
MINI REVIEW
published: 07 July 2017

doi: 10.3389/fmolb.2017.00046

Frontiers in Molecular Biosciences | www.frontiersin.org 1 July 2017 | Volume 4 | Article 46

Edited by:

Sanjeev Kumar Srivastava,

Mitchell Cancer Institute,

United States

Reviewed by:

Lihua Li,

University of Minnesota, United States

Vijay Kumar Prajapati,

Central University of Rajasthan, India

*Correspondence:

Yi Cao

caoy@mail.kiz.ac.cn

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

RNA,

a section of the journal

Frontiers in Molecular Biosciences

Received: 15 April 2017

Accepted: 20 June 2017

Published: 07 July 2017

Citation:

Zhou K, Liu M and Cao Y (2017) New

Insight into microRNA Functions in

Cancer: Oncogene–microRNA–Tumor

Suppressor Gene Network.

Front. Mol. Biosci. 4:46.

doi: 10.3389/fmolb.2017.00046

New Insight into microRNA Functions
in Cancer:
Oncogene–microRNA–Tumor
Suppressor Gene Network
Kecheng Zhou 1, 2 †, Minxia Liu 1, 2 † and Yi Cao 1*

1 Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences,

Kunming, China, 2 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China

Tumorigenesis is a multi-step and complex process with multi-factors involved.

Deregulated oncogenes and tumor suppressor genes (TSGs) induced by genetic

and epigenetic factors are considered as the driving force in the development and

progression of cancer. Besides, microRNAs (miRNAs) act vital roles in tumorigenesis

through regulating some oncogenes and TSGs. Interestingly, miRNAs are also regulated

by oncogenes and TSGs. Considering the entangled regulation, here we propose

a new insight into these regulation relationships in cancer: oncogene–miRNA–TSG

network, which further emphasizes roles of miRNA, as well as highlights the

network regulation among oncogene, miRNA, and TSG during tumorigenesis. The

oncogene–miRNA–TSG network demonstrates that oncogenes and TSGs not only

show functional synergy, but also there are regulatory relationships among oncogenes

and TSGs during tumorigenesis, which could be mediated by miRNAs. In view of the

oncogene–miRNA–TSG network involved in many oncogenes, miRNAs, and TSGs, as

well as occurring in various tumor types, the anomaly of this network may be a common

event in cancers and participates in tumorigenesis. This hypothesis broadens horizons

of molecular mechanisms underlying tumorigenesis, and may provide a new promising

venue for the prediction, diagnosis, and even therapy of cancer.

Keywords: oncogene–microRNA–tumor suppressor gene network, miRNA function, cancer, oncogenes, tumor

suppressor genes

INTRODUCTION

Tumorigenesis is a complicated process, induced by multi-factors, such as environment,
genetics, and epigenetics. Mechanisms underlying tumorigenesis are involved in gene mutation,
chromosome stability, DNA repair, epigenetic changes, and cell growth, differentiation, movement,
apoptosis, autophagy, and so on. Abnormal expressions of oncogene and tumor suppressor gene
(TSG) are regarded as the key driving force promoting the cell malignant transformation. For
instance, loss of p53 (an important TSG) promotes cell proliferation (Drosten et al., 2014), and
disturbs p53-dependent apoptosis (Vazquez et al., 2008); meanwhile, activation of p53 often occurs
in the response of DNA damage (Lakin and Jackson, 1999; Smith and Seo, 2002); activated Myc (an
important oncogene) was involved in dysfunction of several important cell processes, including
growth control (Schmidt, 1999), apoptosis (Hoffman and Liebermann, 2008), and DNA damage
response and repair (Campaner and Amati, 2012; Li et al., 2012).
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MicroRNAs (miRNAs), a post-transcriptional level regulator,
have fundamental activities in cancer development and
progression by modulating oncogene and/or TSG through
specifically targeting messenger RNA (mRNA) 3′-untranslated
region (UTR), either degrading targeted mRNA or blocking
translation. Numerous studies indicated that miRNAs act as
oncogenic miRNA (by targeting TSG) or tumor suppressive
miRNA (by targeting oncogene). Interestingly, some oncogenes
or tumor suppressor genes (TSGs) are capable of activating
miRNA transcription by binding to promoter regions of
miRNA host genes. MiRNA expressions are also regulated by
oncogene and/or TSG in addition to mutations and epigenetic
changes (mainly methylation) of miRNA host genes. Therefore,
miRNAs are involved in the construction of convoluted signal
transduction pathways together with oncogene and TSG. Here,
we propose oncogene–miRNA–TSG network hypothesis, which
highlights miRNAs may function as mediators among oncogenes
as well as TSGs, and as key nodes of the collaborated regulation
network. Furthermore, the hypothesis provides other potential
regulation relationships among oncogenes and TSGs.

FUNCTIONS AND FUNCTIONAL SYNERGY
OF ONCOGENE AND TSG

Many factors are involved in tumorigenesis and promote the
cell malignant transformation, consequences of the characters
or the hallmarks of cancer (Hanahan and Weinberg, 2011).
Functional alterations of oncogene and TSG are one of the most
important mechanisms underlying tumorigenesis (Figure 1A).
Gene mutation can induce functional changes of gene. Many
environmental factors, for instance, chemical carcinogens (e.g.,
benzopyrene from smoking and air pollution; Hecht, 1999),
physical exposure (such as ultraviolet irradiation and radiation
exposure), as well as pathogenic bacteria and viruses (including
human hepatitis B and C virus, and human papilloma virus),
induce somatic mutation (Minamoto et al., 1999). Random
mutations during DNA replication in stem cells are also
an important source of somatic mutations (Tomasetti and
Vogelstein, 2015; Tomasetti et al., 2017). Germline mutations
arise from parent heredity. A sequence of oncogene and TSG
mutations including somatic mutations and germline mutations
could result in the cell malignant transformation (Luzzatto,
2011). Genetic instability and mutations are not only the
hallmark of cancer, but also central to the genesis, development,
and evolution of cancer (Loeb and Loeb, 2000). The gene
mutation leads to either the active function, like EGFR in non-
small cell lung cancer (NSCLC) (Lynch et al., 2004), or the
inactive function, like p53 mutation (Muller and Vousden, 2013).
The gain-of-function of oncogene and loss-of-function of TSG
play key roles during tumorigenesis, and also provide potential
therapeutic targets (Paez et al., 2004; Hong et al., 2014), even
though current situation is still challenging (Yu et al., 2014).

Epigenetic changes, including DNAmethylation (Worm et al.,
2002), histone modifications (Cohen et al., 2011), chromatin
remodeling (Wolffe, 2001), as well as miRNAs (Kala et al., 2013),
etc. also induce dysfunction of oncogene and TSG, which are

observed in kinds of cancers (Grønbæk et al., 2007; Singh et al.,
2016; Wijetunga et al., 2016). Many studies showed that the
collaboration of epigenetic and genetic changes is critically vital
to drive the cancer development and progression (Baylin and
Jones, 2016).

It has been noted that multi-factors and series cell processes
emerge during tumorigenesis. By preforming whole-genome-
sequencing studies of 3281 tumors from 12 cancer types, more
than 600,000 somatic mutations were observed in cancer cells
(Kandoth et al., 2013). Those mutations occur in plenty of
oncogenes and TSGs, further induce either gain-of-function
or loss-of-function. Eventually, altered oncogenes and TSGs
collaboratively drive the cancer development and progression.

MIRNA ROLES IN CANCER

MiRNA is a vital factor contributing to the epigenetic regulation.
After its first discovery (Lee et al., 1993), miRNAs were quickly
shown with a conserved mechanism and broad functional
significance (Bartel, 2004). Moreover, abnormally expressed
miRNAs are useful biomarkers for cancer diagnosis, and even
promising targets for cancer therapy (Hayes et al., 2014).

Origins of dysregulated miRNAs are various in cancer
cells (Figure 1B). MiRNA host gene codes miRNA, and it
can regulate miRNA expression at the transcription level.
Some mutations within miRNA host genes induced incorrect
miRNA expressions at the DNA level. MiRNA dysregulation
induced by gene mutation was observed in cancers and
other diseases (Meola et al., 2009). Interestingly, in colorectal
cancers from Kashmiri population, mutations/SNPs within
miRNA genes or their binding sites in 3′-UTR are infrequent
events, indicating that miRNA gene mutations may not be
as common as mutations of protein coding genes during
tumorigenesis (Maqbool et al., 2014). Epigenetic changes are
also vital factors contributing abnormal miRNA expressions
in cancer. A research revealed that the 17 miRNAs were
up-regulated by simultaneous treatment with the chromatin-
modifying drugs 5-aza-2′-deoxycytidine (5-Aaza-Ccdr; a DNA
methyltransferase inhibitor) and 4-phenylbutyric acid (PBA; a
histone deacetylase inhibitor), demonstrating that epigenetic
mechanisms (DNA demethylation and histone acetylation) could
alter miRNA expressions (Saito et al., 2006). In addition,
5-Aaza-Ccdr and PBA treatments activated the miR-512-5p
expression in gastric cancer cells, which further caused the
MCL1 suppression and resulted in the cell apoptosis (Saito et al.,
2009). These confirmed that chromatin remodeling induced by
the epigenetic treatment was capable to directly affect specific
miRNA expression.

Apart from genetic and epigenetic mechanisms, transcription
factors can also bind to promoter regions of miRNA host
genes, and regulate miRNA expression. Transcription factor
binding sites were highly enriched within miRNA precursor
sequences, suggesting that transcription factors may directly
bind to primary miRNA gene transcripts or small hairpin
miRNA precursors, thus, regulate their processing (Piriyapongsa
et al., 2011). Moreover, some well-known oncogenes and TSGs
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FIGURE 1 | (A) Tumorigenesis is a multi-factor induced process. Gene mutation, which could be induced by environmental factors (such as chemical carcinogens,

physical carcinogens, pathogenic bacteria, and viruses), and genetic instability, as well as alterations in epigenetics cause abnormal expression of oncogene and TSG.

Functional changes of oncogene and TSG, separately or jointly drive tumorigenesis. (B) miRNA in cancer. MiRNA host gene mutation, epigenetic change (including

aberrant DNA demethylation, aberrant modification of histone deacetylase, etc.), and the transcription regulation by oncogene and TSG contribute to miRNA

dysregulation in cancer. The abnormally expressed miRNAs further regulate oncogene and TSG during tumorigenesis.

regulate miRNA expression at the transcription level. For
instance, c-Myc up-regulated miR-17 ∼ 92 and miR-106a ∼

363 expressions in cultured human trophoblasts (Kumar et al.,

2013). Jackstadt et al carried out genome-wide analyses of c-Myc-
regulated mRNAs and miRNAs, collaborating an accelerated and
comprehensive understanding of c-Myc function (Jackstadt et al.,
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2013). Strikingly, c-Myc also transactivated drosha expression
though directly binding to the E-box of the drosha promoter
(Wang et al., 2013), which imposed on board and general
regulation of miRNAs. P53 could activate miR-34 family, such
as miR-34a (Chang et al., 2007), miR-34b, and miR-34c (Corney
et al., 2007), further affected cell apoptosis, proliferation, and
adhesion-independent growth.

Interestingly, oncogene and TSG are also targets of miRNAs
(Figure 1B). MiRNA let-7a down-regulated Myc, and thus
reverted the Myc-Induced cell growth in burkitt lymphoma cells
(Sampson et al., 2007); miR-34amodulated c-Myc transcriptional
complexes, suppressing malignancy in human prostate cancer
cells (Yamamura et al., 2012). MiR-504 acted as a negative
regulator of p53 by directly binding to the 3′-UTR, therefore,
decreased the p53 mediated-apoptosis and cell-cycle stress (Hu
et al., 2010). Additionally, miR-125b was a novel regulator of p53,
further affects the p53-induced apoptosis during development
and stress response (Le et al., 2009). Besides c-Myc and p53,
other oncogenes and TSGs were regulated by miRNAs as well,
and involved in the development and progression of cancer.
For instance, miR-144 targeted oncogene ZEB1, and a decreased
miR-144 expression resulted in the increased Zeb1 expression
and epithelial-mesenchymal transition (EMT) (Pan et al., 2015).
Another study identified three differentially expressed miRNA
in metastases as key drivers of EMT though targeting SIAH1,
SETD2, ZEB2, and FOXN3 (Mudduluru et al., 2015). Currently,
we found miR-203a regulated the expression of ERGIC3 (a
candidate oncogene), and further affected cell proliferation in
lung cancer (Lin et al., 2015).

It is worthy to note about several characters of miRNA
regulation and related problems in miRNA researches. (1)
MiRNA regulation is a dynamic process. By using Affymetrix
microarray platform, Kumari et al profiled miRNA and mRNA
expressions at multiple time points, and revealed the dynamic
changes in global miRNAome and transcriptome (Kumari
et al., 2016). A previous study also suggested the dynamic
modeling of miRNA regulation during the mesenchymal stem
cell differentiation (Weber et al., 2013). Thus, the dynamic
character implies that miRNA study needs to consider the
effects of time and state on results. (2) One miRNA can target
multiple mRNAs, thence, one miRNA has different functions.
For example, miR-21 affected cell survival by targeting PCPD4
(programmed cell death protein 4) (Jiao et al., 2015), regulated
cell proliferation by targeting PTEN (Zhang et al., 2010), and
meanwhile was involved in cancermetastasis by targetingMaspin
(Zhu et al., 2008). Sometimes, opposite functions were observed
for one miRNA in diverse cases, because it targeted different
mRNAs in specific cell types or cell states. For instance, one study
suggested miR-944 functioned as a novel oncogenic miRNA
and regulated the chemoresistance in breast cancer (He et al.,
2016), meanwhile another study reported that the miR-944
expression was severely repressed in breast cancer cells and
clinical specimens, and suppressed the cell migration by targeting
SIAH1 (Flores-Pérez et al., 2016). Interestingly, our recent study
revealed miR-944 was significantly down-regulated in NSCLC
by utilizing small RNA deep sequencing, and found that miR-
944 inhibited cellular proliferation through targeting EPHA7

in NSCLC, which may offer a new mechanism underlying the
development and progression of NSCLC (Liu et al., 2016).
Therefore, when studying miRNA functions, it is necessary
to declare detail mechanisms and targets. Since one specific
miRNA could possess various functions, physiological roles of
miRNA should be further investigated by animal models, such
as knockout and transgenic animals. (3) One mRNA is regulated
by multiple miRNAs simultaneously, which may be involved in
the complexity of miRNA synergy and may be one reason of
practical problems in miRNA studies. Utilizing miRNA mimic
andmiRNA inhibitor to study themiRNA’s target and examine its
related function is a classical and established strategy. However,
in practice, effects of miRNA mimic and inhibitor are not always
at opposite ends, some discrepancies results by using miRNA
mimics and antisense inhibitors were observed (Thomson et al.,
2013). Occasionally, transfected small RNA may compete with
endogenous miRNA for the RNA-induced silencing complex
(RISC) or other machinery, thus, could result in artificial readout
(Khan et al., 2009). Meanwhile, miRNA inhibitors may not
be sufficiently specific to separate different members from the
same miRNA family harboring similar sequences (Thomson
et al., 2011). Another potential explanation may be due to
neutralization and compensation mechanisms. Briefly, after one
miRNA is modulated through mimic or inhibitor treatments,
other miRNAs which target the same mRNA like this miRNA,
may change their expressions to neutralize or compensate the
biological effects.

ONCOGENE–MIRNA–TSG NETWORK
HYPOTHESIS

In early studies, we screened novel cancer-related genes and
found that microspherule protein 1 (MCRS1) was overexpressed
in lung cancer (Liang et al., 2013). Subsequently, we confirmed
the overexpression of MCRS1 was associated with the cellular
proliferation, EMT, and metastasis (Liu et al., 2014). MCRS1 was
a candidate oncogene. Furthermore, MCRS1 transactivated the
miR-155 expression by directly binding to its promoter region
(Liu et al., 2014). Interestingly, in the continuing study, we
established that MCRS1 promoted cancer cell growth via miR-
155 targeting Rb1 (Liu et al., 2015). Thus, there is the MCRS1–
miR-155–Rb1 pathway in lung cancer. MiR-155 mediated the
regulation relationship between MCRS1 (a candidate oncogene)
and Rb1 (a famous TSG), suggesting miRNAs could potentially
act as a mediator between oncogene and TSG. Additionally,
a recent study demonstrated that miR-200 mediated the
regulation relationship between p53 (a well-established TSG)
and ZEB1/BMI1 (a well-known oncogene), and p53–miR-200–
ZEB1/BMI1 contributed to EMT in breast cancer cells (Chang
et al., 2011). Meanwhile, MCRS1 and Rb1, p53 and ZEB1/BMI1
are simultaneously regulated by other miRNAs, such as miR-129∗

(targeting MCRS1) and miR-125b (targeting p53), respectively.
Taking those regulation pathways into consideration, we thought
that oncogenes/TSGs can regulate miRNAs expression by
binding to promoter regions; and the disrupted miRNAs, in turn,
continue to regulate other oncogenes/TSGs. Here, we propose

Frontiers in Molecular Biosciences | www.frontiersin.org 4 July 2017 | Volume 4 | Article 46

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Zhou et al. Oncogene-miRNA-TSG Network

FIGURE 2 | Proposed oncogene-miRNA-TSG regulation network. (A) MiRNA acts a central role among oncogene or TSG. On one hand, miRNA regulates oncogene

or TSG, on the other hand, miRNA is regulated by oncogene or TSG (red arrow). Therefore, miRNA may serve as transductor/mediator among oncogene and TSG.

Besides the functional synergy of oncogene and TSG, there are regulatory relationships between oncogene and TSG (green and yellow arrow), between oncogenes

(blue arrow), and between TSGs (gray arrow). (B) Because the existence of numerous oncogenes, miRNAs, and TSGs, their relationships are presented as a complex

network, the oncogene–miRNA–TSG network. The network provides a new insight into roles of miRNAs, oncogene, and TSG in cancer. Solid arrows indicate direct

relationships that have been verified with experiments at the molecular level, and dotted arrows denote indirect relationships that are supported by experiments at the

cellular level.

a new hypothesis, oncogene–miRNAs–TSG network (Figure 2).
MiRNAs act as transductor/mediator among oncogenes and/or
TSGs. In one case, miRNAs regulated by oncogenes further
target TSGs, to collaborate and accelerate effects of oncogene (the
miRNA upstream). In another case, if the miRNA regulated by
one oncogene further aims at another oncogene, this oncogene 1–
miRNA–oncogene 2 feedback will alleviate the effect of oncogene
1, suggesting that there may be precise regulation relationships
among oncogenes. For examples, oncogenic KRAS regulated
miR-200c (Tsunoda et al., 2011), while miR-200c targeted
ZEB1/ZEB2 (Korpal et al., 2008) (ZEB1/ZEB2 functions as an
oncogene to promote the cancer metastasis). Interestingly, miR-
200c was also shown to target KRAS (Kopp et al., 2014). Here,
miR-200cmediated the regulation relationship among oncogenes
(KRAS, ZEB1/ZEB2), and acted the feedback regulation of
one oncogene (KRAS). Considering the regulation relationships
involved in many oncogenes, miRNAs, and TSGs, we extend the
hypothesis to oncogene/TSG–miRNA–oncogene/TSG network
(in order to express the convenience and simplicity, we still
used “oncogene–miRNA–TSG network” in this article), which
addresses the function of miRNA, and the complexity of the
regulation network as well.

We think that this oncogene–miRNA–TSG network may be
prevalent in normal cells too, and it generates various regulation
relationships and possesses important biological functions, which
is extremely essential to keep intermolecular homeostasis for
the normal status of cells. In diseases, particularly in cancers,
dysregulations of certain oncogenes, miRNAs, and TSGs that
were induced by genetic mutations or epigenetic changes etc.,

disrupt the balance of this molecular network, and transduct
mislead signals to more downstream pathway molecules
(including oncogene, miRNA, and TSG), and arouse domino
effects, therefore, promote the cell malignant transformation. The
oncogene–miRNA–TSG network is involved in many oncogenes,
miRNAs, and TSGs, as well as occurs in various tumor types,
hence it may participate in the development and progression
of a wide range of tumors. The anomaly of this network may
be a common event in cancers. In addition, the oncogene–
miRNA–TSG network hypothesis demonstrated that oncogenes
and TSGs not only show functional synergy, but also there
are regulatory relationships among oncogenes and TSGs during
tumorigenesis, which could be mediated by miRNAs. Finally,
this hypothesis also addresses that tumorigenesis may be a
result of the loss of the intermolecular homeostasis, scilicet,
the disruption of entire oncogene–miRNA–TSG network rather
than single dysregulation of oncogene or TSG. MiRNAs can be
released through exosome from cancer cells into body fluids,
such as blood, urine, milk, sputum, saliva. These miRNAs can
serve as biomarkers for diagnosis (Tran, 2016). Recognizing the
significances of oncogene–miRNA–TSG networkmay help better
understanding oncogenes, TSGs, and miRNAs roles during the
development and progression of cancer, and may provide a new
promising venue of prediction, diagnosis, and therapy of cancer.
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