane, which
is controlled by proteins such as ADP-ribosylation factor 6
(ARF6) (Muralidharan-Chari et al., 2009; De Palma et al.,
2016a). Moreover, levels of calcium impact on specific enzymes,
including flippase, floppase, and scramblase which modify
the asymmetry of plasmamembrane phospholipids (Hugel
et al., 2005). Increased calcium levels promote the transfer
of phosphatydilserine (PS) toward the inner membrane by
inhibiting flippase. This process is ATP-dependent (Dignat-
George and Boulanger, 2011) and activates scramblase leading
the shift of PS from the inner to the outer leaflet of the cell
membrane (Abid Hussein et al., 2005). The activation of cytosolic
proteases, such as gelsolin and calpain, by calcium, promotes the
detachment of plasma-membrane protrusions from the cortical
actin (Cocucci et al., 2009).

Since microvesicles are secreted in conjunction with exosomes
and share several of their functions and characteristics, it has
been proposed to collectively identify them as EVs (Gould and
Raposo, 2013). EV cargo is various and includes cytoplasmic
proteins, surface receptors, certain lipid raft-interacting proteins,
DNAs, and RNAs (Théry et al., 2009; Lee et al., 2012). In
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general, lipids enriched in EVmembranes are glycosphingolipids,
sphingomyelin, cholesterol, and phosphatidyl-serine (Llorente,
2013; Bruno et al., 2016). EVs are constitutively released by
cells and their secretion is regulated by the cellular machinery.
Exosome production, for instance, depends on the cell-specific
expression and activity of Rab GTPases and on the interaction
betweenMVBs and microtubule network (Villarroya-Beltri et al.,
2014). Furthermore, EV secretion is known to be increased in
cellular stress conditions including hypoxia, starvation, changes
in pH membrane, shear stress, oxidative stress, thermal changes,
irradiation, inflammation (King et al., 2012; Buzas et al., 2014;
Roma-Rodrigues et al., 2014) and several stimuli, such as the
activation of a signaling cascade or the membrane depolarization
(Raposo et al., 2013).

EV UPTAKE AND CARGO

EVs were recognized as important vectors of information
acting in a paracrine manner to regulate gene expression and
modulate the phenotypes of adjacent or distant recipient cells
(Turturici et al., 2014). It was observed that EVs are internalized
within target cells in several ways (Figure 1). First, they can
enter through surface ligands interaction, thus in specifically
recognized target cells (Lösche et al., 2004; Turturici et al.,
2014). For example, dendritic cell-derived EVs carry intercellular
adhesion molecule 1 that specifically binds lymphocyte function-
associated antigen 1, which is exposed on activated, but not
resting, T cells (Nolte-’t Hoen et al., 2009). EVs derived from

proangiogenic progenitors present on their membrane α4 and
β1 integrins and L-selectin, which interact with and mediate
the uptake by recipient endothelial cells (Deregibus et al.,
2007). Then, EVs can be internalized by clathrin-dependent
endocytic mechanisms, as micropinocytosis, caveolin-mediated
internalization, phagocytosis, and lipid raft–mediated uptake
(Mulcahy et al., 2014). Recently, evidence has highlighted that
vesicle composition and microenvironmental conditions may
influence EV uptake. It was demonstrated that a high lipid raft
content in EVs facilitates their fusion with cells (Mulcahy et al.,
2014; Maas et al., 2017) and lipid rafts are involved in EV uptake
in the kidney (Gildea et al., 2014). In addition, acidic pH in
the extracellular environment enhances EV–membrane fusion
(Parolini et al., 2009; Maas et al., 2017), and, in tumors the acidic
microenvironment promotes the release of EVs with higher cell
fusion capacity (Parolini et al., 2009). However, it is still unclear
if different interaction mechanisms coexist in the same cell or
vary depending on recipient cell type and EV origin. A recent
work has shown how the uptake of T lymphocyte-derived EVs by
human retinal endothelial cells is regulated by either temperature,
extracellular calcium, and the expression levels of the low-density
lipoprotein receptor (LDLR) (Yang et al., 2012).

A peculiar aspect of EVs is the ability to protect their cargo
against degradation and facilitate its intracellular uptake (Arroyo
et al., 2011; Lai et al., 2015). Indeed, EVs can transfer functional
proteins, bioactive lipids, transcription factors, genes, mRNAs,
and miRNAs (Ratajczak et al., 2006; Deregibus et al., 2007; Valadi
et al., 2007; Skog et al., 2008; Yuan et al., 2009). Many reports

FIGURE 1 | Renal-derived extracellular vesicles. Extracellular vesicles (EVs) are a heterogeneous population of microparticles, mainly composed by exosomes and

microvesicles. In particular, exosomes (in blue) are stored within multivesicular bodies (MVBs) of the late endosome and are released in the microenvironment after

fusion with the cell membrane, whereas microvesicles (in violet) originate by direct budding from the cell surface. After their secretion, EVs exert their effects on

adjacent or distant recipient cells in a pleiotropic manner, directly activating cell surface receptors, blending with cell membrane or by endocytic uptake and

transferring their cargo inside cells. EVs contain a complex cargo of biomolecules that include proteins, surface receptors, lipids, transcription factors, genes, mRNAs,

and miRNAs. Their content mirrors the cell of origin and EVs collected from urine contain proteins and transporters specific of renal and urogenital tract epithelial cells.

In particular, the presence of podocin and podocalyxin (PCLP1) is characteristic of glomerular podocytes, whereas the expression of megalin, cubilin, aminopeptidase

and aquaporin-1 (AQP1) indicate proximal tubular cell source. Moreover, EVs from the thick ascending limb of the Henle’s loop contain Tamm Horsfall protein (THP),

CD9, and type 2 Na-K-2Cl cotransporter (NKCC2). EVs from the collecting duct carry aquaporin-2 (AQP2) and mucin-1 (MUC1), whereas the expression of CD133

marker identify renal progenitor cells.
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showed that proteins andmiRNA cargo are selectively sorted into
EVs (Deregibus et al., 2007; Valadi et al., 2007; Collino et al., 2010;
Bolukbasi et al., 2012; Montecalvo et al., 2012; Koppers-Lalic
et al., 2014; Cha et al., 2015). The endosomal sorting complex
required for transport (ESCRT) associated with programmed
cell death 6 interacting protein (PDCD6IP; also known as Alix)
and tumor susceptibility gene 101 protein (TSG101) regulates
cargo sorting into exosomes (Raiborg and Stenmark, 2009; Baietti
et al., 2012; Nabhan et al., 2012). A recent work has shown that
Alix, a multifunctional protein of the ESCRT complex, interacts
with argonaute protein-2 (Ago2), which is involved in miRNA
biogenesis, and the complex participates in driving miRNAs
within EVs (Iavello et al., 2016).

In particular, the miRNA cargo plays a key role in EVs biologic
activity and modulate protein levels of targeted genes (Gracia
et al., 2017). It was shown that tumor-suppressive miRNAs
carried by stem cell-derived EVs inhibit tumor growth (Fonsato
et al., 2012; Bruno et al., 2013, 2014). Moreover, EVs from MSCs
showed to induce a recovery after acute kidney injury (AKI) in
vivo through the transfer of miRNAs (Collino et al., 2015). EVs
from urinary tract include renal-derived EVs and showed to carry
mostly ribosomal and non-coding RNAs, such as miRNAs, but
also small amount of DNA and mRNAs for proteins specific to
the nephron and all the genitourinary system (Miranda et al.,
2010; Ranghino et al., 2015). Of note, these urinary EVs show
a RNA profile comparable to that of kidney tissue, including the
presence of 18S and 28S rRNA, which is normally scarcely present
in cell line-derived EVs (Dear, 2014).

EVS IN RENAL PHYSIOLOGY

The kidney is a vital organ that, among its many functions,
ensures the filtration of the blood. The glomerular filtration
apparatus prevents EVs contained into the blood to enter the
lumen of renal nephron (Pisitkun et al., 2004). Thus, it is plausible
that EVs secreted into extracellular fluids have roles in renal
signaling solely by stimulating cell types that face the vascular
compartment and cells of the immune system (van Balkom et al.,
2011). It is therefore possible that intra-nephron EVs, exclusively
originated from the urinary tract, may have a role in renal
processes (Pisitkun et al., 2004). A few years ago, it was shown
for the first time that EVs are involved in intra-renal signaling
by demonstrating that exosomes from collecting duct cells can
induce the expression of aquaporin 2 (AQP2) in recipient cells
(Street et al., 2011).

The content of EVs conveyed into urine (uEVs) reflects
their cells of origin, with specific proteins (Dimov et al., 2009),
mRNAs (Miranda et al., 2010), and miRNAs (Alvarez et al., 2012)
and painstakingly mirrors the expression levels of donor cells
(Miranda et al., 2010). In fact, it was shown that a selective
knockout of a collecting duct-selective marker (V-VATPase-
B1) in mice deleted this marker from urinary EVs (Miranda
et al., 2010). Moreover, uEVs showed to contain proteins and
transporters specific of renal and urogenital tract epithelial
cells (Figure 1). For example, EVs from glomerular podocytes
express podocin and podocalyxin (Hogan et al., 2014); EVs from
proximal tubular cells contain megalin, cubilin, aminopeptidase

(Moon et al., 2011), and aquaporin-1 (AQP)-1; EVs from the
thick ascending limb of the Henle’s loop carry CD9, type 2 Na-K-
2Cl cotransporter (NKCC2), and Tamm Horsfall protein (THP)
(Ranghino et al., 2015); EVs from collecting ducts carry AQP-
2 and mucin-1 (Pisitkun et al., 2004; Gonzales et al., 2009).
Moreover, CD133 was recognized as a marker of renal progenitor
cells (Dimuccio et al., 2014).

Despite the role of renal EVs is not yet completely understood
up today, recent findings demonstrated their importance in
several mechanisms, as discussed below (Figure 2).

Elimination of Cellular Waste
After their secretion, EVs can be eliminated as cellular waste. This
might be a more efficient strategy for the elimination of senescent
proteins compared to proteasomal and lysosomal degradation
(van Balkom et al., 2011).

Proximal-to-Distal Signaling
On the other hand, EVs can be uptaken downstream,
affecting the function of recipient cells (Dimov et al., 2009;
Figure 2A). Notably, uEVs abundantly express CD24, a small
glycosylphosphatidylinositol-anchored molecule expressed both
by tubule cells and podocytes (Keller et al., 2007), which is
involved in cell-cell adhesion and signaling (Dimov et al., 2009).
Moreover, uEVs seems to specifically interact with recipient cells
through primary cilia (Hogan et al., 2009). This observation
is supported by data from a biliary model demonstrating that
exosome signaling affects ERK signaling, miRNA expression,
and cell proliferation (Masyuk et al., 2010). Moreover, molecules
present in urine can influence EV uptake into recipient cells. It
has been conjectured that, in downstream nephron segments,
the EV fusion with cells could be limited by THP, an abundant
polymeric protein in normal urine (van Balkom et al., 2011).
Indeed, EVs may provide a way for proximal-to-distal signaling,
and, for example EVs from podocytes can pass through the
renal tubule and transmit information to epithelial cells of the
collecting duct (Prunotto et al., 2013; Salih et al., 2014). It was
demonstrated that both distal tubule and collecting duct cells can
take up and store into MVBs the EVs released by proximal tubule
cells (Gildea et al., 2014). This may explain why proteins typically
expressed by tubule cells have been detected in downstream
nephron segments, including the water channel aquaporin-1
(AQP1) (Sabolic et al., 1992) and the ammonium-generating
enzyme glutaminase (Figure 2B; Wright et al., 1990, 1992).

Regulation of Inflammation
Moreover, it was observed that EVs from proximal tubular cells
cultured in presence of a dopamine receptor agonist can decrease
radical production in distal tubular cells, indicating the transfer
of an anti-inflammatory message (Figure 2B; Gildea et al., 2014;
Bruno et al., 2016).

Control of Ion Transport
EVs can also mediate the communication between proximal and
distal tubules and collecting ducts to regulate the transport of
sodium. In fact, Jella et al. demonstrated that EVs from proximal
tubule cells carry active GAPDH that decreases ENaC activity
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FIGURE 2 | Extracellular vesicle secretion and physiological function in the kidney. (A) All cell types of the nephron that face the urinary space secrete EVs, starting

from the glomerular podocytes through the proximal tubule, the limb of Henle, the distal tubule, and the collecting duct. After their secretion, EVs can be uptaken by

downstream cells, influencing recipient cell behavior. Alternatively to their action on cells, EVs can cross the urinary tract and pass through following organs, including

ureters, bladder, prostate, and urethra. EVs released by resident epithelial cells congregate with renal EVs and ultimately conveyed in the urine, providing a source of

physiopathological markers of the urinary tract. (B) EV-mediated renal communication seems to be a physiological system of cell signaling and involves several EV

roles, including elimination of cellular waste, proximal-to-distal signaling, developmental roles, control of ion transport, regulation of inflammation and immune

response. In fact, EVs released by proximal tubule cells can be uptaken by distal tubule and collecting duct cells transferring tubular proteins, such as aquaporin-1

(AQP1) and the ammonium-generating enzyme glutaminase (GDH). EVs can also mediate the transfer of another aquaporin member, aquaporin-2 (AQP2) between

cortical collecting duct cells. Moreover, by carrying active GAPDH, proximal tubule cells can regulate the renal transport of sodium through EVs, decreasing ENaC

activity in distal tubule and collecting duct cells. Similarly, these EVs can also transfer anti-inflammatory message from proximal tubular cells exposed to dopamine

receptor agonist and induce a decrease in cell radical production in distal tubular cells. Moreover, EVs derived from tubular cells are implicated in an important process

for nephrogenesis and mediate the induction of the mesenchymal-to-epithelial transition (MET) in mesenchymal stem cells (MSCs). Finally, urinary EVs can induce

bacterial lysis, contributing to the immune response in the urinary tract.

by reducing the channel’s open probability in distal tubules and
collecting ducts (Figure 2B; Jella et al., 2016). EVs can also
mediate the transfer of aquaporin-2 (AQP2) between cortical
collecting duct cells, increasing both AQP2 expression and water
transport in recipient cells (Figure 2B; Street et al., 2011). In
this study, desmopressin was used to stimulate an increase in
AQP2 content and Oosthuyzen et al. have recently demonstrated
that this vasopressin analogue selectively stimulated EV uptake
in tubular cells, whereas a vasopressin antagonist reduced

the uptake of injected EVs within renal tissue in vivo. This
suggests that uEVs signaling is a physiologically regulated process
(Oosthuyzen et al., 2016). Moreover, they demonstrated that this
mechanism can be used to deliver miRNAs to collecting duct cells
resulting in downregulation of target transcripts (Oosthuyzen
et al., 2016). Furthermore, uEVs showed to be enriched with
angiotensin-converting enzyme (Pisitkun et al., 2004; Gonzales
et al., 2009), which may have a role in the renin-angiotensin
system hence playing a part in water balance (Navar et al., 2002).
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Regulation of Immune Response
A novel role of uEVs has recently emerged: the stream of
EVs from renal tubular epithelia can contribute to the immune
response in the urinary tract. Thus, the anatomic structure
of the urinary system results in its continuous exposure to
bacterial infections contrasted by a highly effective innate
immune response. It has been shown that uEVs are highly
enriched in innate immune proteins and inhibit the growth
of the most common human urinary pathogen E. coli through
bacterial lysis (Hiemstra et al., 2014), highlighting their role in
the immune mechanism in the urinary system. This finding
is consistent with a previously report of protection against
influenza A virus infection by EVs derived from respiratory
epithelium in canine kidney cells in vitro (Kesimer et al.,
2009). Moreover, uEVs expressing tissue factor (TF) could
supply additional sources of TF that could support hemostasis
and coagulation. Thus, uEVs could reduce blood loss and the
hazard of microorganisms entering the body through urinary
and urethral epithelia, contributing to host defenses (Kleinjan
et al., 2012). An interesting work demonstrated that uEVs can
synthesize ATP aerobically by consuming oxygen (Bruschi et al.,
2016).

Developmental Roles
Eventually, EVs can play a key role in kidney development
and regeneration mediating the interaction between epithelial
cells and mesenchymal cells (Figure 2B; Chiabotto et al., 2016).
In fact, tubular epithelial cells (TECs) can induce an epithelial
commitment in MSCs through activation of mesenchymal-to-
epithelial transition, an essential process for nephrogenesis and
kidney embryonic development, which allows the formation of a
tubular epithelial structure from the metanephric mesenchyme
(Singaravelu and Padanilam, 2009; Kanazawa et al., 2011).
Recently, Chiabotto et al. (2016) demonstrated that this epithelial
differentiation is mainly mediated by EVs derived from TECs
and, in particular, by a small subassembly of miRNAs belonging
to the miR-200 family able to induce a long-term modification in
MSC transcriptome.

EVS IN KIDNEY DISEASES

EVs’ role in renal communication is not only involved in
physiological processes, but also in pathological conditions.
Indeed, the transfer of information mediated by EVs may
participate to the biological mechanisms that lead to diseases
or, in contrast, be mediator of benignant pathways essential for
disease recovery.

Cancer
Tumors are surrounded by a complex microenvironment
and cancer cells require an active exchange of information
with neighboring cells, including endothelial cells, fibroblasts,
pericytes, and infiltrating immune cells (Hanahan andWeinberg,
2011). In this context, several cell types communicate to promote
or suppress disease progression (Kohlhapp et al., 2015) and EVs
were shown to take part in these signalings (Zomer and van
Rheenen, 2016). In fact, it is generally accepted that tumor cells

release EVs capable of organizing tumor progression stimulating
survival essential processes, such as proliferation, angiogenesis,
metastasis formation, and immune-escape (Lopatina et al., 2016).
A fundamental stage to ensure tumor development is the
inhibition of immune surveillance. Tumor-derived EVs (tEVs)
were reported to induce tolerance by different mechanisms. For
example, our group have recently demonstrated that EVs derived
from renal cancer stem cells impaired monocyte differentiation
and maturation into dendritic cells by strongly reducing the
expression of HLA-DR, costimulatory molecules, and adhesion
molecules (Grange et al., 2015). This immune-modulatory role
was correlated to the presence of HLA-G, which is known to
inhibit immune response thus favoring cancer immune escape.
Moreover, Wieckowski et al. (2009) demonstrated that tEVs can
directly promote T regulatory cell expansion and the demise of
antitumor CD8+ effector T cells. tEVs may also induce apoptosis
in lymphocytes by carrying ligands for death receptors TRAIL
and FasL (Andreola et al., 2002; Huber et al., 2005). Furthermore,
tEVs can regulate monocyte differentiation, endorsing the
myeloid immunosuppressive phenotype of these cells (Valenti
et al., 2006) and an immunosuppressive macrophage phenotype
(de Vrij et al., 2015).

Beyond their effect on immune cells, cancer EVs may alter
the functions of non-immune cells within the tumor stroma
and they are involved in the differentiation of fibroblasts into
myofibroblasts, which secrete ECM components and can support
tumor progression (Hanahan andWeinberg, 2011). In fact, Sidhu
et al. (2004) demonstrated that EVs derived from lung carcinoma
cells carry EMMPRIN to fibroblasts inducing the production
of matrix metalloproteinases (MMPs) and enabling tumor
invasion and metastasis. Recently, Webber et al. (2010) showed
that tEVs express TGF-β1 protein on their outer surface and
trigger myofibroblast activation. During tumor growth, hypoxia
promotes survival and propagation of tumor cells by influencing
the stroma (Finger and Giaccia, 2010) and inducing the release
of neovascularization-stimulating factors (Maas et al., 2017). It
was observed that the hypoxic microenvironment can affect tEVs
composition (Becker et al., 2016) and enhance their angiogenetic
and metastatic potential (Park et al., 2010). These alterations
can also include the miRNA content. It was shown that hypoxia
enhances the compartmentalization of pro-angiogenic miRNAs
such as the miR-210 in tEVs (King et al., 2012), or miR-126
and miR-296 in EVs derived from proangiogenic progenitors
(Cantaluppi et al., 2012).

In addition, altered vascularization promoted by cancer cells
might be dependent on the secretion not only of known
angiogenic cytokines and growth factors, but also of EVs
(Janowska-Wieczorek et al., 2005; Iero et al., 2008; Skog et al.,
2008). In fact, our group found that EVs released by renal
cancer stem cells specifically display proangiogenic properties
able to favor tumor vascularization (Grange et al., 2011). These
vesicles were enriched with proangiogenic mRNAs, miRNAs, and
proteins (MMP2/9, angiopoietin 1, ephrin A3, FGF, and VEGF)
that could favor tumor vascularization and lung metastasis
by priming endothelial cells. Moreover, miRNAs enriched in
tEVs included miRNAs described as significantly up-regulated
in patients with ovarian, colorectal, and prostate cancer (PCa)
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(miR-200c, -92, and -141), associated with tumor invasion and
metastases (miR-29a, -650, and -151), and directly associated
with RCC (miR-19b, -29c, and -151) (Grange et al., 2011).
tEVs can also stimulate endothelial cell migration and in vivo
angiogenesis via their membrane sphingomyelin (Kim et al.,
2002). Moreover, tEVs are enriched in MMPs (Taraboletti
et al., 2002) as well as in the extracellular MMP inducer
CD147 (Millimaggi et al., 2007), promoting the degradation
of extracellular matrix proteins necessary for the angiogenic
process. tEVs also contain and deliver, at both mRNAs and
protein level, pro-angiogenic modulators such as vascular
endothelial growth factor (VEGF), fibroblast growth factor
(FGF), epidermal growth factor receptor (EGF-R), interleukin
6 (IL-6), interleukin 8 (IL-8), angiogenin, and anti-angiogenic
proteins like TIMP-1 and -2 (Skog et al., 2008). Via their cargo,
tEVs can alter the fate of normal cells. In particular, renal
cancer stem cell-derived EVs can induce a pro-tumorigenic
phenotype in recipient MSCs increasing the expression of genes
associated with matrix remodeling (COL4A3), cell migration
(CXCR4, CXCR7), tumor growth (IL-8, Osteopontin and
Myeloperoxidase) and angiogenesis. Importantly, EV-stimulated
MSCs showed an enhanced capacity to induce migration of renal
tumor cells and vessel-like formation in vitro and supported
tumor development and vascularization in vivo (Lindoso et al.,
2015). This finding is consistent with other studies reporting
that EVs can favor local and distant spread of tumor cells,
promoting tumor migration and invasion. For example, it was
observed that tEVs promote the recruitment of different cell types
(such as fibroblasts, endothelial cells, macrophages, and various
populations of bone marrow-derived cells) to the pre-metastatic
niche (Peinado et al., 2012; Costa-Silva et al., 2015) and may
be important priming factors that help to establish metastatic
niches, typically by interacting with normal host cells (Maas et al.,
2017). The comparison of EVs from PCa stem cells with that
from the bulk tumor showed a selectively pattern of miRNAs
that may contribute to local invasion and pre-metastatic niche
formation through fibroblast migration (Sanchez et al., 2016).
In fact, highly abundant exosomal miRNAs, such as miR-100-
5p, miR-21-5p, and miR-139-5p, increased MMPs 2, 9, and 13,
RANKL expression, and fibroblast migration upon transfection
into prostate fibroblasts (Sanchez et al., 2016).

Non-cancer Diseases
Besides their role in tumors, EVs also gained attention as
mediators of several other pathological conditions, such as
endothelial dysfunctions, immune system alterations, fibrosis,
and inflammation (Prado et al., 2008). Thus, EVs have a role
in modulation of the microenvironment and in amplification
of kidney damage or recovery, as shown by the involvement of
blood-derived EVs in hypertension, graft rejection, and in several
glomerulopathies (van Balkom et al., 2011).

EVs and Endothelium
EVs can exert different effects on the endothelium depending
on their cell of origin and consequently on their cargo. In
physiological conditions, quiescent endothelium secretes EVs
that inhibit monocyte activation and suppress endothelial cell

activation (Njock et al., 2015), whereas in an inflammatory
environment, EVs released by endothelial cells (ECs) can exert
angiogenic properties, leading to activation of surrounding ECs
(Lombardo et al., 2016). In fact, Lombardo et al. (2016) recently
demonstrated that IL-3 enhances EV release by ECs and their
pro-angiogenic activity, increasing their miR-126-3p and STAT5
content. Thus, the horizontal transfer of STAT5 into ECs leads
to cyclin D1 transcription and tridimensional tube-like structure
formation in vitro.

In pathological conditions, especially in several inflammatory
states, EVs can promote altered angiogenesis. Platelet- and
endothelial-derived microparticles were found to be increased,
in association with increased thromboxane A2 levels, in
patients with septic shock. These EVs displayed a protective
effect from hypotension induced by vascular hyporeactivity
(Mostefai et al., 2008). Moreover, EVs secreted from renal
artery progenitor cells derived from human radical nephrectomy
demonstrated to enhance endothelial cell migration when
co-cultured with injured endothelial cells. Thus, this study
highlighted the feasibility of the use of EVs derived from
patient-pro-angiogenic progenitor cells for potential therapeutic
autologous cell transplantation for microvasculature endothelial
injury (Pang et al., 2017). Furthermore, the role of miRNAs
seems to be crucial and van Balkom et al. (2013) showed how
the communication in the vascular endothelium is mediated
by EVs that stimulate angiogenesis, at least partly, via miR-
214. In particular, EC-derived EVs enriched in this miRNA
promoted endothelial cell migration and angiogenesis in vitro
and in vivo by preventing cell cycle arrest in recipient ECs
(van Balkom et al., 2013). The possibility to exploit this
process to rescue senescent cells, with reduced miR-214 levels,
by the transfer of EVs derived from miR-214–producing
cells provides an EV-application for endothelium-associated
diseases.

EVs and Renal Failure
EVs have been involved in the multi-organ dysfunction that
typifies sepsis and septic shock (Souza et al., 2015), including
AKI. Microvascular injury induced by sepsis induces the release
of EVs into the systemic circulation (Ricci and Ronco, 2009), and
Zafrani et al. (2012) demonstrated that these EVs have a direct
role in the pathogenesis of sepsis and the related AKI, on both
coagulation and inflammatory signals, modulating the number
of EVs via calpain signaling. In septic patients with AKI, EVs
secreted by endothelial progenitors and intravenous injected can
reach endothelial and TECs, and have direct effects on cultured
hypoxic TECs (Bitzer et al., 2012).

EVs were also reported to contribute to renal failure associated
with hemolytic uremic syndrome induced by infection of
enterohemorrhagic Escherichia Coli. EVs can provide a way
to evade the host immune system and transfer bacterial toxin
Shiga toxin (Stx) reaching target organs such us kidney. Using a
mouse model infected with E. coli Stx, Ståhl et al. (2015) showed
that Stx circulates bound to blood cell-derived EVs that reached
the kidney and are transferred into glomerular and peritubular
capillary endothelial cells. Successively, they pass through the
basement membrane and enter in podocytes and TECs. After

Frontiers in Molecular Biosciences | www.frontiersin.org 7 June 2017 | Volume 4 | Article 37

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Pomatto et al. Extracellular Vesicles in Renal Pathophysiology

endocytosis, EVs inhibit protein synthesis and lead to glomerular
endothelial cell death (Ståhl et al., 2015).

EVs in Renal Fibrosis
EVs derived by nephron cells can mediate the transfer of
proinflammatory or profibrotic signals from tubular epithelial
and interstitial cells, such as fibroblasts and infiltrating immune
cells, mediating common pathways leading to renal fibrosis
(Okada, 2013). In 2013, Borges et al. (2013) showed that injured
epithelial cells produced an increased number of EVs with
defined genetic information to activate fibroblasts. In fact, TECs-
derived EVs subjected to in vitro hypoxic damage promoted
proliferation, α-smooth muscle actin expression, F-actin
expression, and type I collagen production in fibroblasts. Among
the complex EV content, the authors highlighted the importance
of TGF-β1 mRNA, a profibrotic growth factor (Okada, 2013),
suggesting its key role in tissue repair/regenerative responses
and activation of fibroblasts (Borges et al., 2013). After cell
injury, an incomplete repair response can lead to persistent
tubule-interstitial inflammation and tissue hypoxia resulting in
AKI (Borges et al., 2013).

Taken together, several studies indicate that EVs are
implicated in kidney diseases throughmultiple effects, depending
on their cell of origin and context. Indeed, EVs are involved
in physiological processes essential for kidney homeostasis,
such as cellular signaling, immune response, ion transport
and development. Nevertheless, EVs can be also related to
disease progression in cancer or renal failure, as described
above. Thus, for instance, EVs can promote altered angiogenesis,
inflammation and pro-fibrotic processes. These opposing actions
of EVs, both beneficial and harmful, are the consequence of
the environment in which EVs are produced, as well as, of
the target cell they interact. This opens the perspective to
modulate EVs and to exploit their function for therapeutic
approaches.

THERAPEUTIC APPLICATION OF EVS IN
RENAL PATHOLOGY

EVs derived from progenitor and stem cells have been shown
to modulate important disease processes displaying regenerative
properties that may be applicable in renal pathologies.

EVs in Glomerulonephritis
EVs demonstrated a protective effect in experimental Thy1.1
glomerulonephritis in rats induced by complement-mediated
mesangial injury (Cantaluppi et al., 2015). Indeed, after iv
injection, EVs derived from endothelial progenitor cells localize
within injured glomeruli and inhibit mesangial cell activation,
leucocyte infiltration and apoptosis. Moreover, EV treatment
decreases proteinuria, increases serum complement hemolytic
activity, ameliorates renal function, preserves podocyte marker
synaptopodin and endothelial antigen RECA-1. EVs’ beneficial
effect on mesangial cells was due to the inhibition of anti-
Thy1.1 antibody/complement-induced apoptosis and C5b-9/C3
mesangial cell deposition (Cantaluppi et al., 2015).

Angiogenesis
As mentioned above, EVs can promote angiogenesis by
transferring pro-angiogenic factors (Lopatina et al., 2016), such
as MMP-2 and MMP-9, which support matrix degradation and
new blood vessel formation (Taraboletti et al., 2002; Salamone
et al., 2016). EVs derived from proangiogenic progenitors showed
to elicit a pro-angiogenic phenotype in quiescent human micro-
and macrovascular endothelial cells. Their effect is due to the
transfer of mRNAs related to nitric oxide synthase (NOS) and
PI3K/AKT signaling pathways that favor the organization of
human ECs in canalized vessels when subcutaneously injected
in a Matrigel matrix together with EVs in severe combined
immunodeficient (SCID) mice (Deregibus et al., 2007). In a
murine model of hind limb ischemia, endothelial progenitor cell-
derived EVs were shown to improve vascularization and limit
ischemic injury (Ranghino et al., 2012).

Tubular Regeneration
Several kidney injuries are characterized by damage of the TECs,
partially because of hypoxic injury (Borges et al., 2013). It was
shown that EVs can induce AKI recovery by reducing tubular
apoptosis (Bruno et al., 2012). Several studies demonstrated
the beneficial effects of EVs derived from renal resident and
exogenous stem/progenitor cells in repairing kidney damage after
toxic or ischemic AKI (Bussolati et al., 2005; Lange et al., 2005;
Sagrinati et al., 2006; Herrera et al., 2007; Angelotti et al., 2012;
Grange et al., 2014). Indeed, EVs derived from human endothelial
progenitor cells prevented the renal functional damage in a rat
model of ischemia-reperfusion injury (IRI) (Cantaluppi et al.,
2012). IRI is a major cause of AKI in humans and it is associated
with tubular cell necrosis and endothelial cell dysfunction and
loss (Basile et al., 2012). EVs induce functional and morphologic
protection from AKI by reducing leukocyte infiltration and
apoptosis, and by enhancing TECs proliferation. Endothelial
progenitor cell-derived EVs also protect against progression of
chronic kidney disease (CKD) after IRI by inhibiting capillary
rarefaction, glomerulosclerosis, and tubule-interstitial fibrosis
(Cantaluppi et al., 2012). The therapeutic function of EVs is
also mediated by the transfer of miRNAs (Collino et al., 2015).
Indeed, the healing and protecting effects of EVs were mainly
attributed to the transfer of pro-angiogenic miRNAs (miR-126
and miR-296) to hypoxic resident renal cells, changing their
phenotype. Interestingly, reducing the miRNA content in EVs,
either by Dicer knock-down in proangiogenic progenitors, or
using specific antagomirs together with inactivating RNAs, or
by treating vesicles with elevated concentrations of RNases,
inactivated the observed EV biological activities (Cantaluppi
et al., 2012). In a similar model, using mice with ischemic
AKI, Burger et al. (2015) showed that the iv administration
of EVs derived from human cord blood endothelial colony
forming cells, endothelial precursor cells with a high proliferative
capacity and pro-angiogenic potential, attenuated renal injury,
inducing an amelioration of plasma creatinine, tubular necrosis,
and apoptosis. Notably, these EVs are enriched in miR-486-
5p and protect mice against kidney IRI by transferring the
miRNA to ECs and targeting the PTEN/Akt pathway. The in
vivo potent protective effects were associated with decreased
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PTEN levels in kidney and activation of Akt. These effects
were blocked by inhibition of miRNA, suggesting that the
transfer of miR-486-5p to ECs plays an important role in
preventing apoptosis (Viñas et al., 2016). Notably, a recent work
of Ranghino et al. (2017) has demonstrated that EVs derived
from a resident population of MSCs within the glomeruli (Gl-
MSCs) (da Silva et al., 2006; Bruno et al., 2009) displayed a
regenerative effect on AKI induced by IRI in SCID mice. These
EVs improve kidney function and reduce the ischemic injury
through the activation of TEC proliferation. Moreover, their
effect was mediated by the miRNA cargo, including a group of
miRNAs whose predicted target genes are involved in various
biological processes, such as cell communication, nucleic acid
metabolism, regulation of cell growth, gene expression, and
transport. These miRNAs may influence the pro-regenerative
process triggered by Gl-MSC-EVs (Ranghino et al., 2017). This
work confirms previous findings that EVs from kidney-derived
MSC are involved in the recovery from AKI following IRI by
promoting the proliferation of peri-tubular capillary ECs and
decreasing peritubular microvascular rarefaction, possibly by
acting as carriers of pro-angiogenic signals (Choi et al., 2014).
In addition, several works demonstrated that the therapeutic
effect of EVs derived fromMSC (MSC-EVs) (Herrera et al., 2007;
Bruno et al., 2012; Zhang et al., 2016) was mainly due to the
transfer of their miRNA content (Collino et al., 2015) in AKI and
other renal injuries. Moreover, EVs derived from other stem cells,
such as human liver stem cells (HLSCs), showed to be effective in
AKI recovery in vivo (Herrera Sanchez et al., 2014).

Fibrosis
Interestingly, erythropoietin (EPO) showed to protect renal
tubular basement membrane through EVs in a mouse model
of renal tubule-interstitial fibrosis induced by unilateral ureteral
obstruction. This molecule fostered bone marrow cells to release
EV-containing miR-144, which was able to inhibit tPA/MMP9-
mediated proteolytic network and MMP9 into the mouse kidney
(Zhou et al., 2016). Moreover, MSC-EVs have been reported to
relieve renal fibrosis (Gatti et al., 2011; Du et al., 2013) and EPO
can enhance their effect in protecting the kidney from fibrosis-
related damage. Indeed, MSC-EVs incubated with EPO showed
a greater benefit in unilateral ureteral obstruction in vivo and in
vitro. The EPO treatment increased miRNA content of EVs in
about 70% of cases, probably contributing to an enhanced renal
protection from injury (Wang et al., 2015).

Diabetes
Diabetes is the main driver of CKD in the western world
(Ritz and Orth, 1999), and almost 40% of diabetic patients
develop diabetic nephropathy (DN), one of the most severe
complications in diabetes (Jiang et al., 2016). Early stage DN
pathological features include podocyte damage/loss (Forbes and
Cooper, 2013), and recent findings suggest that EVs derived
from conditioned medium of urine-stem cells may prevent
renal injury in diabetes by promoting cell survival and vascular
regeneration and by preventing apoptosis of podocytes (Jiang
et al., 2016). Indeed, Jiang et al. evaluated the effects of weekly
tail intravenous injection of these EVs on kidney injury and

angiogenesis in a streptozotocin-induced Sprague–Dawley rat
model. They found that EVs reduce the volume of urine and
microalbuminuria and avoid apoptosis of podocytes and TECs.
Moreover, EVs suppressed the overexpression of caspase-3, and
increased proliferation of glomerular endothelial cells. Moreover,
in vitro analysis revealed that EVs could reduce podocyte
apoptosis induced by high glucose. The authors suggested that
TGF-β1, angiogenin, and bone morphogenetic protein-7 growth
factors carried by EVs may be instrumental of their beneficial
effects (Jiang et al., 2016).

DN is also characterized by mesangial cell hypertrophy
(Forbes and Cooper, 2013) and both MSC- and HLSC-
derived EVs demonstrated to preserve mesangial cells from
hyperglycemia-induced collagen production/hyperglycemic
damage. This occurs via the horizontal transfer of functional
miR-222, resulting in STAT5 down-regulation, and a decrease in
miR-21 content, TGFβ expression and matrix protein synthesis
(Gallo et al., 2016).

Overall these studies underline the beneficial and protective
action of EVs derived from progenitor and stem cells in renal
pathological processes, by modulating fibrosis, tubular and
glomerular damage, and angiogenesis. Hence, these findings
lay the groundwork for therapeutic applications of EVs in
nephrology either by elucidating important pathways of kidney
recovery or through the evidence of cell-derived EV treatment.

EVS AS RENAL DISEASE BIOMARKERS

EVs secreted by renal and urologic tract cells convey in urine,
bringing important information about the pathophysiological
state of the genitourinary system (Musante et al., 2012; Raimondo
et al., 2013). Importantly, uEVs can be easily and non-invasively
isolated from patients providing a useful starting material for
multiple downstream analysis for biomarkers discovery. Several
protocols exist for EV isolation (Royo et al., 2016a), including
ultracentrifugation, filtration, immune-affinity and microfluidic-
based methods, size exclusion chromatography and precipitation
(Zhou et al., 2006a; Gámez-Valero et al., 2015; Deregibus et al.,
2016). These different methodsmay vary in purity of the resulting
EVs and in the complexity of the protocol, and therefore in their
possible clinical application. To avoid the analysis of urinary
contaminants, such as shed cells or unbound proteins, some
technical precautions are needed including centrifugations or
filtration steps, addition of protease inhibitors, and pH control
(Zhou et al., 2006a; Zhao et al., 2017). The advantage of
EVs as biomarker is the possibility to obtain different sets of
information. Indeed, uEV cargo can be analyzed either for its
protein content using liquid chromatography, mass spectrometry
and enzyme linked immunosorbent assays (ELISA), or formRNA
and miRNA expression through qRT-PCR based methods (van
Balkom et al., 2011; Wang et al., 2017). The selected EV
analysis is advantageous in respect to the general protein or
mRNA investigation in biofluids because it can improve the
sensitivity and precision of biomarkers detection. For instance,
Skog et al. (2008) identified the tumor EV-carried mRNA of a
specific variant of the VEGF-receptor (VEGFvIII), able to predict
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the therapy response in glioblastoma. Furthemore, EV protein
content accounts for about 3% of the total proteins in normal
urine (Raimondo et al., 2013; Nawaz et al., 2014), whereby their
proteome could better reflect the cellular processes associated
with the pathogenesis of genitourinary system as compared with
the native urine (Raimondo et al., 2013).

For these reasons, urine represents an ideal fluid for
downstream analysis. The study of uEVs can also improve the
understanding of the biological mechanisms that occur in cancer
or other pathologies and be potentially used for therapies.

Cancer
In recent years, EVs have gained considerable attention not
only as mediators of cancer intercellular signaling but also as
potential sources of biomarkers to monitor cancer progression
by a non-invasive procedure (Nawaz et al., 2014; Becker et al.,
2016). In fact, tumors are characterized by an increase secretion
of EVs (De Palma et al., 2016a) that contain a tumor molecular
signature (Fais et al., 2016) and flow in biofluids, such as blood
and urine. In blood, the amount of serum-EVs, for example,
was shown to correlate with a poor prognosis in cancer patients
(Mitchell et al., 2008) and their level of vesicular Glypican-1
can provide diagnostic information in early pancreatic cancer
(Welton et al., 2016). Similarly, uEVsmay help to timely diagnose
and monitor genitourinary malignancies (Bryzgunova et al.,
2016). Here we will describe the latest findings regarding the
use of EVs as biomarkers in genitourinary malignancies, which
classically include prostate, kidney, and bladder cancer (Nawaz
et al., 2014). A list of candidate uEV-specific cancer markers is
summarized in Table 1.

Prostate Cancer
PCa is the most frequent cancer in men (Crawford et al.,
2017). Considerable evidences suggest the utility of uEVs for
PCa diagnosis, highlighting how their analysis could represent
a non-invasive method to evaluate and monitor PCa alterations.
Indeed, EVs released by prostate cells can be detected in the urine
after their secretion via prostate ejaculatory ducts (Bryzgunova
et al., 2016). Several studies investigated the proteomic cargo
of prostate-derived uEVs (Pisitkun et al., 2004; Zhou et al.,
2006a; Lu et al., 2009; Bijnsdorp et al., 2013). Increased
levels of β1-integrin and α1-integrin were detected in uEVs
of patients with metastatic PCa, compared with patients with
non-metastatic disease or benign prostatic hyperplasia (BPH)
(Bijnsdorp et al., 2013). Prostate stem cell antigen and prostate-
specific membrane antigen have also been identified in uEVs
of patients with PCa (Nyalwidhe et al., 2013; Principe et al.,
2013; Drake and Kislinger, 2014). Mitchell et al. (2009) found
prostate markers PSA and PSMA in EVs from patients’ samples
compared to EVs from healthy controls. Welton et al. (2016)
demonstrated that it is possible to identify vesicular proteins
of blood or urine origin indicative of treatment failure and
progressive disease in PCa and discriminate newly diagnosed
from progressive PCa. By proteomic analysis techniques, they
found proteins with known associations with PCa, including
insulin-like growth factor binding proteins and kininogen-1,
and identified novel biomarkers elevated during progression,

such as Afamin, cardiotrophin-1, legumain, and others (Welton
et al., 2016). Moreover, Nilsson and colleagues showed that
prostate-related genes could be successfully detected in uEVs
and some transcriptomic changes have also been identified,
including those affecting the expression of TMPRSS2 and PCA-3
(Nilsson et al., 2009; Dijkstra et al., 2014). Interestingly, a pilot
study of Motamedinia et al. (2016) used uEV marker analysis
to differentiate patients with biopsy proven PCa from those
with negative prostate biopsies with very good accuracy (81%).
In particular, the presence in uEVs of prostate specific fusion
mutation (TMPRSS2:ERG) between the androgen driven gene
transmembrane protease serine 2 (TMPRSS2) and the oncogene
Ets Related Gene (ERG) correlated with the gene expression
in radical prostatectomy tissue (Motamedinia et al., 2016).
Notably, a clinically validated diagnostic test for PCa, based on
liquid biopsy, is now available and it allows to discriminate
low grade and high grade PCa by measuring uEV expression
levels of PCA-3 and ERG (McKiernan et al., 2016). Royo et al.
(2016b) showed that uEVs from PCa exhibit different physical
and biological properties compared to BPH. The transcriptome
analysis revealed decreased abundance of Cadherin 3 type 1
(CDH3) in uEV from PCa patients, reflecting the expression of
this cadherin in the prostate tumor and suggesting its tumor
suppressive activities in PCa (Royo et al., 2016b).

Other studies analyzed miRNA carried by uEVs. The miRNA
profiling in EV derived from PC-3 cancer cells and RWPE-
1 normal prostate epithelial cells revealed a panel of 80
miRNAs specifically carried by PCa derived EVs (Hessvik et al.,
2012). Corcoran et al. (2014) defined a panel of miRNAs
as potentially metastatic biomarker of PCa. According with
the work previously described (Hessvik et al., 2012), miR-
34a was decreased in PCa and the authors suggested it may
be used to discriminate between PCa and BPH. In addition,
BCL-2, a well-known anti-apoptotic gene, has been described
as target for miR-34a (Corcoran et al., 2014). Finally, PCa-
derived EVs showed to play a physiopathological role in cancer
progression and development. Babiker et al. (2006) observed
that PCa-derived EVs carry protein kinase A that inactivate
the complement cascade, thus protecting cancer cells from
complement-mediated cell lysis, and CD59 that protect PCa
cells from destruction in the microenvironment (Babiker et al.,
2005).

Renal Carcinoma
Renal cell carcinoma (RCC) represents more than 2% of tumors
in humans worldwide and renal biopsy is still the gold standard
diagnostic procedure, though it is invasive and not suitable
for all patients (De Palma et al., 2016b). To date, several
studies describe uEVs as promising potential biomarkers. uEVs
from RCC patients showed a differential lipid composition,
compared to those of healthy control subjects (Del Boccio et al.,
2012), and contained RCC-specific protein substantially and
reproducibly different from control subjects (Raimondo et al.,
2013). Specifically, RCC-uEVs were enriched in MMP-9 and
Dickkopf related protein 4, proteins correlated with disease
progression and metastatic potential. Moreover, in these vesicles,
others proteins were reduced, including AQP1, EMMPRIN,
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TABLE 1 | Candidate uEV biomarkers for urologic malignities.

Pathology Regulation Marker Source Method References

PROSTATE CANCER

↑ α1-antitrypsin, histone H2B1K Patients MALDI-TOF spectrometry Lin et al., 2016

↑ α1-integrin, β1-integrin Cell lines and patients with

metastatic cancer

LC-MS/MS and Western blot Bijnsdorp et al., 2013

↑ PSA, PSMA Patients Western blot Mitchell et al., 2009

↑ Kininogen-1, afamin, cardiotrophin-1,

legumain, FGF19, IGFBP2, IGFBP5,

CCL16, CD226

Patients SEC and SOMAscanTM assay Welton et al., 2016

↓ MICA, vWF, A disintegrin, ADAMTS1

↑ TMPRSS2:ERG, PCA-3 Patients Nested PCR Nilsson et al., 2009

qRT-PCR Dijkstra et al., 2014

↑ BIRC5, ERG, PCA-3,

TMPRSS2:ERG, TMPRSS2

Patients qRT-PCR Motamedinia et al., 2016

↓ CDH3 Patients qRT-PCR Royo et al., 2016b

↓ miR-34a Cell lines and patient gene

expression datasets

qRT-PCR and Clinical Datasets Corcoran et al., 2014

RENAL CARCINOMA

↑ MMP-9, CP, PODXL, DKK4, CAIX Patients LC-MS/MS and Western blot Raimondo et al., 2013

↓ AQP1, EMMPRIN, CD10, dipeptidase

1, syntenin-1

↓ GSTA1, CEBPA, PCBD1 Patients with ccRCC Oligonucleotide arrays and

qRT-PCR

De Palma et al., 2016b

BLADDER CANCER

↑ α1-antitrypsin, histone H2B1K Patients MALDI-TOF spectrometry Lin et al., 2016

↑ Resistin, retinoic acid-induced protein

3, Gs α subunit, EPS8L1, EPS8L2,

GTPase NRas, Mucin 4, EDH4

Patients LC-MS/MS Smalley et al., 2008

↓ Galectin-3-binding protein

↑ TACSTD2 Patients LC-MS/MS and ELISA Chen et al., 2012

↑ LASS2, GALNT1 Patients Oligonucleotide array and PCR Perez et al., 2014

↓ ARHGEF39, FOXO3

Marker: PSA, prostate-specific antigen; PSMA, prostate specific membrane antigen; FGF19, fibroblast growth factor 19; IGFBP2 and IGFBP5, insulin-like growth factor-binding proteins

2 and 5; CCL16, C-Cmotif chemokine-16; MICA, MHC class I polypeptide-related sequence-A; vWF, vonWillebrand factor; ADAMTS1, metalloproteinase with thrombospondin motifs 1;

TMPRSS2:ERG, fusion mutation between the androgen driven gene transmembrane protease serine 2 (TMPRSS2) and the oncogene ETS-related gene (ERG); PCA-3, prostate cancer

antigen 3; BIRC5, survivin; ERG, ETS-related gene; TMPRSS2, transmembrane protease serine 2; CDH3, Cadherin 3 type 1; MMP-9, matrix metalloproteinase 9; CP, ceruloplasmin;

PODXL, podocalyxin; DKK4, dickkopf related protein 4; CAIX, carbonic anhydrase IX; AQP1, aquaporin-1; EMMPRIN, extracellular matrix metalloproteinase inducer; CD10, neprilysin;

GSTA1, glutathione S-Transferase Alpha 1; CEBPA, CCAAT/enhancer-binding protein alpha; PCBD1, pterin-4 alpha-carbinolamine dehydratase 1; EPS8L1 and EPS8L2, epidermal

growth factor receptor kinase substrate 8 like protein 1 and 2; EDH4, EH domain containing protein 4; TACSTD2, tumor-associated calcium-signal transducer 2; LASS2, ceramide

synthase 2; GALNT1, polypeptide N-acetylgalactosaminyltransferase 1; ARHGEF39, Rho guanine nucleotide exchange factor 39; FOXO3, forkhead box O3.

Source: ccRCC, clear cell renal cell carcinoma.

Method: LC−MS/MS, liquid chromatography-tandem mass spectrometry; SEC, size-exclusion chromatography; qRT-PCR, quantitative real-time PCR.

Neprilysin, Dipeptidase 1, and Syntenin-1. The transcriptome
content of uEVs from RCC can also be useful to diagnostics and
classification. Three transcripts (GSTA1, CEBPA, and PCBD1)
are reduced in EVs derived from clear cell renal cell carcinoma
patients with respect to healthy subjects and patients with other
types of RCC. These alterations are specific and disappear 1
month after partial or radical nephrectomy (De Palma et al.,
2016b). However, the information contained in uEVs can
represent not only potential biomarkers, but also therapeutic
targets. Interestingly, it was shown that a long non-coding RNA
(lncRNA) activated in RCC is transferred by EVs and confers
sunitinib resistance to sensitive cells by competitively binding
miR-34/miR-449, thus promoting AXL and MET expression in
RCC cells (Qu et al., 2016).

Bladder Cancer
Bladder cancer is a frequent malignancy in developed countries,
second only to PCa among genitourinary tract malignancies
(Nawaz et al., 2014). Several bladder cancer-related-proteins were
found in patients’ uEVs and could be used as diagnostic or
prognostic markers. Components of the epidermal growth factor
(EGF) pathway, the α subunit of the G protein Gs, retinoic
acid protein 3, and resistin are over-represented in uEVs of
patients and potentially involved in tumor progression (Smalley
et al., 2008). Tumor-associated calcium-signal transducer 2
(TACSTD2) is highly expressed in uEVs of patients with bladder
cancer and was proposed as a biomarker (Chen et al., 2012). The
protein EGF-like repeat and discoidin I like domain-containing
protein 3 (EDIL 3), an integrin ligand implicated in angiogenesis,
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is delivered by bladder cancer-derived EVs and might promote
cancer progression (Beckham et al., 2014). Moreover, uEVs from
bladder-cancer patients showed to carry transcripts for LASS2
and GALNT1, involved in cancer progression and metastasis
(Perez et al., 2014), and miR-1224-3p, miR-15b, and miR-135b,
which correlate with a positive bladder cancer diagnosis, as well
as the ratio miR-126:miR-152 (Huang et al., 2013). Finally, a
recent study has shown that uEVs from patients with high-grade
bladder cancer express two proteins (α1-antitrypsin and histone
H2B1K) whose levels are significantly correlated with disease
grades. The proteins are involved in tumor development and are
potential uEV biomarkers predicting the risks of recurrence and
progression (Lin et al., 2016). Another study observed that EVs
from cultured bladder cancer cells incubated with tumor cells
activate signaling pathways leading to inhibition of apoptosis,
suggesting they may play a role in tumor progression (Yang et al.,
2013).

Non-cancer Diseases
uEVs may offer easily accessible markers of kidney injury that
reflect tubular and glomerular damage (Ranghino et al., 2015).
The analysis of uEVs content (including mRNAs, proteins, and
miRNAs) may provide a more precise estimation of the extent
of glomerular/tubular damage and possibly also discriminate the
type of injury (Miranda et al., 2010; Turco et al., 2016; Ichii et al.,
2017). To date, several studies on uEVs have described potential
biomarkers associated to kidney injury and Table 2 summarizes
the most relevant findings that will be discussed here.

Renal Transplantation
A recent study by Dimuccio et al. (2014) showed that uEVs
expressing the progenitor marker CD133 (CD133+ uEVs) and
typical glomerular and proximal tubular markers may represent
an indicator of renal functionality. Indeed, CD133+ uEVs are
present in the urine of normal subjects, but not of patients
with end stage renal disease, possibly reflecting the activity of
CD133+ cells correlated to renal repair after injury (Dimuccio
et al., 2014). uEVs may also be useful for the evaluation of the
allograft damage after renal transplant, since uEVs of patients
with delayed graft function are enriched of neutrophil gelatinase-
associated lipocalin (NGAL) protein, an emerging biomarker of
AKI and delayed graft function (Alvarez et al., 2013). In contrast,
the mRNA level of NGAL and other proteins associated to kidney
injury (kidney injury molecule-1, cystatin C, and interleukin-
18) does not increase after transplant (Peake et al., 2014),
highlighting a variability in mRNA packaging in uEVs and the
need for further studies. Anyway, in transplanted patients, uEVs
may represent a potential source for markers of drug toxicity.
For example, a significant increase of NKCC2 and Na-Cl co-
transporter was found in uEVs from cyclosporine-treated kidney
transplanted patients compared with the controls (Esteva-Font
et al., 2014).

Tubular Damage
To date, some uEV potential biomarkers for tubular damage
in AKI have been identified, including activating transcriptional
factor 3 (AFT3) (Zhou et al., 2008), fetuin-A (Zhou et al., 2006b),

and AQ1 (Sonoda et al., 2009). Zhou et al. (2008) demonstrated
that there is a significant increase of AFT3 protein level in uEVs,
but not in whole urine, of mice with AKI, highlighting the
diagnostic potential of uEVs. This marker remains elevated for
24–48 h and increases before the increase in serum creatinine.
Importantly these results were subsequently confirmed in four
patients with AKI (Zhou et al., 2008). According to these data,
Chen et al. (2014) found a 60-fold increased level of AFT3
mRNA inAKI patients compared with normal controls. Recently,
Panich and colleagues (Panich et al., 2017) identified ATF3
protein expression in uEVs as feasible biomarker for sepsis-
induced AKI in patients. Another uEV biomarker of AKI is
fetuin-A, which increases 52.5-fold after damage and precedes
the increase of serum creatinine in both animal models and
patients (Zhou et al., 2006b). In contrast, the levels of AQ1
rapidly decreased both in a rat model of ischemia/reperfusion
injury and in patients immediately after kidney transplantation.
The level of uEV-AQ1 seems to positively correlate with its
level of apical membrane expression in renal tubules (Sonoda
et al., 2009; Abdeen et al., 2016). Similarly, the uEV-content of
another member of aquaporin family, AQP2, has proven useful
for detection of gentamicin-induced renal injury (Abdeen et al.,
2014) and is a potential strong candidate for water balance
disorders (Oshikawa et al., 2016). Finally, increased levels of
Na+/H+ exchanger type 3 in uEVs-derived from patients have
been reported in acute tubular necrosis, but not in prerenal
azotemia and other causes of acute renal failure, suggesting its
diagnostic potential in AKI of acute tubular necrosis origin (du
Cheyron et al., 2003).

Glomerular Diseases
The increase or reduction of a podocyte marker may reflect,
respectively, a glomerular injury or the podocyte loss in chronic
renal damage. Several works agree to associate the podocyte
injury to alterations of Wilms’ tumor 1 (WT-1) in animal
models as well as in patients affected by chronic glomerular
pathologies (Kalani et al., 2013; Zhou et al., 2013). WT-1 levels
are increased in uEVs from patients with diabetes mellitus
type 1 (DM1) with proteinuria compared with patients without
proteinuria and high levels negatively correlate with the renal
function (Kalani et al., 2013). The reduction of WT-1 or other
markers of podocyte damage in patients’ uEVs can show a
remission from the disease or a response to therapy (Zhou et al.,
2013). Recently, it has been reported that uEVs derived from
podocyte are higher in patients with DM1, independently from
other biomarkers (albuminuria, nephrin) and they may help to
detect glomerular injury in uncomplicated DM1 (Lytvyn et al.,
2017). Moreover, EVs released by the tip of glomerular podocyte
microvilli and positive for the podocyte marker podocalyxin
were increased in patients with nephritic syndrome (Hara et al.,
2010).

uEVs obtained from patients with CKD, were found to
express lower levels of CD2AP mRNA, another podocyte marker
possibly correlated with renal dysfunction, proteinuria levels,
and the stage of renal fibrosis (Lv et al., 2014). Another study
reported an increase of osteoprotegerin, a decoy receptor of
the tumor necrosis factor superfamily pro-apoptotic cytokine,
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TABLE 2 | Summary of candidate uEV biomarkers for renal non-tumoral pathologies.

Disease Regulation Marker Human/animal model References

Renal transplantation ↑ NGAL Patients with DGF after kidney transplantation Alvarez et al., 2013

Tubular damage ↑ AFT3 Cisplatin-induced AKI and I/R in mice, AKI patients Zhou et al., 2008

Sepsis-induced AKI in mice, patients Panich et al., 2017

AKI patients Chen et al., 2014

↑ fetuin-A Cisplatin-induced AKI in rats, ICU patients with AKI Zhou et al., 2006b

↓ AQP1 I/R in rats, transplant patients Sonoda et al., 2009

↑ NHE3 ARF patients du Cheyron et al., 2003

Glomerular disease ↑ WT-1 DM1 patients Kalani et al., 2013

CG in mice, FSGS patients Zhou et al., 2013

↑ OPG CKD patients Benito-Martin et al., 2013

↓ miR-155, miR-424

↓ aminopeptidase N, vasorin precursor IgAN vs. TBMN patients Moon et al., 2011

↑ α-1-antitrypsin, CP

↑ miR-26a LN patients Ichii et al., 2014

↑ ADAM10 LN and IgAN patients Gutwein et al., 2010

Kidney fibrosis ↓ miR-29c CKD patients Lv et al., 2013

LN patients Sole et al., 2015

↓ CD2AP CKD patients Lv et al., 2014

↑ E-cadherin, N-cadherin Patients with PUVs Trnka et al., 2012

↓ TGF-β1, L1CAM

↓ miR-26a KD in dogs Ichii et al., 2017

↑ miR-21a

↓ miR-181a CKD patients Khurana et al., 2017

Diabetic disease ↑ miR-320c Type 2 DN patients Delić et al., 2016

↑ miR-15b, miR-34a, miR-636, miR-192 DM2 patients Eissa et al., 2016

Jia et al., 2016

↑ miR-451-5p, miR-16 Streptozotocin-induced DM1 in rats Mohan et al., 2016

↑ miR-130a, miR-145 DM1 patients with DN Barutta et al., 2013

Other diseases ↑ TMEM2 ADPKD patients Hogan et al., 2015

S100-A8, annexin A1 Pocsfalvi et al., 2015

↓ NKCC2 Patients with Bartter syndrome type I Gonzales et al., 2009

↓ NCC Gittelman’s syndrome patients Joo et al., 2007

Marker: NGAL, neutrophil gelatinase- associated lipocalin; AFT3, activating transcriptional factor 3; AQP1, aquaporin-1; NHE3, Na/H exchanger isoform 3; WT-1, Wilms’ tumor 1;

OPG, osteoprotegerin; CP, ceruloplasmin; L1CAM, L1 cell adhesion molecule; NKCC2, sodium-potassium-chloride co-transporter protein; TMEM2, transmembrane protein 2; NCC,

thiazide-sensitive sodium-chloride (Na-Cl) cotransporter.

Model: DGF, delayed graft function; AKI, acute kidney injury; I/R, ischaemia/reperfusion injury; ICU, Intensive Care Unit, ARF, acute renal failure; FSGS, focal segmental glomerulosclerosis;

CG, collapsing glomerulopathy; CKD, chronic kidney disease; DM1, type 1 diabetic patients; DM2, type 2 diabetic patients; DN, diabetic nephropathy; IgAN, IgA nephropathy; TBMN,

thin basement membrane nephropathy; PUVs, posterior urethral valves; KD, kidney disease; LN, lupus nephritis; ADPKD, autosomal dominant polycystic kidney disease.

marker of inflammation, in CKD patients (Benito-Martin et al.,
2013). Alteration of miRNA cargo were also reported in
DM1 patients with or without diabetic nephropathy. uEVs
derived from microalbuminuric patients were enriched in miR-
130a and miR-145, a glomerular marker of mesangial cells
induced by TGF-β1. uEVs were characterized by a decrease
content of miR-155 and miR-424, which are expressed on
podocytes and negatively modulate the signaling of angiotensin
II, TGF-β1, and VEGF (Barutta et al., 2013). In adult and
pediatric patients with isolated microscopic hematuria, uEVs
were shown to differentiate between early IgA nephropathy and

thin basement membrane nephropathy. uEVs differently express
four biomarkers: α-1-antitrypsin and ceruloplasmin mark the
IgA group, whilst aminopeptidase N and vasorin precursor are
enriched in the thin basement membrane of the nephropathy
group (Moon et al., 2011).

Several miRNAs were also found to be differentially expressed
in lupus nephritis and IgA nephropathy patients in respect to
controls. For instance, the expression of miR-26a is decreased
in glomeruli of nephropatic patients and conversely increased in
their uEVs, suggesting its importance as putative biomarker of
glomerular injury (Ichii et al., 2014). Similarly, ADAM10, which
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is normally expressed in differentiated podocytes, can be found in
uEVs of lupus nephritis and IgA nephropathic patients, but not
in healthy donor uEVs (Gutwein et al., 2010).

Kidney Fibrosis
In patients with CKD, renal fibrosis was shown to directly
influence the miRNA content of uEVs. Lv et al. (2013)
demonstrated a significantly reduction in uEVs of miR-29 and
miR-200 family of patients with CKD compared with controls
and its correlation with renal function and the degree of tubular-
interstitial fibrosis. In another work, they showed a decrease in
CD2AP mRNA levels and an increase of synaptodin in uEVs
from patients (Lv et al., 2014).

In CKD, regardless the presence or the extent of renal
damage, uEVs may help to evaluate the risk of developing renal
dysfunction. Trnka et al. (2012) showed their potential use as
markers of obstructive nephropathy, a leading cause of CKD in
children. uEVs collected by patients with posterior urethral valve
contained high levels of E-cadherin and N-cadherin, and reduced
levels of TGF-β1 and L1 cell adhesion molecule compared with
the controls. Remarkably, the level of the pro-fibrotic factor
TGF- β1 in uEVs correlated with the glomerular filtration rate.
In a recent study in dogs, also the miRNA content of uEVs
was shown to reflect kidney disease status. In this regard, Ichii
et al. (2017) found some miRNAs associated with altered renal
functions and kidney tissue injuries, with miR-26a and miR-
21a that would be strong candidates indicating glomerulus and
tubule-interstitium damages, respectively. Moreover, miR-181a
appeared to be a potential biomarker in CKD patients, being
significantly decreased by about 200-fold compared to healthy
controls (Khurana et al., 2017). Changes in the levels of uEV-
derived miRNAs have been correlated with lupus nephritis
(Perez-Hernandez et al., 2015) and its progression to fibrosis
(Sole et al., 2015).

Diabetic Kidney Disease
miRNA alteration in uEVs also seemed to be associated to
an early renal impairment in patients with type II diabetes.
The altered expression of miR-320c may modulate the TGF-
β-signaling pathway via targeting thrombospondin 1 (TSP-1)
and represents a putative marker for disease progression (Delić
et al., 2016). miR-15b, miR-34a, and miR-636 were shown to be
significantly up-regulated in uEVs derived from type 2 diabetes
patients. The levels of these miRNAs are positively correlated
with physiological parameters (serum creatinine, urinary protein
creatinine ratio) and probably contribute in the pathogenesis of
kidney disease (Eissa et al., 2016). In type 1 diabetes, instead,
was reported an increase in miR-451-5p and miR-16 in uEVs
collected from a rat model induced by intraperitoneal injection of
streptozotocin. Interestingly, in kidney-tissues, the expression of
both these miRNAs appeared protective against diabetes-induced
kidney fibrosis (Mohan et al., 2016). Analysis of the expression
of 226 miRNAs in uEVs from patients with type 1 diabetes with
and without DN showed that 22 miRNAs were differentially
expressed and miR-145 and miR-130a were enriched in patients
with microalbuminuria. miR-145 was increased also in uEVs and
within the glomeruli of animal model of streptozocin-induced

DN (Barutta et al., 2013). Recently, miR-192 has been found to
be differentially expressed in patients with normo- and micro-
albuminuria, allowing the detection of an early stage of DN
(Jia et al., 2016). In addition to RNAs and miRNAs, uEVs may
carry mitochondrial DNA. The mitochondrial DNA decreased
in DN patients (Sharma et al., 2013), indicating the alteration
of bioenergy supply in kidney cells, may underline the role of
bioenergetics metabolism in renal damage progression (Higgins
and Coughlan, 2014).

Other Pathologies
Polycystic kidney disease (PKD) is an inherited kidney disease
very common worldwide. The leading causes are mutations
in genes encoding for proteins essential to the functioning of
primary cilia, including polycystin1 (PC1), polycystin 2 (PC2),
and fibrocystin (Yoder et al., 2002). These and others proteins,
including Cystin, ADP ribosylation factor–like 6, plakins and
complement, were shown to be expressed in uEV of patients
(Pisitkun et al., 2004; Gonzales et al., 2009; Salih et al., 2014).
Moreover, uEVs of patients with PKD and healthy controls
showed to have different lectin profiles (Gerlach et al., 2013).
uEVs of patients with PKD displayed an abnormal expression
of cystin and ADP ribosylation factor-like 6 (Hogan et al.,
2009). Recently, the same group (Hogan et al., 2015) observed
a 2-fold increase of transmembrane protein 2 (TMEM2) in
urinary vesicles from patients with PKD1 compared with
controls. Interestingly, PC1:TMEM2 and PC2:TMEM2 ratio
showed to be inversely correlated with kidney volume, providing
a non-invasive and non-imaging tool for the monitoring of
kidney volume during the progression of the disease. Moreover,
the function of TECs during the progression of autosomal
dominant polycystic kidney disease (ADPKD)may be monitored
through uEVs. A recent study has reported that about a half
out of the total proteins identified in uEVs are differentially
expressed among patients and controls. Some proteins, such
as cytoskeleton-regulating and Ca2+-binding proteins, correlate
with the pathogenic state of TECs in ADPKD. Notably, S100-
A8 and annexin A1 (two Ca2+-binding proteins) decrease after
treatment with a vasopressin receptor 2 antagonist (Pocsfalvi
et al., 2015).

Moreover, solute transporters, such as NaKCl and NaCl
cotransporters, are normally expressed in uEVs and were shown
to be absent in uEVs from patients with Bartter syndrome type
1 and Gittelman’s syndrome, respectively. This indicates that
uEVs analysis may be useful in the diagnosis of these genetic
disorders (Joo et al., 2007; Gonzales et al., 2009). Finally, it was
reported that the content of uEVs can change in presence of
kidney infections, for example in Leptospira-infected rats, uEVs
showed a differential expression of 25 proteins that can be used
to discriminate infected and healthy controls (RamachandraRao
et al., 2015).

CONCLUSION

Taken together, the reports summarized in this review point
out the increasingly recognized relevance of EVs in renal
physiopathology. Over the past years, renal EVs were shown to be
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involved in cell communication among the nephron and growing
evidences suggest their key role in physiological renal processes.
In parallel, new findings are supporting their importance in
renal regeneration and diseases of the genitourinary system,
including cancer, but also inflammatory, genetic diseases,
glomerular and tubular damage, and many others. Based on
these observations, EVs seem to fulfill several complex functions
in kidney pathophysiology and reflect the kidney state of
health; though, there is still much to discover. The analysis
of EVs collected in urines, carrying disease-specific markers,
can help to comprehend the kidney metabolic and pathological
mechanisms still poorly understood. Importantly, the EVs
conveyed in urine represent a suitable source of biomarkers for
the improved diagnosis, prognosis, and clinical monitoring of
renal diseases. This could allow a rapid and accurate diagnosis
of renal diseases, before a significant damage occurs, without
invasive methods. Finally, a methodological consensus for EV
isolation and definition could solve the discrepancies concerning
EV diagnostic significance currently present in the literature
(Bryzgunova et al., 2016).

FUTURE PERSPECTIVES

To date, current knowledge opens the way for a potential
therapeutic application under different aspects. Firstly, pathology
progression could be prevented by blocking EVs directly involved
in disease pathogenesis. For instance, the mechanism of EV
secretion can be targeted to inhibit cancer progression by
blocking regulatory proteins, such as Rab GTPases, Rab27a, and
Rab27b in tumor cells (Ostrowski et al., 2010). Moreover, as
cancer cells could selectively package and secrete doxorubicin
within EVs resulting in drug resistance (Shedden et al., 2003),
EV blockade could result in an improvement of pharmacological
effects.

A second approach is to use renal EVs exhibiting protective
effect as a targeted therapeutic tool. In particular, Chen et al.
(2014) found that the intra-renal administration of EVs derived
from proximal tubular cells and enriched in ATF3 RNA exhibited
a protective effect in a mouse model of I/R-induced acute
renal injury. This effect could be explained by the inhibition
of the secretion of MCP-1, a potent chemokine involved in
acute inflammatory and immune reactions, by renal epithelial

cells (Chen et al., 2014). In this setting, stem and progenitor
cell-derived EVs could also be of benefit for their regenerative
properties (Bruno et al., 2016).

EVs could also have a beneficial effect in the treatment of
genetic diseases by transferring wild-type molecules to defective
cells. For example, MSC-EVs carrying wild-type cystinosin
(protein and mRNA) showed to reduce the accumulation of
cystine in vitro in proximal tubular cells isolated from cystinosis
patients (Iglesias et al., 2012).

A final possible therapeutic application comprehends the use
of EVs as a drug carrier. Drugs, proteins or RNAs can be
loaded into EVs with several methods, such as electroporation,
coincubation, transfection, and delivered to recipient cells for
cancer and regenerative therapy (Barile and Vassalli, 2017;
Luan et al., 2017). For instance, EVs loaded with a siRNA
against RAD51 by electroporation were showed to induce a
significant reduction of RAD51 transcript in HEK293 and
HCT116 colon cancer cell lines upon incubation (Shtam et al.,
2013). HEK293- and MSC-derived EVs loaded with a siRNA for
PLK-1 could entry into bladder cancer cells in vitro and silence
the specific gene transcription (Greco et al., 2016). Moreover,
MSC-EVs enriched for miR-let7c selectively targeted the fibrotic
kidney in an in vivo model of unilateral ureteral obstruction
and downregulated several pro-fibrotic genes (Wang et al.,
2016).

Altogether, these studies underline the multifaceted
applications of the EVs and support increasing interest for
their full understanding.

AUTHOR CONTRIBUTIONS

All authors listed have made substantial, direct and intellectual
contribution in writing the paper.

FUNDING

This work was supported by Associazione Italiana per la Ricerca
sul Cancro (AIRC IG 2015.16973).

ACKNOWLEDGMENTS

The authors are grateful to Dr. Marta Gai for revision of English.

REFERENCES

Abdeen, A., Sonoda, H., El-Shawarby, R., Takahashi, S., and Ikeda, M.
(2014). Urinary excretion pattern of exosomal aquaporin-2 in rats that
received gentamicin. Am. J. Physiol. Ren. Physiol. 307, F1227–F12237.
doi: 10.1152/ajprenal.00140.2014

Abdeen, A., Sonoda, H., Oshikawa, S., Hoshino, Y., Kondo, H., and Ikeda,
M. (2016). Acetazolamide enhances the release of urinary exosomal
aquaporin-1. Nephrol. Dial. Transplant. 31, 1623–1632. doi: 10.1093/ndt/
gfw033

Abid Hussein, M. N., Nieuwland, R., Hau, C. M., Evers, L. M., Meesters, E. W., and
Sturk, A. (2005). Cell-derived microparticles contain caspase 3 in vitro and in

vivo. J. Thromb. Haemost. 3, 888–896. doi: 10.1111/j.1538-7836.2005.01240.x
Alvarez, M. L., Khosroheidari, M., Ravi, R. K., and DiStefano, J. K. (2012).

Comparison of protein, microRNA, and mRNA yields using different methods

of urinary exosome isolation for the discovery of kidney disease biomarkers.
Kidney Int. 82, 1024–1032. doi: 10.1038/ki.2012.256

Alvarez, S., Suazo, C., Boltansky, A., Ursu, M., Carvajal, D., Innocenti, G., et al.
(2013). Urinary exosomes as a source of kidney dysfunction biomarker in renal
transplantation. Transplant Proc. 45, 3719–3723. doi: 10.1016/j.transproceed.
2013.08.079

Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., et al. (2002).
Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing
microvesicles. J. Exp. Med. 195, 1303–1316 doi: 10.1084/jem.20011624

Angelotti, M. L., Ronconi, E., Ballerini, L., Peired, A., Mazzinghi, B., Sagrinati, C.,
et al. (2012). Characterization of renal progenitors committed toward tubular
lineage and their regenerative potential in renal tubular injury. Stem Cells 30,
1714–1725. doi: 10.1002/stem.1130

Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson,
D. F., et al. (2011). Argonaute2 complexes carry a population of circulating

Frontiers in Molecular Biosciences | www.frontiersin.org 15 June 2017 | Volume 4 | Article 37

https://doi.org/10.1152/ajprenal.00140.2014
https://doi.org/10.1093/ndt/gfw033
https://doi.org/10.1111/j.1538-7836.2005.01240.x
https://doi.org/10.1038/ki.2012.256
https://doi.org/10.1016/j.transproceed.2013.08.079
https://doi.org/10.1084/jem.20011624
https://doi.org/10.1002/stem.1130
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Pomatto et al. Extracellular Vesicles in Renal Pathophysiology

microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci.
U.S.A. 108, 5003–5008. doi: 10.1073/pnas.1019055108

Babiker, A. A., Nilsson, B., Ronquist, G., Carlsson, L., and Ekdahl, K. N.
(2005). Transfer of functional prostasomal CD59 of metastatic prostatic cancer
cell origin protects cells against complement attack. Prostate 62, 105–114
doi: 10.1002/pros.20102

Babiker, A. A., Ronquist, G., Nilsson, B., and Ekdahl, K. N. (2006). Overexpression
of ecto-protein kinases in prostasomes of metastatic cell origin. Prostate 66,
675–686. doi: 10.1186/s12882-016-0415-3

Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., et al.
(2012). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat.
Cell Biol. 14, 677–685. doi: 10.1038/ncb2502

Barile, L., and Vassalli, G. (2017). Exosomes: therapy delivery tools and biomarkers
of diseases. Pharmacol Ther. 174, 63–78. doi: 10.1016/j.pharmthera.2017.02.020

Barutta, F., Tricarico,M., Corbelli, A., Annaratone, L., Pinach, S., Grimaldi, S., et al.
(2013). Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS
ONE 8:e73798. doi: 10.1371/journal.pone.0073798

Basile, D. P., Anderson, M. D., and Sutton, T. A. (2012). Pathophysiology of acute
kidney injury. Compr. Physiol. 2, 1303–1353. doi: 10.1002/cphy.c110041

Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., and Lyden, D.
(2016). Extracellular vesicles in cancer: cell-to-cell mediators of metastasis.
Cancer Cell 30, 836–848. doi: 10.1016/j.ccell.2016.10.009

Beckham, C. J., Olsen, J., Yin, P. N., Wu, C. H., Ting, H. J., Hagen, F. K., et al.
(2014). Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer
progression. J. Urol. 192, 583–592. doi: 10.1016/j.juro.2014.02.035

Benito-Martin, A., Ucero, A. C., Zubiri, I., Posada-Ayala, M., Fernandez-
Fernandez, B., Cannata-Ortiz, P., et al. (2013). Osteoprotegerin in exosome-like
vesicles from human cultured tubular cells and urine. PLoS ONE 8:e72387.
doi: 10.1371/journal.pone.0072387

Bijnsdorp, I. V., Geldof, A. A., Lavaei, M., Piersma, S. R., van Moorselaar, R. J., and
Jimenez, C. R. (2013). Exosomal ITGA3 interferes with non-cancerous prostate
cell functions and is increased in urine exosomes of metastatic prostate cancer
patients. J. Extracell. Vesicles. 2:22097. doi: 10.3402/jev.v2i0.22097

Bitzer, M., Ben-Dov, I. Z., and Thum, T. (2012). Microparticles and microRNAs
of endothelial progenitor cells ameliorate acute kidney injury. Kidney Int. 82,
375–377. doi: 10.1038/ki.2012.152

Bobrie, A., Colombo, M., Raposo, G., and Théry, C. (2011). Exosome secretion:
molecular mechanisms and roles in immune responses. Traffic 12, 1659–1668.
doi: 10.1111/j.1600-0854.2011.01225.x

Bolukbasi, M. F., Mizrak, A., Ozdener, G. B., Madlener, S., Ströbel, T., Erkan,
E. P., et al. (2012). miR-1289 and “Zipcode”-like Sequence Enrich mRNAs in
Microvesicles.Mol. Ther. Nucleic Acids. 1:e10. doi: 10.1038/mtna.2011.2

Borges, F. T., Melo, S. A., Özdemir, B. C., Kato, N., Revuelta, I., Miller, C. A.,
et al. (2013). TGF-b1–containing exosomes from injured epithelial cells activate
fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc.

Nephrol. 24, 385–392. doi: 10.1681/ASN.2012101031
Bruno, S., Bussolati, B., Grange, C., Collino, F., di Cantogno, L. V., Herrera, M. B.,

et al. (2009). Isolation and characterization of resident mesenchymal stem cells
in human glomeruli. Stem Cells Dev. 8, 867–880. doi: 10.1089/scd.2008.0320

Bruno, S., Collino, F., Deregibus, M. C., Grange, C., Tetta, C., and
Camussi, G. (2013). Microvesicles derived from human bone marrow
mesenchymal stem cells inhibit tumor growth. Stem Cells Dev. 22, 758–771.
doi: 10.1089/scd.2012.0304

Bruno, S., Collino, F., Iavello, A., and Camussi, G. (2014). Effects of mesenchymal
stromal cell-derived extracellular vesicles on tumor growth. Front. Immunol.

5:382. doi: 10.3389/fimmu.2014.00382
Bruno, S., Grange, C., Collino, F., Deregibus, M. C., Cantaluppi, V., Biancone,

L., et al. (2012). Microvesicles derived from mesenchymal stem cells enhance
survival in a lethal model of acute kidney injury. PLoS ONE 7:e33115.
doi: 10.1371/journal.pone.0033115

Bruno, S., Porta, S., and Bussolati, B. (2016). Extracellular vesicles in
renal tissue damage and regeneration. Eur. J. Pharmacol. 790, 83–91.
doi: 10.1016/j.ejphar.2016.06.058

Bruschi, M., Santucci, L., Ravera, S., Candiano, G., Bartolucci, M., Calzia,
D., et al. (2016). Human urinary exosome proteome unveils its aerobic
respiratory ability. J. Proteomics. 136, 25–34. doi: 10.1016/j.jprot.2016.
02.001

Bryzgunova, O. E., Zaripov, M. M., Skvortsova, T. E., Lekchnov, E. A.,
Grigor’eva, A. E., Zaporozhchenko, I. A., et al. (2016). Comparative
study of extracellular vesicles from the urine of healthy individuals and
prostate cancer patients. PLoS ONE 11:e0157566. doi: 10.1371/journal.pone.
0157566

Budnik, V., Ruiz-Cañada, C., and Wendler, F. (2016). Extracellular vesicles round
off communication in the nervous system. Nat. Rev. Neurosci.17, 160–172.
doi: 10.1038/nrn.2015.29

Burger, D., Viñas, J. L., Akbari, S., Dehak, H., Knoll, W., Gutsol, A.,
et al. (2015). Human endothelial colony-forming cells protect against
acute kidney injury: role of exosomes. Am. J. Pathol. 185, 2309–2323.
doi: 10.1016/j.ajpath.2015.04.010

Bussolati, B., Bruno, S., Grange, C., Buttiglieri, S., Deregibus, M. C., Cantino, D.,
et al. (2005). Isolation of renal progenitor cells from adult human kidney. Am.

J. Pathol. 166, 545–555. doi: 10.1016/S0002-9440(10)62276-6
Buzas, E. I., György, B., Nagy, G., Falus, A., and Gay, S. (2014). Emerging role

of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 10,
356–364. doi: 10.1038/nrrheum.2014.19

Cantaluppi, V., Gatti, S., Medica, D., Figliolini, F., Bruno, S., Deregibus,
M. C., et al. (2012). Microvesicles derived from endothelial progenitor
cells protect the kidney from ischemia-reperfusion injury by microRNA-
dependent reprogramming of resident renal cells. Kidney Int. 82, 412–427.
doi: 10.1038/ki.2012.105

Cantaluppi, V., Medica, D., Mannari, C., Stiaccini, G., Figliolini, F., Dellepiane,
S., et al. (2015). Endothelial progenitor cell-derived extracellular vesicles
protect from complement-mediated mesangial injury in experimental
anti-Thy1.1 glomerulonephritis. Nephrol. Dial. Transplant. 30, 410–422.
doi: 10.1093/ndt/gfu364

Cha, D. J., Franklin, J. L., Dou, Y., Liu, Q., Higginbotham, J. N., Demory Beckler,
M., et al. (2015). KRAS-dependent sorting of miRNA to exosomes. Elife.
4:e07197. doi: 10.7554/eLife.07197

Chaput, N., and Théry, C. (2011). Exosomes: immune properties and
potential clinical implementations. Semin. Immunopathol. 33, 419–440.
doi: 10.1007/s00281-010-0233-9

Chen, C. L., Lai, Y. F., Tang, P., Chien, K. Y., Yu, J. S., Tsai, C. H., et al.
(2012). Comparative and targeted proteomic analyses of urinary microparticles
from bladder cancer and hernia patients. J. Proteome Res. 11, 5611–5629.
doi: 10.1021/pr3008732

Chen, H. H., Lai, P. F., Lan, Y. F., Cheng, C. F., Zhong, W. B., Lin, Y. F.,
et al. (2014). Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-
1 transcription in renal ischemia-reperfusion. J. Cell. Physiol. 229, 1202–1211.
doi: 10.1002/jcp.24554

Chiabotto, G., Bruno, S., Collino, F., and Camussi, G. (2016).
Mesenchymal stromal cells epithelial transition induced by renal
tubular cells-derived extracellular vesicles. PLoS ONE 11:e0159163.
doi: 10.1371/journal.pone.0159163

Chiaruttini, N., Redondo-Morata, L., Colom, A., Humbert, F., Lenz,M., Scheuring,
S., et al. (2015). Relaxation of loaded ESCRT-III spiral springs drives membrane
deformation. Cell 163, 866–879. doi: 10.1016/j.cell.2015.10.017

Choi, H. Y., Moon, S. J., Ratliff, B. B., Ahn, S. H., Jung, A., Lee, M., et al. (2014).
Microparticles from kidney-derived mesenchymal stem cells act as carriers of
proangiogenic signals and contribute to recovery from acute kidney injury.
PLoS ONE 9:e87853. doi: 10.1371/journal.pone.0087853

Cocucci, E., Racchetti, G., and Meldolesi, J. (2009). Shedding microvesicles:
artefacts no more. Trends Cell Biol. 19, 43–51. doi: 10.1186/s12882-016-0415-3

Collino, F., Bruno, S., Incarnato, D., Dettori, D., Neri, F., Provero, P.,
et al. (2015). AKI recovery induced by mesenchymal stromal cell-derived
extracellular vesicles carrying microRNAs. J. Am. Soc. Nephrol. 26, 2349–2360.
doi: 10.1681/ASN.2014070710

Collino, F., Deregibus, M. C., Bruno, S., Sterpone, L., Aghemo, G., Viltono, L.,
et al. (2010). Microvesicles derived from adult human bone marrow and tissue
specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE
5:e11803. doi: 10.1371/journal.pone.0011803

Corcoran, C., Rani, S., and O’Driscoll, L. (2014). miR-34a is an intracellular and
exosomal predictive biomarker for response to docetaxel with clinical relevance
to prostate cancer progression: extracellular miRNAs as biomarkers for CRPC.
Prostate 74, 1320–1334. doi: 10.1002/pros.22848

Frontiers in Molecular Biosciences | www.frontiersin.org 16 June 2017 | Volume 4 | Article 37

https://doi.org/10.1073/pnas.1019055108
https://doi.org/10.1002/pros.20102
https://doi.org/10.1186/s12882-016-0415-3
https://doi.org/10.1038/ncb2502
https://doi.org/10.1016/j.pharmthera.2017.02.020
https://doi.org/10.1371/journal.pone.0073798
https://doi.org/10.1002/cphy.c110041
https://doi.org/10.1016/j.ccell.2016.10.009
https://doi.org/10.1016/j.juro.2014.02.035
https://doi.org/10.1371/journal.pone.0072387
https://doi.org/10.3402/jev.v2i0.22097
https://doi.org/10.1038/ki.2012.152
https://doi.org/10.1111/j.1600-0854.2011.01225.x
https://doi.org/10.1038/mtna.2011.2
https://doi.org/10.1681/ASN.2012101031
https://doi.org/10.1089/scd.2008.0320
https://doi.org/10.1089/scd.2012.0304
https://doi.org/10.3389/fimmu.2014.00382
https://doi.org/10.1371/journal.pone.0033115
https://doi.org/10.1016/j.ejphar.2016.06.058
https://doi.org/10.1016/j.jprot.2016.02.001
https://doi.org/10.1371/journal.pone.0157566
https://doi.org/10.1038/nrn.2015.29
https://doi.org/10.1016/j.ajpath.2015.04.010
https://doi.org/10.1016/S0002-9440(10)62276-6
https://doi.org/10.1038/nrrheum.2014.19
https://doi.org/10.1038/ki.2012.105
https://doi.org/10.1093/ndt/gfu364
https://doi.org/10.7554/eLife.07197
https://doi.org/10.1007/s00281-010-0233-9
https://doi.org/10.1021/pr3008732
https://doi.org/10.1002/jcp.24554
https://doi.org/10.1371/journal.pone.0159163
https://doi.org/10.1016/j.cell.2015.10.017
https://doi.org/10.1371/journal.pone.0087853
https://doi.org/10.1186/s12882-016-0415-3
https://doi.org/10.1681/ASN.2014070710
https://doi.org/10.1371/journal.pone.0011803
https://doi.org/10.1002/pros.22848
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Pomatto et al. Extracellular Vesicles in Renal Pathophysiology

Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., et al.
(2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in
the liver. Nat. Cell Biol. 17, 816–826. doi: 10.1038/ncb3169

Crawford, E. D., Petrylak, D., and Sartor, O. (2017). Navigating the evolving
therapeutic landscape in advanced prostate cancer. Urol Oncol. 35S, S1–S13.
doi: 10.1016/j.urolonc.2017.01.020

da Silva, M. L., Chagastelles, P. C., and Nardi, N. B. (2006). Mesenchymal stem cells
reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213.
doi: 10.1242/jcs.02932

Dear, J. W. (2014). Urinary exosomes join the fight against infection. J. Am. Soc.

Nephrol. 25, 1889–1891. doi: 10.1681/ASN.2014020204
Del Boccio, P., Raimondo, F., Pieragostino, D., Morosi, L., Cozzi, G., Sacchetta,

P., et al. (2012). A hyphenated microLC-Q-TOF-MS platform for exosomal
lipidomics investigations: application to RCCurinary exosomes. Electrophoresis
33, 689–696. doi: 10.1002/elps.201100375

Del Conde, I., Shrimpton, C. N., Thiagarajan, P., and López, J. A. (2005).
Tissue-factor-bearing microvesicles arise from lipid rafts and fuse
with activated platelets to initiate coagulation. Blood 106, 1604–1611
doi: 10.1182/blood-2004-03-1095
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