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INTRODUCTION

Holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.) is the dominant tree species in the
Mediterranean forest with great ecological and economic value (Pulido et al., 2001). It constitutes,
together with cork oak (Q. suber), the “dehesa,” a typical Mediterranean agro-forestry-pastoral
ecosystem, covering almost four million hectares in the western Iberian Península (Joffre et al.,
1999). Besides, holm oak is widely used in reforestation programs and silvicultural practices, being
their seeds, acorns, used for feed, and fatten the exclusive Iberian race pigs, whose meat is the basis
of a high-quality food industry (Vicente and Alés, 2006; Cañellas et al., 2007).

Nowadays, Q. ilex forest maintenance and sustainability are facing severe problems and
challenges. Those are related to agricultural practices, low natural regeneration, seed viability,
which may be due to their non-orthodox seed character (Doody and O’Reilly, 2008), plant
mortality in both adult trees and young plants after field transplantation resulting from
adverse environmental conditions like drought, the so-called decline syndrome (Gallego et al.,
1999), especially considering the current and future climate change scenario (Plieninger
et al., 2004; Bates et al., 2008; Corcobado et al., 2013). Overcoming those threats could
be greatly facilitated if olm oak ecophysiological behavior was better understood at the
molecular level. Nowadays, multidisciplinary approaches by integrating the so-called—omic
studies—transcriptomics, proteomics and metabolomics—have become indispensable to shed light
on the fine-tuned molecular regulation in many biological systems/species. Thus, system biology
aims to describe and interpret the full complexity of cells, tissues, organs, and organisms.

In this context, our research group has been investigating different aspects of Q. ilex biology
such as natural variation, seed germination and seedling growth, physiology, biotic and abiotic
stress-responses, combining classical biochemistry, and integrating those multidisciplinary “omics”
analysis (Echevarría-Zomeño et al., 2009, 2012; Jorrín-Novo et al., 2009; Valero-Galván et al., 2011,
2012, 2013; Sghaier-Hammami et al., 2013, 2016; Romero-Rodríguez et al., 2014). Nevertheless,
the scarce genomic information (to date) available for Q. ilex, supposes, such as for other orphan
tree species (Abril et al., 2011; Jorrín-Novo et al., 2015), a notable obstacle to successfully carry out
these global studies at molecular level. Driven by that need, our main aim has been to generate a
reference transcriptome of Q. ilex which will support and complement future research within this
species. For that purpose, as a first approach we sequenced the mRNA of a pooled plant sample
containing equal amounts of homogenized tissue from acorn embryo, leaves, and roots, using an
Illumina Hiseq 2500 platform. Contrasting different assembly strategies and algorithms, we present
here the first de novo assembled transcriptome of the non-conventional plant Q. ilex.
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The pre-processed raw reads generated by the sequencing
platform, and used for the de novo assembly, have been
deposited at the NCBI SRA database with accession number
SRR5815058.

This new genomic resource will set the stage for ongoing
and future studies to obtain a better understanding of molecular
mechanisms involved in physiological processes such as seed
germination, seedling establishment, drought, which are essential
for selection of superior phenotypes or Candidate Plus for
restoration and reforestation programs under the impending
climate change in Mediterranean regions.

FIGURE 1 | Evaluation of Q.ilex transcriptomes generated. Contig (longer than 400 nucleotides = L > 400 nt) length distribution and comparative evaluation against

oak transcriptome (BlastN e-value = 10−30). (A) Trinity; (B) Ray; (C) MIRA.

MATERIALS AND METHODS

Plant Material
Mature acorns from Holm oak (Q. ilex L. subsp. ballota
[Desf.] Samp.) were collected from a tree located in Aldea de
Cuenca (province of Córdoba, Andalusia, Spain). Acorns were
germinated and seedlings grew in a chamber under controlled
conditions (a 12 h photoperiod, a temperature of 21 ± 1◦C, a
relative humidity of 60 ± 5% and an irradiance of 200 µmol
m−2 s−1, Echevarría-Zomeño et al., 2009). Germinated embryo,
leaves and roots from 1 year plantlets were collected separately,
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weighted, and individually frozen in liquid nitrogen. The plant
material used for RNA sequencing experiments consisted in a
pool generated by mixing equal amounts of homogenized tissue
from acorn embryo, leaves, and roots.

RNA Extraction
Total RNA was extracted from 50 mg pooled plant sample
according the procedures previously set up in our laboratory for
Q. ilex samples (Echevarría-Zomeño et al., 2012). Contaminating
genomic DNA was removed by DNase I (Ambion) treatment.
Total RNA was quantified spectrophotometrically (DU 228800
Spectrophotometer, BeckmanCoulter, TrayCell HellmaGmbH&
Co. KG). The high quality and integrity of the RNA preparation
was tested electrophoretically (Agilent 2100 Bioanalyzer). Only
high-quality RNAs with RIN values> 8 and A260:A280 ratios near
2.0 were used for subsequent experiments.

Enrichment of mRNA, cDNA Synthesis, and
Library Generation for Illumina HiSeq 2500
Platform. Paired-End Sequencing
The library construction of cDNA molecules was carried out
using Illumina TruSeq Stranded mRNA Library Preparation Kit
according to manufacturer instructions using 2 µg of total RNA
followed by poly-A mRNA enrichment using streptavidin coated
magnetic beads and thermal mRNA fragmentation. The cDNA
was synthesized, followed by a chemical fragmentation (DNA
library) and sequenced in the Illumina Hiseq 2500 platform,
using 100 bp paired-end sequencing (Conesa and Götz, 2008; De
Wit et al., 2012).

De novo Assembly and Analysis of High
Throughput RNA Sequencing Data
The raw reads obtained from the sequencing platform were pre-
processed in order to retain only high-quality sequences to be
subsequently used in the assembly. Thus, each original sequence
was quality trimmed considering several parameters (quality
trimming based onminimum quality scores, ambiguity trimming
to trim off e.g., stretches of Ns, base trim to remove specified
number of bases at either 3′ or 5′ end of the reads). The pre-
processing parameters used were selected as following: trimming
sequences by maximum 2 ambiguous nucleotides), minimum
mean quality assuming error probability < 0.01, and filtering out
those sequences shorter than 30 nucleotides.

Three different assemblers were employed to de novo assemble
the Q. ilex transcriptome, considering there is not a reference
genome available, and further evaluated to contrast the results
obtained (Figure 1).

Trinity 2.4.0. performs a de novo assembly using an algorithm
based on Bruijn graphs (Grabherr et al., 2011). For the assembly,
Trinity 2.4.0 was launched with a k-mer value (k= 25).

Ray 2.3.1. assembly uses de Bruijn graphs but its framework is
not based on the Eulerian steps. Specific subsequences, seeds, are
defined, and for each of them, the algorithm extends it to a contig.
Heuristics are defined that control the extension process in such
a way that the process stops if, at some point, the readings family

does not clearly indicate the address of the extension (Boisvert
et al., 2010). In this case we selected a k-mer value of 31.

MIRA 4.9.6 software (Chevreux et al., 1999), unlike Trinity
and Ray, is based on the strategy known as Overlap /Layout/
Consensus. Following the author guidelines/recommendations
for Illumina data, we used the complete raw data without a
filtering process like we described previously.

Evaluation of the structure of the generated assemblies was
done with the QUAST software (Gurevich et al., 2013).

The assemblies obtained using the three aforementioned
softwares were blasted (e-value of 10−30) against the most
accurate and nearest phylogenetic transcriptome currently
available, the oak transcriptome (containing Quercus robur
and Quercus petraea sequences) (Lesur et al., 2015). That
transcriptome database is divided in two files OCV3_91K
and OCV3_101K but OCV3_91K has a larger amount of
valuable information ofQuercus spp. transcriptome. So, we chose
OCV3_91K as a general oak transcriptome database.

RESULTS

Evaluation and Annotation of the
Assembled Transcriptomes
There are differences between the three assembled
transcriptomes in terms of transcriptome architecture/structure.
Thus, the N50 value, number of contigs and the average

TABLE 1 | Assembly structure and similarity with oak transcriptome.

Number of original raw reads 55275472

MIRA Ray Trinity

# contigs (≥0 bp) 169449 107487 77159

# contigs(≥500 bp) 43014 20495 8803

# contigs (≥1,000 bp) 15445 8773 696

# contigs (≥5,000 bp) 155 73 1

# contigs (≥10,000 bp) 2 3 0

Largest contig 11254 12220 5916

Total length (≥0 bp) 83639406 41292773 26286544

Total length (≥1,000 bp) 27409911 14778197 904440

Total length (≥5,000 bp) 941227 471829 5916

Total length (≥10,000 bp) 21731 34168 0

N50 1211 1260 661

N75 742 827 563

L50 11473 5863 3428

L75 23813 11529 5931

GC (%) 41.69 42.47 39.14

Oak transcripts* present in Q. ilex** 73073 63950 49679

Oak transcripts* absent in Q. ilex** 13943 23066 37337

% of oak* transcripts in Q. ilex** 83,98 73,49 57,09

Comparison of Q. ilex transcriptome assembly using Trinity, RAY, and MIRA assemblers.

Statistics and structure of the transcriptome assembly are indicated, including the number

of contigs obtained of a minimum length (QUAST output data). Comparative hits with oak

transcriptome are shown indicating the number of genes shared with oak and those newly

found in Q. ilex.

*Oak total transcripts = 87016; **BlastN with e-value = 10−30.
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length of the sequences generated by each algorithm differ
(Table 1).

Considering these results, we can state that MIRA
generated more and longer contigs than RAY and Trinity
(MIRA>RAY>Trinity), suggesting that a more robust
architecture/structure is obtained by MIRA for the Q. ilex
transcriptome assemby. Upon the continuous development
of NGS methods, data processing, and transcript assemby
remains a main challenge. Several studies have been published
devoted to evaluate different de novo assemblers varying in
performance and quality in terms of number and length
of transcripts and computational speed (Clarke et al.,
2013). Besides, it has been reported that the quality of the
assembly using a given software depends on the biological
sample on study (Bradnam et al., 2013). Thus, these aspects
should be taken into consideration when comparing different
softwares.

The comparison between the sequences generated fromQ. ilex

and those available from the close species, oak transcriptome,
reveals that MIRA assembly was the one which shared the
higher number of transcripts (73073), followed by RAY assembler
(Table 1). Besides, MIRA assembly sequences blasted against oak
transcriptome render the longest alignment lengths and better
blast scores (Figure 1).

Taking into consideration the data and parameters evaluated
(Table 1 and Figure 1), we decided to use the MIRA assembly
to continue with the corresponding annotation of Q. ilex
transcriptome. After blastX was completed against Uni-Prot

(Swiss-Prot) curated database (e-value of 10−5), followed by
the corresponding mapping process, 31973 annotated sequences
were obtained by Blast2GO (Conesa and Götz, 2008).

DIRECT LINK TO DEPOSITED DATA

The pre-processed raw reads of the transcriptome assembly
generated by the sequencing platform, and used for the
de-novo assembly, have been deposited at the NCBI SRA
database with the following accession number SRX2993508
and direct link: ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/
ByRun/sra/SRR/SRR581/SRR5815058/SRR5815058.sra
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