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Bardet-Biedl syndrome (BBS) is a rare genetic disorder that belongs to the group of
ciliopathies, defined as diseases caused by defects in cilia structure and/or function. The
six diagnostic features considered for this syndrome include retinal dystrophy, obesity,
polydactyly, cognitive impairment and renal and urogenital anomalies. Furthermore, three
of the 21 genes currently known to be involved in BBS encode chaperonin-like proteins
(MKKS/BBS6, BBS10, and BBS12), so BBS can be also considered a member of
the growing group of chaperonopathies. Remarkably, up to 50% of clinically-diagnosed
BBS families can harbor disease-causing variants in these three genes, which highlights
the importance of chaperone defects as pathogenic factors even for genetically
heterogeneous syndromes such as BBS. In addition, it is interesting to note that BBS
families with deleterious variants in MKKS/BBS6, BBS10 or BBS12 genes generally
display more severe phenotypes than families with changes in other BBS genes. The
chaperonin-like BBS proteins have structural homology to the CCT family of group
II chaperonins, although they are believed to conserve neither the ATP-dependent
folding activity of canonical CCT chaperonins nor the ability to form CCT-like oligomeric
complexes. Thus, they play an important role in the initial steps of assembly of the
BBSome, which is a multiprotein complex essential for mediating the ciliary trafficking
activity. In this review, we present a comprehensive review of those genetic, functional
and evolutionary aspects concerning chaperonin-like BBS proteins, trying to provide a
new perspective that expands the classical conception of BBS only from a ciliary point
of view.

Keywords: ciliopathies, chaperonopathies, Bardet-Biedl syndrome, chaperonin-like BBS proteins, MKKS/BBS6,

BBS10, BBS12

BARDET-BIEDL SYNDROME IN CONTEXT

The Bardet-Biedl syndrome (BBS; MIM#209900) is a multisystem, rare genetic disorder belonging
to the group of ciliopathies, which encompasses several diseases that are caused by defects in cilia
structure and/or function, especially affecting the primary cilium (reviewed in Hildebrandt et al.,
2011; Mitchison and Valente, 2017). This highly conserved and dynamic organelle is considered
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the sensorial antennae of the cell and also a central processing
unit, since it captures and integrates all the extracellular
signals with the cell cycle and metabolism (reviewed in
Malicki and Johnson, 2017). Thus, primary cilia play a key
role in coordinating the different cellular signaling pathways
(reviewed in Cardenas-Rodriguez and Badano, 2009; Christensen
et al., 2017), giving rise to biological responses related to the
control of cell cycle, development and differentiation processes,
migration and polarity, stimuli transduction or proliferation
and maintenance of stem cells. Ciliopathies represent an
expanding group of human inherited disorders that are valuable
models to study several common conditions such as obesity,
retinal dystrophy or renal cysts, considering their pleiotropic
nature. Remarkably, more than 50 genes have been involved
in ciliopathies (Mitchison and Valente, 2017), a number that
continues to grow due to the new discoveries on ciliary
proteome and ciliogenesis regulation (Mick et al., 2015; Wheway
et al., 2015; Boldt et al., 2016), as well as the increasingly
implementation of high-throughput sequencing technologies to
ciliary disorders. Furthermore, it is important to highlight that
ciliopathies are complex clinical entities with extensive genetic
heterogeneity and also high phenotypic and genetic overlap
among them. This, together with the progressive development of
nearly all clinical features related to them, usually makes an early
and specific diagnosis very difficult to establish.

BBS is considered a model disease to study the biology of
the primary cilium, and is characterized by progressive retinal
dystrophy, obesity, postaxial polydactyly, cognitive impairment
and renal and urogenital anomalies as primary diagnostic
features (reviewed in Forsythe and Beales, 2013). Furthermore,
BBS is a genetically heterogeneous disorder with up to 21 genes
(commonly known as BBS genes) described to date (Bujakowska
et al., 2015; Heon et al., 2016; Khan et al., 2016 and references
within). Intriguingly, although BBS is primarily inherited as
an autosomal recessive disorder, a more complex model of
oligogenic inheritance considering modifier loci and epistatic
effects has been proposed for some families, trying to explain the
high clinical variability reported for BBS patients (Katsanis, 2004;
Badano et al., 2006). Regarding the functions of BBS proteins
(reviewed in Novas et al., 2015), eight of them form a multimeric
complex called BBSome, which plays a key role in mediating
molecular/vesicular transport in and out of the primary cilium,
and also in intraciliary trafficking as part of the intraflagellar
transport machinery (Nachury et al., 2007; Loktev et al., 2008;
Wei et al., 2012). Moreover, most of the remaining BBS proteins
have functions related to BBSome assembly, cilia targeting of
BBSome and proper recognition of BBSome cargoes, besides
several extra-ciliary roles (Novas et al., 2015).

BARDET-BIEDL SYNDROME AS A
CHAPERONOPATHY

Three of the main BBS genes, MKKS/BBS6 (MIM∗604896),
BBS10 (MIM∗610148) and BBS12 (MIM∗610683), encode
chaperonin-like proteins that localize to centrosomes and ciliary
basal bodies (Kim et al., 2005; Marion et al., 2009). This

implies that BBS would also be part of the emerging group of
diseases called chaperonopathies, which are produced by defects
in molecular chaperones or any other protein resembling their
structure. In this regard, it is noteworthy that chaperonin-like
BBS proteins, as will be explained later, are unlikely to display a
folding activity but they have functions specifically related to the
assembly of the BBSome.

Chaperonopathies represent an interesting subset of disorders
that have so far received little attention, although they
can provide useful models to better understand some of
the molecular mechanisms necessary to maintain protein
homeostasis (extensively reviewed in Macario and Conway de
Macario, 2005, 2007a,b; Macario et al., 2005). Chaperonopathies
often manifest themselves as complex phenotypes affecting
multiple organs, possibly due to the ubiquitous localization of
most chaperones, andmay be of genetic or acquired origin. In this
latter case, defects in chaperone post-translational modifications,
distribution or quantity, together with other phenomena such
as generation of antichaperone autoantibodies or aggregation
of chaperones with deposits of abnormal proteins, all of them
usually related to aging, could be the trigger rather than
mutational events. Importantly, research on chaperones and their
role in disease is opening a new field of therapeutic options
(termed “chaperonotherapy”) with interesting applications not
only in chaperonopathies, but also in some processes such as
cancer whereby chaperones may modulate the immune response
against tumors (reviewed in Binder, 2008; Graner et al., 2015).

Contribution of MKKS/BBS6, BBS10 and
BBS12 Genes to Bardet-Biedl Syndrome
Among ciliopathies, BBS represents a special case since as
far as we know no other ciliopathy except the related
McKusick-Kaufman syndrome (MKKS; MIM#236700) is caused
by genetic defects in chaperone genes. At this point, it is
appropriate to mention that MKKS is a monogenic ciliopathy
caused by mutations in the MKKS gene leading to postaxial
polydactyly, genital malformations (typically hydrometrocolpos
in females) and also congenital heart disease (Schaefer et al.,
2011). Furthermore, BBS is also a particular member of the
chaperonopathies with regard to the very specific functions
carried out by chaperonin-like BBS proteins within a ciliary
context (explained in detail in the next section). In this sense, BBS
constitutes a clear example of the great importance of chaperone
defects as determinant pathogenic factors, taking into account
that up to 50% of families clinically diagnosed with BBS can
harbor pathogenic variants in MKKS/BBS6, BBS10 and BBS12
genes (Billingsley et al., 2010; Muller et al., 2010; Deveault et al.,
2011). This data is even more relevant considering the high
genetic heterogeneity of BBS with 21 genes currently identified, a
number that is expected to grow as 20–30% of patients suspected
to suffer BBS do not yet have molecular confirmation of their
clinical diagnosis (Mitchison and Valente, 2017).

Chaperonin-like BBS genes are characterized by a relatively
simple gene structure (Figure 1), with a low number of coding
exons (one in BBS12, two in the case of BBS10 and four
exons in MKKS/BBS6), which make them ideal candidates for
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a mutational screening previously to perform more complex
and expensive analyses. Furthermore, a broad distribution
of pathogenic variants throughout the coding sequence of
chaperonin-like BBS genes has been reported. A brief summary
of the most relevant genetic findings concerning each gene is
presented below (see also Table 1).

MKKS/BBS6 (chromosome 20p12.2) was the first gene
coding a putative chaperonin to be associated with a human
inherited disorder, the MKKS (Stone et al., 2000), being also
involved in BBS shortly after (Katsanis et al., 2000; Slavotinek
et al., 2000). To date, more than 50 deleterious variants
have been described, predominantly missense and nonsense
changes (Human Gene Mutation Database; Stenson et al., 2017).
Regarding its contribution to the total load of BBS, MKKS/BBS6
is a minor contributor with 3–5% of families harboring two
disease-causing variants in the multiethnic cohorts reported
worldwide (Beales et al., 2001; Muller et al., 2010; Deveault et al.,
2011). Interestingly, the vast majority of causal variants described
in this gene have been identified in BBS patients, so it has been
proposed that both syndromes MKKS and BBS are different
allelic forms of the same clinical entity (Katsanis et al., 2000;
Schaefer et al., 2011). Thus, MKKS phenotypes would be linked
to very rare, possibly hypomorphic alleles found in MKKS/BBS6
gene.

The BBS10 gene (chromosome 12q21.2) was first identified by
Stoetzel et al. (2006) in a consanguineous pedigree of Lebanese
origin. It is, together with BBS1, the major contributor to
BBS accounting for 20% of all cases (Stoetzel et al., 2006;
Forsythe and Beales, 2013), with remarkable exceptions in
ethnically homogeneous groups such as Danish (43%; Hjortshøj
et al., 2010) or Spanish BBS cohorts (8.3%; Álvarez-Satta et al.,
2014). About 100 different disease-causing changes have been
reported elsewhere (Human Gene Mutation Database; Stenson
et al., 2017), of which the p.Cys91Leufs∗5 allele represents a
recurrent deleterious variant in BBS cohorts of European descent,
reaching 26–48% of BBS10 mutational load (Stoetzel et al., 2006;
Billingsley et al., 2010; Muller et al., 2010).

Moreover, the BBS12 gene (chromosome 4q27) was linked
to BBS phenotypes a decade ago (Stoetzel et al., 2007). Its
contribution to BBS has grown in importance over recent years,
accounting for 8–11% of the total cases in most of the cohorts

reported (Billingsley et al., 2010; Muller et al., 2010; Deveault
et al., 2011; Álvarez-Satta et al., 2014). About 60 pathogenic
variants have been currently identified in BBS12 patients (Human
Gene Mutation Database; Stenson et al., 2017), among which the
nonsense change p.(Phe372∗) could represent up to 20% of the
mutated alleles found in this gene (Stoetzel et al., 2007).

Finally, it is also important to highlight some trends regarding
the BBS phenotypes linked to changes in chaperonin-like BBS
genes. Thus, there is a general consensus that BBS patients
with pathogenic variants in MKKS/BBS6, BBS10 and BBS12
genes develop a more severe phenotype than those with changes
affecting BBSome components such as BBS1 (Billingsley et al.,
2010; Imhoff et al., 2011; Castro-Sánchez et al., 2015). In
detail, they show an earlier disease onset (especially noted in
BBS10 patients), greater prevalence of all BBS primary diagnostic
features and also a higher frequency of overlapping features with
other ciliopathies, mainly MKKS and also Alström syndrome
(MIM#203800), which is a closely related ciliopathy produced
by mutations in the ALMS1 gene and characterized by retinal
dystrophy, sensorineural hearing loss, early-onset obesity with
severe type 2 diabetes mellitus and metabolic syndrome, dilated
cardiomyopathy and renal, hepatic and pulmonary injury with
widespread fibrosis (reviewed in Marshall et al., 2011). One
could hypothesize that differences in the severity of clinical
presentation could be due to the distinct functional roles of
chaperonin-like BBS genes when compared with the BBS proteins
taking part of the BBSome. Thus, deleterious variants in some
components of the BBSome might lead to the accumulation
of intermediate complexes that maintain a residual or gain-
of-function activity as compensating mechanism (Zhang et al.,
2012), whereas the chaperonin-like BBS proteins are essential for
the initial step of BBSome assembly (see below) so no functional
complexes are formed if this subset of proteins is affected (Seo
et al., 2010).

Structure and Function of Chaperonin-Like
BBS Proteins: Comparison with Canonical
CCT Chaperonins
The three chaperonin-like BBS proteins define a particular
branch of proteins that have sequence homology to the
chaperonin containing t-complex protein 1, CCT (also known

TABLE 1 | Summary of the main features related to chaperonin-like BBS genes.

Gene Gene MIM

number

Chromosome Exons

(Coding)

Pathogenic

variants†
Mean

contribution∧(%)

Protein

(aa)

Phenotype MIM

number

References

MKKS/BBS6 *604896 20p12.2 6 (4) 57 3–5 570 #605231 (BBS)
#236700 (MKKS)

Katsanis et al., 2000
Slavotinek et al., 2000;
Stone et al., 2000

BBS10 *610148 12q21.2 2 (2) 99 20 723 #615987 (BBS) Stoetzel et al., 2006

BBS12 *610683 4q27 2 (1) 59 8–11 710 #615989 (BBS) Stoetzel et al., 2007

MIM, Mendelian Inheritance in Man® (online database of human genes and genetic diseases; https://www.omim.org/); aa, amino acids; BBS, Bardet-Biedl syndrome; MKKS, McKusick-
Kaufman syndrome.
†The number of pathogenic variants corresponds to the data obtained from the last version of the Human Gene Mutation Database (HGMD professional 2017.1; released on March
2017).
∧The mean contribution for each chaperonin-like BBS gene was established from the values reported elsewhere (Beales et al., 2001; Stoetzel et al., 2006; Billingsley et al., 2010; Muller
et al., 2010; Deveault et al., 2011; Forsythe and Beales, 2013; Álvarez-Satta et al., 2014).
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as TRiC) family of group II chaperonins (Kim et al., 2005; Stoetzel
et al., 2006, 2007). CCT proteins are the eukaryotic cytosolic
chaperonins of type II and play key roles in the folding of a wide
range of newly translated proteins in an ATP-dependent manner,
mainly soluble proteins related to cytoskeleton (actin and tubulin
are the quantitative major substrates) (reviewed in Dunn et al.,
2001; Spiess et al., 2004). Typically, they form a functional
hetero-oligomeric complex of 16 subunits that consists of two
stacked rings, each composed of eight CCT monomers radially
arranged (CCT1-8). With regard to their specific roles in cilia,
CCT subunits are required for ciliary assembly and maintenance
of cilia tip integrity, as well as cytoskeleton structure, in the ciliate
Tetrahymena (Seixas et al., 2010). In addition, it has been recently
reported that CCT chaperonins are essential for the biogenesis
of vertebrate photoreceptors’ outer segment by mediating the
BBSome assembly (Sinha et al., 2014).

Recent phylogenetic analyses have revealed that chaperonin-
like BBS proteins represent a highly diverged, monophyletic
group derived from a duplication event in the CCT8 gene
(Mukherjee et al., 2010). Remarkably, although MKKS/BBS6,
BBS10, and BBS12 genes were originally considered as vertebrate-
specific, the finding of several orthologs in ancient eukaryotes
clearly points to an earlier evolution (Mukherjee and Brocchieri,
2013). The high rate of divergence observed for chaperonin-like
BBS proteins compared with those canonical CCT chaperonins
is not reflected by their primary structure, which is mostly
conserved. Thus, the typical chaperonin domain architecture
consisting of apical, intermediate and equatorial domains is
conserved in chaperonin-like BBS proteins (Figure 1); however,
they have additional specific insertions (two in MKKS/BBS6,
three for BBS10 and up to five in the BBS12 sequence) that
are restricted to intermediate and equatorial domains (Kim
et al., 2005; Stoetzel et al., 2006, 2007). Interestingly, the three
insertions located in BBS10, as well as the insertions 1 and 3 of
BBS12, protrude from the same face of the intermediate domain,
which suggests they constitute an additional domain maybe
with specific roles (Stoetzel et al., 2006, 2007). Furthermore,
BBS12 seems to be the most divergent member since more
differences in several secondary-structure motifs and also in the
ATP-hydrolysis motif have been identified (Stoetzel et al., 2007;
Mukherjee et al., 2010).

Despite structural similarities, solid evidences point out that
chaperonin-like BBS proteins neither perform folding activity
nor are able to form chaperonin oligomeric complexes like
canonical CCT proteins do. Thus, the ATP hydrolysis motif
in the equatorial domain (highly conserved in Group I and
II chaperonins) is significantly different in MKKS/BBS6 and,
above all, in BBS12 protein (Kim et al., 2005; Stoetzel et al.,
2007), which suggests that the catalytic activity required for
protein folding is missing; conversely, it would be conserved in
BBS10 (Stoetzel et al., 2006). In addition, the existence of specific
insertions in chaperonin-like BBS proteins covering potential
monomer-monomer contact regions makes it unlikely that they
can assemble in a functional CCT-like complex (Kim et al., 2005;
Stoetzel et al., 2006, 2007; Mukherjee et al., 2010).

All these data suggest that the roles of chaperonin-like BBS
proteins may differ from direct protein folding. Thus, recent

work has demonstrated that MKKS/BBS6, BBS10 and BBS12 play
a key role in the initial steps of BBSome assembly by stabilizing
BBS7 (the first component to be incorporated) and mediating its
interaction with six canonical CCT chaperonins (CCT1-5 and
CCT8), which would actually accomplish the folding activity
(Seo et al., 2010). This means that chaperonin-like BBS proteins
act as an intermediate for the binding of CCT complex to its
substrates, as part of the transient BBS/CCT/TRiC-chaperonin
complex. Remarkably, BBS10 is not a structural member of this
complex, but it regulates the interaction of the BBS6-BBS12-BBS7
intermediate with CCT proteins to form the BBS/CCT/TRiC-
chaperonin complex (Zhang et al., 2012). It is also important
to note that the second step in BBSome assembly, that is, the
interaction between BBS2 and the stabilized BBS7 protein, is
coupled with the release of BBS6-BBS12 from the complex, and
that CCT/TRiC proteins are also released after the BBSome
core complex (BBS2-BBS7-BBS9) is formed (Zhang et al., 2012).
Accordingly, the BBS/CCT/TRiC-chaperonin complex would
assist BBSome assembly only in the first steps, so the formation
of mature BBSome complexes is finally completed by intrinsic
protein-protein interactions among the BBSome components,
which are known to contain β-propeller, tetratricopeptide repeats
and pleckstrin homology domains that typically mediate these
interactions (Zhang et al., 2012). Despite the significant progress
made in deciphering the specific roles of chaperonin-like
BBS proteins, details on how the BBS/CCT/TRiC-chaperonin
complex is formed and completes the transition of BBS7 to
BBSome remain to be elucidated.

Role of Other BBS Proteins in Protein
Homeostasis
The cellular network for protein-quality control necessary to
maintain protein homeostasis includes besides the chaperone
machinery, which ensures proper protein folding and recognition
of misfolded proteins (reviewed in Hartl et al., 2011), also two
proteolytic machineries, the ubiquitin-proteasome system and
the autophagy pathway, which play essential roles in removing
irreversibly misfolded proteins (reviewed in Chen et al., 2011). In
this regard, it is appropriate to remark on some findings involving
several BBS proteins and their possible role in this field.

Several BBSome components such as BBS1-2, BBS4, and
BBS7, as well as the BBS6 chaperonin-like protein, interact with
proteasomal subunits and could be involved in the regulation
of signaling pathways coordinated by the primary cilium
(reviewed in Novas et al., 2015). It has been also speculated
that TRIM32/BBS11 (MIM∗602290) would be the putative E3-
ubiquitin ligase that targets free BBS2 to be degraded by the
ubiquitin-proteasome pathway (Zhang et al., 2012). Finally, there
is also evidence that the unfolded protein response (UPR) of
the endoplasmic reticulum can be a pathogenic mechanism
related to BBS, as the UPR is triggered by protein accumulation
in the photoreceptors of Bbs12-deficient models leading to
apoptosis and subsequent retinal degeneration (Mockel et al.,
2012). Interestingly, the light detection ability was restored by
pharmacological modulation of the UPR, which highlights both
the importance of identifying disease mechanisms that involve
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FIGURE 1 | Schematic view of both gene and protein structure of chaperonin-like BBS proteins. (A) Representation of MKKS/BBS6 (reference transcript
ENST00000347364.7); (B) Representation of BBS10 (reference transcript ENST00000393262.3); (C) Representation of BBS12 (reference transcript
ENST00000314218.7). bp, base pairs.

proteostasis network components and their potential to develop
new therapeutic strategies.

PERSPECTIVES

BBS is considered a model ciliopathy to study molecular
mechanisms potentially involved in common disorders such
as obesity, and also represents a singular component of the
group of chaperonopathies. Unlikemany of these clinical entities,
the molecular basis underlying BBS is fairly well-known, just
like the particular role of most BBS proteins in the primary

cilium and also the cellular basis of several BBS phenotypes
(reviewed in Novas et al., 2015). However, many mechanistic
aspects remain to be uncovered, especially those concerning
the particular molecular processes involved in initialization of
BBsome assembly and also the role of protein degradation
systems in BBS proteins turnover. In this sense, the use of
prokaryotic chaperonins as models to investigate the impact of
deleterious variants in chaperonin structure and function, as well
as potential therapeutic strategies (Conway de Macario et al.,
2017), could represent a promising tool not explored until now
to further characterize chaperonin-like BBS proteins.
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Moreover, a deeper understanding of the molecular
mechanisms involving chaperonin-like BBS proteins could
provide more opportunities to explore new therapies for BBS
patients, currently unavailable. Thus, some BBSome components
are found in monomeric form or aggregated with unidentified
proteins in Bbs6 null mice (Seo et al., 2010), which might
suggest potential therapeutic targets related to the modulation
of chaperone activity. In addition, identifying the specific
chaperones and partners involved in the folding of BBSome
components, not yet defined, could have a great impact on the
development of new strategies in this field.
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