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Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious

disease which results in approximately 10 million incident cases and 1.4 million deaths

globally each year, making it the leading cause of mortality from infection. An effective

frontline combination chemotherapy exists for TB; however, this regimen requires the

administration of four drugs in a 2 month long intensive phase followed by a continuation

phase of a further 4 months with two of the original drugs, and is only effective for the

treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant

(MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the

complications posed by co-infection with the human immunodeficiency virus (HIV)

and other co-morbidities such as diabetes, have prompted urgent efforts to develop

shorter regimens comprising new compounds with novel mechanisms of action. This

demands that researchers re-visit cellular pathways and functions that are essential

to M. tuberculosis survival and replication in the host but which are inadequately

represented amongst the targets of current anti-mycobacterial agents. Here, we consider

the DNA replication and repair machinery as a source of new targets for anti-TB

drug development. Like most bacteria, M. tuberculosis encodes a complex array of

proteins which ensure faithful and accurate replication and repair of the chromosomal

DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways

of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit

replication and repair functions at multiple stages. To this end, we provide an update

on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in

M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we

also consider the potential implications of targeting DNA metabolic pathways implicated

in the development of drug resistance inM. tuberculosis, an organism which is unusual in

relying exclusively on de novomutations and chromosomal rearrangements for evolution,

including the acquisition of drug resistance. In that context, we conclude by discussing

the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy

aimed at protecting existing and future TB drugs.
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INTRODUCTION

The Need for New TB Drugs
According to the most recent WHO report, 10.4 million people
developed tuberculosis (TB) and 1.8 million died from this
disease in 2015 (WHO, 2016), making TB the leading cause of
death from an infectious disease. The threat that TB presents to
global health has been significantly heightened by the evolution
and spread of drug-resistant TB: in 2015, a staggering 480,000
people across the world developed multi-drug resistant (MDR)-
TB, defined as TB that is resistant to isoniazid (INH) and
rifampicin (RIF), with or without resistance to other first-line
anti-tubercular drugs. Of these, 9.5% had extensively drug-
resistant (XDR)-TB, which is resistant to INH and RIF (i.e.,
MDR-TB) in addition to any fluoroquinolone and at least
one of the injectable second-line drugs, kanamycin, amikacin,
or capreomycin. Unfortunately, this alarming situation has
continued to worsen with the ongoing evolution of XDR-TB
to forms of the disease that are functionally untreatable with
existing antibiotics (Dheda et al., 2014).

Drug-sensitive TB is treated with a standard “short-course”
regimen comprising a 2-month intensive phase of treatment with
four drugs—INH, RIF, pyrazinamide (PZA), and ethambutol
(EMB)—followed by four additional months of treatment
with INH and RIF in a continuation phase. Under optimal
conditions, this regimen is highly effective at achieving durable
cure of drug-sensitive TB. However, non-adherence to this
protracted therapeutic regimen is common among TB patients
and may result in the emergence of drug resistance through
the acquisition of chromosomal mutations in the aetiological
agent, Mycobacterium tuberculosis (M. tuberculosis), leading to
prolonged infectiousness and poor treatment outcomes (Dheda
et al., 2014). Drug-resistant TB is far more challenging to treat,
requiring the administration of combinations of second- and
third-line drugs that are more toxic, more expensive, and less
efficacious. As a result, this form of the disease is associated
with substantial morbidity and mortality, while consuming

a disproportionate share of national budgets for TB control
in disease-endemic countries—thus compromising TB control
programmes (Dheda et al., 2014, 2017).

The need for new TB drugs for the treatment of drug-

susceptible as well as drug-resistant TB is therefore clear and

urgent. After decades of neglect, a renewed interest in TB drug
development in the late 1990s, which coincided with major

scientific advances including the completion of the first genome
sequence of M. tuberculosis (Cole et al., 1998), has resulted in

a pipeline populated with new as well as repurposed drugs and
drug combinations at various stages of development (http://
www.newtbdrugs.org). A number of criteria are being used
to guide this process: for example, all new TB drugs should:
(i) have novel mechanisms of action to permit their use in
the treatment of drug-resistant forms of the disease; (ii) have
significant treatment-shortening potential when combined with
other agents; (iii) be safe and tolerable; (iv) simplify treatment
by reducing the pill burden and dosing frequency; and, (v)
be compatible with antiretroviral drugs to enable treatment of
patients co-infected with HIV (Zumla et al., 2013, 2014). The

ability to meet these criteria is dependent upon the quality
of compounds that enter the pipeline at the lead optimization
stage. The identification of high-quality leads has, in turn, been
critically reliant on harnessing biological insight from studies
on M. tuberculosis pathogenesis in various models of infection.
A major theme emerging from this work is the biological
complexity of TB at the level of both host and pathogen, with the
genotypic and phenotypic heterogeneity ofM. tuberculosis posing
particularly onerous challenges for new TB drug discovery, as
discussed below.

Approaches to TB Drug Discovery
Genome-wide mutagenesis studies inM. tuberculosis (Long et al.,
2015) have identified genes that are (conditionally) essential for
growth and survival of the bacillus in vitro (Sassetti et al., 2003;
DeJesus et al., 2017), in macrophages (Rengarajan et al., 2005),
and in animalmodels of infection (Sassetti and Rubin, 2003). This
information has underpinned target-based drug discovery efforts
aimed at crippling essential cellular functions in M. tuberculosis.
However, as in other areas of antimicrobial drug discovery (Payne
et al., 2007), the approach has met with very limited success
in the TB field, and has been confounded by a general lack of
information about target vulnerability as well as the impact of
compound metabolism, permeability, and efflux on efficacy. For
this reason, small molecules that potently inhibit M. tuberculosis
enzymes in biochemical assays have failed to translate into leads
with activity against the bacillus in vitro and/or in vivo. In
contrast, phenotypic screening, in which compound libraries are
screened for activity againstM. tuberculosis to identify molecules
with whole-cell activity, has been far more successful, and has
delivered the clinically approved drugs, bedaquiline (Sirturo)
and delamanid (Deltyba), a number of drug candidates that
are currently in development (Mdluli et al., 2015; Singh and
Mizrahi, 2017)—including griselimycin (Kling et al., 2015), PA-
824 (pretomanid) (Stover et al., 2000), PBTZ169 (Makarov et al.,
2014), and Q203 (Pethe et al., 2013)—and other promising
leads such as the Pks13 inhibitor, TAM16 (Aggarwal et al.,
2017). It is worth noting, however, that this approach, too,
has its challenges as mechanisms of action (MOA) of potent
molecules with whole-cell activity can be difficult to elucidate,
thereby complicating the progression of individual compounds
or compound series through the pipeline. Importantly, though,
there are signs indicating greater integration of the two
approaches: on the one hand, target-based whole-cell screening,
in which hit identification from phenotypic screening is
biased toward prioritized targets and pathways, has begun to
gain traction (Abrahams et al., 2012) while, on the other
hand, screening collections of whole-cell actives identified by
phenotypic approaches against high-valueM. tuberculosis targets
offers the prospect of discovering new drug-target pairs as
starting points for hit-to-lead (H2L) programs (Esposito et al.,
2017).

Managing Biological Complexity in TB
Drug Discovery
Genotypic and phenotypic heterogeneity ofM. tuberculosismust
be taken into account from the earliest stage of TB drug

Frontiers in Molecular Biosciences | www.frontiersin.org 2 November 2017 | Volume 4 | Article 75

http://www.newtbdrugs.org
http://www.newtbdrugs.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Reiche et al. Targeting Mycobacterial DNA Replication

discovery. Genotypic heterogeneity is managed by screening
promising hits for activity against representatives from the major
strain lineages of M. tuberculosis (Coscolla and Gagneux, 2014)
and against panels of drug-resistant strains (e.g., Aggarwal et al.,
2017; Blondiaux et al., 2017). The other major mechanism
underlying differential drug susceptibility in M. tuberculosis is
phenotypic antibiotic tolerance (Aldridge et al., 2014; Brauner
et al., 2016), which is thought to be the main reason why
prolonged TB therapy is required in order to achieve relapse-
free cure (Kester and Fortune, 2014; Gold and Nathan,
2017). Antibiotic efficacy can be influenced profoundly by the
physiology, metabolic state, and growth rate of the organism,
with most TB drugs showing significantly reduced efficacy
against M. tuberculosis in slow- or non-growing states (Baer
et al., 2015). Thus, drugs that target cellular processes required
to support bacterial growth tend to have reduced efficacy
against slow- or non-growing organisms (Gold and Nathan,
2017). Mycobacterium tuberculosis encounters complex, hostile
environments during transmission, infection, and disease (Pai
et al., 2016). As an exquisitely adapted human pathogen
endowed with a rich and highly flexible metabolic repertoire
(Baughn and Rhee, 2014; Warner, 2014), the bacillus is able
to adapt its physiology and metabolism in response to the
conditions encountered during each of these stages. These
conditions include intracellular residence in macrophages and
other phagocytic cells, exposure to nitrosative and oxidative
stress, hypoxia, nutrient deprivation, alterations in carbon source
availabilities, and low pH (Baer et al., 2015). In a single patient,
therefore, M. tuberculosis infection can be characterized by
mixed populations of intracellular and extracellular bacilli in a
variety of metabolic states and with variable growth rates. This
complicates treatment (Dartois and Barry, 2013) and has led
to the suggestion that TB should be treated as a polybacterial
infection (Evangelopoulos and McHugh, 2015). The problem is
further complicated by the impact of lesion heterogeneity on
drug pharmacokinetic/pharmacodynamic (PK/PD) parameters
(Dartois, 2014). To address this complexity, assays designed to
recapitulate at least some of the conditions encountered during
infection have been incorporated into drug screening cascades
with the aim of identifying “pan-active” compounds with the
ability to killM. tuberculosis in as wide a range of metabolic states
as possible.

Major Mechanistic Classes of TB Drugs
TB drugs fall into a relatively small number of mechanistic
classes. A defining characteristic of the tubercle bacillus is
its unusual and highly complex cell envelope, which has a
number of distinguishing features including the mycolyl-
arabinogalactan-peptidoglycan complex that links the
peptidoglycan to the mycobacterial outer membrane. Not
surprisingly, a disproportionate number of TB drugs act
on biogenesis of the cell envelope; these include INH and
ethambutol (EMB), the second-line agent, D-cycloserine, and
those that act on the new targets, DprE1 (e.g., PBTZ169)
(Makarov et al., 2014), MmpL3 (e.g., BM212 and other
chemotypes) (Xu et al., 2017), and Pks13 (TAM16) (Aggarwal
et al., 2017). Other drugs target transcription (RIF), protein
synthesis (e.g., linezolid), and energy metabolism (bedaquiline,

Q203). Furthermore, and consistent with the formidable capacity
of M. tuberculosis to metabolize xenobiotics (Awasthi and
Freundlich, 2017), prodrugs are common in the TB drug arsenal
and, for compounds such as PZA, delamanid, and pretomanid,
the respective active metabolites have pleiotropic effects on
mycobacterial metabolism (Matsumoto et al., 2006; Singh et al.,
2008; Anthony et al., 2016).

An important, albeit small, category of TB drugs includes
those that target DNA replication. Until recently, these have
been limited exclusively to the fluoroquinolones, in particular,
moxifloxacin and gatifloxacin, which inhibit DNA gyrase, and
are widely used for the treatment of MDR-TB. However, another
component of the DNA replication machinery has emerged as
an exciting new target for TB drug development through the
discovery that griselimycins target the β-clamp protein, DnaN
(Kling et al., 2015). In the following sections, we consider
the DNA replication and repair pathways of M. tuberculosis
as potential sources of new targets for TB drug development.
This terrain has been extensively reviewed recently, perhaps
signaling the increasing appreciation of DNA metabolism
as underrepresented among common antibiotic targets. The
interested reader is encouraged to consult a number of excellent
articles, both specific to M. tuberculosis (Plocinska et al., 2017)
and of more general interest (Robinson et al., 2012; Sanyal and
Doig, 2012; van Eijk et al., 2017).

THE MYCOBACTERIAL DNA REPLICATION
MACHINERY

Chromosomal replication in bacteria is performed by a large,
multiprotein replisome that ensures coordinated synthesis of
the leading and lagging DNA strands with high efficiency
and accuracy (Beattie and Reyes-Lamothe, 2015; Yao and
O’Donnell, 2016a,b). Broadly, this is accomplished through the
concerted action of three catalytic centers: the helicase-primase
complex, the core complex, and the clamp loader complex
[for comprehensive recent reviews, please refer to Ditse et al.
(2017) and Plocinska et al. (2017). The helicase-primase complex
comprises the DnaB helicase, which unwinds the two DNA
strands, and the DnaG primase, which synthesizes short RNA
primers on the lagging strand to initiate replication by the
replicative DNA polymerase, Pol IIIα. Two core complexes
containing Pol IIIα, the exonuclease subunit, ε, and the small
subunit, θ, synthesize the new DNA strand on both leading and
lagging strand templates. In elegant in vivo studies that were
directed by earlier in vitro studies by Yao and O’Donnell (Yao
and O’Donnell, 2016a,b) and the identification of the β-clamp
(O’Donnell and Kuriyan, 2006), Reyes-Lamothe and colleagues
demonstrated that these core complexes bind to the torroidal β-
clamp proteins that encircle the DNA, providing a tether that
enables processive synthesis and dynamic exchange of replisome
components (Reyes-Lamothe et al., 2012). A τ3δ1δ

′
1χ1ψ1

clamp-loader complex loads the β-clamp proteins onto newly
synthesized RNA primers, with the τ subunits also binding
to the Pol IIIα subunits to couple leading and lagging strand
biosynthesis, and the χ/ψ subunits guiding single-stranded DNA
binding (SSB) proteins onto the DNA lagging strand.
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The composition of the replisome is dynamic (Beattie et al.,
2017; Lewis et al., 2017) and, as evident from the brief
description above, the majority of the constituent proteins
perform specialist functions ranging across DNA unwinding,
RNA primer synthesis, clamp loading, and DNA synthesis.
It is not surprising, therefore, that most of the replisome
components are conserved across bacteria (Robinson et al.,
2012), including M. tuberculosis (Ditse et al., 2017). So, while
replisome function has been most thoroughly investigated in
organisms such as E. coli and B. subtilis (Beattie and Reyes-
Lamothe, 2015), the resulting models of the bacterial replication
machinery are considered readily applicable to less studied
systems, such as M. tuberculosis, with some notable exceptions
(Ditse et al., 2017). For example, there are no clear homologs of
several initiation proteins (DnaC, DnaT, PriB, and PriC) in M.
tuberculosis, neither is there a holE-encoded θ subunit, nor holC-
and holD-encoded χ and ψ clamp-loader subunits, respectively.
Moreover, recent studies have revealed additional departures of
the mycobacterial system from the classic replication models,
most notably in demonstrating a dominant role for the PHP
domain of the essential Pol IIIα subunit, DnaE1, in proofreading
inM. tuberculosis (Rock et al., 2015; Gu et al., 2016), as discussed
elsewhere (Ditse et al., 2017).

Targeting DNA Replication in
M. tuberculosis
TheM. tuberculosis genome comprises approximately 3950 genes
(Cole et al., 1998; Wang and Chen, 2013), of which ∼10%
(461 genes) are absolutely required for growth and survival of
the bacillus under standard aerobic growth conditions in vitro
(DeJesus et al., 2017). Among the “essential” genes, 15 encode
components of the DNA replication machinery; these include the
DnaA replication initiator, PriA helicase loader, DnaB helicase,
DnaG primase, SSB, clamp loader subunits (τ /γ, δ, δ

′

), DNA
polymerases I and III, DnaN β-clamp, DNA ligase I, and type
I and II topoisomerases (Ditse et al., 2017). It is notable that
effective inhibitory agents are available for only a small number
of these essential mycobacterial proteins (Table 1), with DNA
gyrase representing the only clinically validated target—of the
fluoroquinolones, which are used in treatment of MDR-TB.
This implies considerable scope for developing new compounds
targeting the other essential DNA replication components, as
has been proposed recently for M. tuberculosis as well as other
bacterial pathogens (Robinson et al., 2012; Sanyal and Doig,
2012; Plocinska et al., 2017; van Eijk et al., 2017). In turn, it
also suggests the possible utility in investigating the potential
antimycobacterial efficacies of compounds developed for use
against homologous DNA replication and repair proteins in other
bacteria (Table 2).

As applies to antibiotic development in general, overcoming
the natural defenses of the target organism—in particular, the
permeability barrier presented by the (myco)bacterial cell wall,
and the capacity for xenobiotic extrusion via multiple efflux
pumps—is often a key challenge, particularly in converting
hits from biochemical assays into whole-cell actives. Avoiding
compound metabolism (degradation or modification) by the

target bacillus or its human host can present an additional
obstacle. For DNA replication and repair specifically, the non-
availability to date of purified forms of many of the mycobacterial
proteins and/or reconstituted complexes has further restricted
the number of in vitro screens against purified proteins, and has
required that researchers rely on homology models developed
using template structures from other bacteria. Importantly, this
can also complicate any assessment of the druggability and
ligandability of the target protein—both key additional factors in
determining the success of the antibiotic development process,
and which render gene essentiality alone insufficient for target
validation (Hopkins and Groom, 2002; Edfeldt et al., 2011).
It is pleasing to note, therefore, that several recent successes
in expressing different components of the mycobacterial DNA
metabolic machinery (Gong et al., 2004; Rock et al., 2015; Gu
et al., 2016; Banos-Mateos et al., 2017) suggest this critical
roadblock will be overcome shortly.

Targeting DNA and the array of proteins which ensure
its replication and maintenance within the cell presents an
additional challenge, namely ensuring specificity of the applied
drug for its target organism. This can be onerous given that
the proteins which interact with and modify this macromolecule
have retained many key features and commonalities as they
have evolved in different species. For TB, which requires lengthy
treatment, the need to avoid toxicity in the human host presents
an additional major challenge, and one which is likely to exclude
drugs which target DNA directly, such as DNA intercalating
agents (Zhang et al., 2017), and inducers of replication stress
in mammalian cells (i.e., anticancer compounds). Instead,
antitubercular chemotherapies need to be designed to exploit
specific nuances of, and vulnerabilities within, the complement
of mycobacterial DNA replication and repair proteins (Mizrahi
and Huberts, 1996; Rock et al., 2015).

Despite all these challenges, there have been some exciting
recent discoveries—for example, the novel DnaN-targeting
natural product antibiotic, griselimycin (Kling et al., 2015), and
the DnaE inhibitor, nargenicin (Young et al., 2016)—which
support the potential for new drug discovery in this area, and also
suggest that natural product sources are likely to offer the most
promising new agents (Wright, 2017). In the ensuing sections, we
discuss the very limited number of validated and experimental
anti-TB drugs targeting DNA replication, and provide brief
updates on recent progress suggesting the potential to develop
additional experimental compounds to inhibit other components
of the mycobacterial replication machinery.

Targeting the Mycobacterial Pol III
Holoenzyme
Although the MOA of antifolate drugs such as sulfamethoxazole,
trimethoprim, and para-aminosalicylic acid includes depletion
of dNTP pools, preventing DNA replication, the impact of
these agents on M. tuberculosis is polypharmacologic as it also
involves inhibition of RNA and protein synthesis (Minato et al.,
2015). Therefore, in its strictest sense, there are no anti-TB
drugs in clinical use which directly target the DNA biosynthetic
machinery in mycobacteria. That said, a handful of very exciting
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TABLE 1 | Essential proteins involved in DNA replication targeted by anti-tubercular compounds.

Namea In vitro

essentiality

Inhibitor or compound series Target IC50 (µM) MIC (µM) References

DnaN/β (Rv0002) Essential1,3 Griselimycins 0.05–0.84 Kling et al., 2015

GyrB (Rv0005) Essential1,2 Novobiocin 1 6.5 Chopra et al., 2012

Pyrrolamides <0.5 0.026–1.7 Hameed et al., 2014

Thiazolopyridine 0.0005 Kale et al., 2013

Aminopyrazinamides <0.002–>50 <1.0–>81 Shirude et al., 2013

Thiazole-aminopiperidine hybrid analogs 50 28.44 Jeankumar et al., 2013

Methoxyquinolone carboxylic acids >102.96 0.16–6.43 Senthilkumar et al., 2008

Benzothiazinone-piperazine derivatives 0.51-26 1.82–52 Chandran et al., 2015

N-linked aminopiperidines >3.6 6.2–132 Jeankumar et al., 2014

Benzofurans 0.81 Renuka et al., 2014

0.42 Reddy et al., 2014

Quinoxalines and quinoxaline analogs 12–50 Sipos et al., 2015

Phenylthiophene carboxamides >0.76 4.84–78.5 Saxena et al., 2015

Quinoline–aminopiperidine hybrid analogs 0.62–34.5 1.72–67.94 Medapi et al., 2015a

7-Methyljuglone 30 2.6 Karkare et al., 2013

Diospyrin 15 21.4 Karkare et al., 2013

Indoline-dione Schiff bases >40 Aboul-Fadl et al., 2011

4-Aminoquinoline derivatives 0.63–23.92 1.47–49.75 Medapi et al., 2015b

Thiazolopyridone ureas 0.2–19 Kale et al., 2013, 2014

7-chloroquinolinyl-piperazinyl-pyridinylmethyl acetamide

derivatives

1.82–28.3 7.26–76.55 Jeankumar et al., 2016a

Benzo-imidazolyl acid derivatives 0.5–25 7.2–64.14 Jeankumar et al., 2016b

VXc-486 0.28–0.58 Locher et al., 2015

7-substituted-naphthyridinone derivatives# 0.02–0.65 Blanco et al., 2015

GyrA (Rv0006) Essential1,2 Moxifloxacin# 11.2 0.31–2.49 Aubry et al., 2004;

Sulochana et al., 2005

Gatifloxacin# 7.99 82.58–319.7 Alvirez-Freites et al.,

2002; Aubry et al., 2004

Ofloxacin derivatives# >10 0.47–10 Dinakaran et al., 2008

Gatifloxacin derivatives# 8–26.6 0.033–2.1 Sriram et al., 2006

Fluoroquinolone DC-159a# 0.143 Disratthakit and Doi,

2010

Acridine derivatives 5.21–33.9 6.46–57.80 Medapi et al., 2016

DnaE1/α (Rv1547) Essential1,2 251D Butler et al., 2007;

Chhabra et al., 2011

DnaG (Rv2343c) Essential1,2 Doxyrubicin (anthracyclines) 100 Kuron et al., 2014;

Gajadeera et al., 2015

Aloe-emodin Gajadeera et al., 2015

LigA (Rv3014c) Essential1,2 Bis-xylofuranosylated diamines 11.4–260 Srivastava et al., 2005a,b

N-substituted tetracyclic indoles 13.5 Srivastava et al., 2007

Pinafide and Mitonafid >50 >25 Korycka-Machala et al.,

2017

Pyridochromanone 0.6 Gong et al., 2004

TopA/Top I (Rv3646c) Essential1,2 Polyamine scaffolds 5-15 Sandhaus et al., 2016

Hydroxycamptothecin derivatives >2.9 5.46–48.36 Sridevi et al., 2015

Amsacrine and Tryptanthrin 15-42 Sridevi et al., 2015

m-AMSA 125 Godbole et al., 2014

Norclomipramine and Imipramin 60–250 Godbole et al., 2015

Dihydrobenzofuranyl urea 60 Ravishankar et al., 2015

aCole et al. (1998), 1DeJesus et al. (2017), 2Griffin et al. (2011), 3Xu et al. (2014), #Elucidation of the targets of DNA gyrase inhibitors is often complex and involves both GyrA and GyrB

subunits.
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TABLE 2 | Compounds worth investigating that inhibit homologs of essential Mtb proteins validated in other bacterial speciesa.

Mtb

homologueb
Annotated

functionb
In vitro

essentiality

Inhibitor or compound

series

Organism References

DnaA

(Rv0001)

Initiation of

DNA

replication

Essential1,2 3-acetoxy-bi-indols E. coli Mizushima et al., 1996

Sporulation protein SirA B. subtilis Rahn-Lee et al., 2011

DnaN

(Rv0002)

β subunit

of DNA

polymerase

III

Essential1,3 Small-molecule RU7 S. pyogenes; E. coli Georgescu et al., 2008

Toxin-antitoxin SocB C. crescentus Aakre et al., 2013

GyrB

(Rv0005)

DNA

gyrase,

subunit B

Essential1,2 Spiropyrimidinetriones Various Gram-negative and Gram-positive

bacteria

Basarab et al., 2014, 2015

Quinoline pyrimidine

triones

Various Gram-negative and Gram-positive

bacteria

Miller et al., 2008

Isothiazolopyridones E. coli; S. aureus Wiles et al., 2006a

Isothiazoloquinolones E. coli; S. aureus Wiles et al., 2006b

3-amino

quinazolinediones

Various Gram-negative and Gram-positive

bacteria

Tran et al., 2007; Hutchings

et al., 2008

Cyclothialidines Various Gram-positive bacteria Angehrn et al., 2004, 2011;

Lubbers et al., 2007

Benzothiazole ethyl urea

inhibitors

Various Gram-negative and Gram-positive

bacteria

Stokes et al., 2013

Tricyclic

pyrrolopyramidine

derivatives

Various Gram-negative and Gram-positive

bacteria

Tari et al., 2013a,b

Indazole derivatives S. aureus; S. pneumoniae; E. faecium; E.

faecalis

Zhang et al., 2015

Benzimidazole ureas S. aureus; E. faecium; S. pneumoniae; E.

faecalis

Grillot et al., 2014

GyrA

(Rv0006)

DNA

gyrase,

subunit A

Essential1,2 Simocyclinone D8 E. coli Flatman et al., 2005

Novel bacterial

topoisomerase inhibitors

S. aureus; E. coli Bax et al., 2010

NXL101 Gram-positive bacteria Black et al., 2008

SSB (Rv0054) Helix-

destabilizing

protein

Essential1,3 Small-molecule inhibitors K. pneumonia Voter et al., 2017

SSBA inhibitors E. coli; S. aureus; B. anthracis; F. tularensis Glanzer et al., 2016

DnaB

(Rv0058)

DNA

helicase

Essential1,2 Coumarin scaffolds Gram-positive bacteria Aiello et al., 2009; Li et al.,

2012, 2013

Flavonols E. coli Griep et al., 2007

K. pneumoniae Chen and Huang, 2011; Lin

and Huang, 2012

Triaminotriazines S. aureus McKay et al., 2006

PriA (Rv1402) Primosomal

helicase

Essential1 Kaempferol S. aureus Huang et al., 2015

Small-molecule inhibitors K. pneumonia Voter et al., 2017

DnaE1

(Rv1547)

DNA

polymerase

III α

Essential1,2 Nargenicin S. aureus; E. coli Painter et al., 2015

6-anilino-pyrimidine-

diones

B. subtilis Tarantino et al., 1999a

Substituted

deazaguanines

B. subtilis; S. aureus Xu et al., 2011

(Continued)
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TABLE 2 | Continued

Mtb

homologueb
Annotated

functionb
In vitro

essentiality

Inhibitor or compound

series

Organism References

DnaG

(Rv2343c)

Primase Essential1,2 Phenolic

monosaccharides

E. coli Hegde et al., 2004

(p)ppGpp E. coli; B. subtilis Maciąg et al., 2010

Bicyclic macrolide E. coli Chu et al., 2003

Pyrido-thieno-pyrimidines E. coli Agarwal et al., 2007

Benzo-pyrimido-furans E. coli Agarwal et al., 2007

LigA

(Rv3014c)

DNA ligase Essential1,2 6-azaindazoles Gram-positive bacteria Howard et al., 2013

Pyridochromanones S. aureus; E. coli; S. pneumoniae; B.

subtilis

Brotz-Oesterhelt et al., 2003

Arylamino compounds E. coli; S. typhimurium Ciarrocchi et al., 1999

Adenosine analogs Variety of Gram-negative and positive

bacteria

Mills et al., 2011; Stokes

et al., 2011

Diamino-dimethylamino-

pyrimido-pyrimidine

S. pneumoniae; S. aureus; H. influenzae Meier et al., 2008

Aminoalkoxypyrimidine

carboxamides

S. aureus Gu et al., 2012

2-amino-naphthyridine-

carboxamides

S. aureus; S. pneumoniae; H. influenzae Surivet et al., 2012

4-aminopyrido-pyrimidin-

ones

S. aureus; S. pneumoniae; H. influenzae Wang et al., 2012

Adenine-based inhibitors S. pneumoniae; H. influenzae Buurman et al., 2012

B. anthracis, Bacillus anthracis; B. subtilis, Bacillus subtilis; C. crescentus, Caulobacter crescentus; E. faecium, Enterococcus faecium; E. faecalis, Enterococcus faecalis; E.

coli, Escherichia coli; F. tularensis, Francisella tularensis; H. influenzae, Haemophilus influenzae; H. pylori, Helicobacter pylori; K. pneumoniae, Klebsiella pneumoniae; S. aureus,

Staphylococcus aureus; S. pneumonia, Streptococcus pneumoniae; S. pyogenes, Streptococcus pyogenes; S. typhimurium, Salmonella typhimurium.
a Inhibition of either purified protein or bacterial growth; bCole et al. (1998); 1DeJesus et al. (2017), 2Griffin et al. (2011), and 3Xu et al. (2014).

recent studies have established the utility of a number of
compounds that prevent DNA synthesis by targeting novel Pol
III holoenzyme components inM. tuberculosis.

Targeting the β Clamp, DnaN
Together with the dnaN-encoded β clamp, the Pol III∗ core
complex (comprising α and ε subunits only, as M. tuberculosis
lacks θ) and the clamp loader complex (τ /γ, δ, δ′) form
the Pol III holoenzyme (Ditse et al., 2017). Griselimycin, a
cyclic peptide antibiotic produced by Streptomyces spp., was
originally discovered 50 years ago, but was abandoned owing
to its unfavorable pharmacologic profile and the availability of
other drugs such as RIF (Herrmann et al., 2017). Resurgent
interest in neglected antibiotics led a team of investigators from
Sanofi and Helmholtz Institute for Pharmaceutical Research
Saarland to revisit this compound (Kling et al., 2015) as part
of a so-called “rekindling” strategy (Herrmann et al., 2017)
to identify potential anti-TB agents. In MOA studies, it was
discovered that griselimycin and its metabolically more stable
derivative, cyclohexylgriselimycin, bound with very high affinity
(equilibrium dissociation constants of 1.0 × 10−10 and 2.0 ×

10−10, respectively) to the dnaN-encoded β sliding clamp of M.
tuberculosis. Importantly, the contrastingly poor binding of these
compounds to the human DNA clamp protein, PNCA, results in
a very high selectivity index, eliminating any concerns of general
cytotoxicity.

X-ray crystallography revealed that griselimycin preferentially
binds within a hydrophobic pocket located between domains II
and III of DnaN—a target site known to be involved in protein-
protein interactions between the β2 sliding clamp and other DNA
replication and repair proteins such as the Pol IIIα replicative
polymerase subunit. As such, griselimycin functions as a protein-
protein interaction inhibitor and, notably, is bactericidal against
mycobacteria. Moreover, resistance is rare (resistant mutants are
identified at a frequency of∼5× 10−10) and incurs a very severe
fitness cost: in the non-pathogenic M. smegmatis as well as M.
tuberculosis, griselimycin resistance was shown to depend on
sequential amplification of the genomic region containing dnaN
and the mycobacterial origin of replication (ori) site. Perhaps
unsurprisingly, this resulted in a severe (slow) growth defect in
vitro, and did not confer cross-resistance to other antibiotics.

From a drug development perspective, the addition of a

cyclohexyl group to Proline-8 in the griselimycin backbone

resulted in greater metabolic stability as well as increased

lipophilicity, in turn increasing the antimycobacterial potency

significantly from an initial minimum inhibitory concentration
(MIC) of 1.0µg/ml for the parental compound to 0.06µg/ml

in the derivative, all under aerobic conditions in vitro. The

compound was also highly active against intracellular M.

tuberculosis within macrophages, and in a mouse model—both

as a single drug and in combination with the first-line drugs,

RIF and PZA. These observations support the potential utility
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of griselimycin derivatives as anti-TB compounds, possibly to
shorten therapeutic duration—though it should be noted that,
under anaerobic conditions, the compound exhibited a 100-fold
increase in MIC, a result which may have implications for its
efficacy as a sterilizing drug. Nevertheless, griselimycin remains
an exciting prospect, and is undergoing lead optimization
by Sanofi and the TB Alliance (https://www.tballiance.org/
portfolio/compound/cyclopeptides). Of further interest, very
elegant recent work elucidating the pathway for griselimycin
biosynthesis in the producer organism, StreptomycesDSM 40835,
suggests the feasibility of rational modifications to the core
pharmacophore (Lukat et al., 2017), thereby overcoming a
common stumbling block in natural product drug development.

Targeting the Clamp Loader Complex
Mycobacterium tuberculosis possesses a restricted set of four
clamp loader subunits: τ /γ, encoded by dnaX (though it must be
noted that the alternative gene product, γ, has not been observed
in mycobacteria), and the δ and δ′ ATPases, encoded by holA and
holB, respectively (Ditse et al., 2017). Consistent with their role
in loading the β clamp and co-ordinating leading and lagging
strand synthesis, all four subunits are essential inM. tuberculosis
(DeJesus et al., 2017); however, aside from a number of studies
which have identified these components as potentially attractive
targets for novel antimycobacterial agents (Anishetty et al., 2005;
Kinnings et al., 2010; Xu et al., 2014), there are no reports of any
experimental approaches to this effect (Plocinska et al., 2017).
For this reason, these proteins are included in the small set of
“non-validated, essential targets” identified as worthy of future
investigation (Table 3).

Targeting the Pol IIIα Subunit, DnaE1
Mycobacterium tuberculosis encodes a single DNA Pol IIIα
subunit, DnaE1, which is essential for chromosomal replication
(Boshoff et al., 2003) and, therefore, a potentially attractive
target for TB drug discovery (Banos-Mateos et al., 2017). Despite
the fact that RNA polymerase represents a very successful
therapeutic target inM. tuberculosis (Koch et al., 2014) and other
pathogens (Ma et al., 2016), and that DNA polymerases have
been exploited as therapeutic targets for both anti-viral and anti-
cancer drugs (Lange et al., 2011), the number of compounds with
demonstrated activity against bacterial replicative polymerases is
very low and reduces even further when demonstrated whole-
cell activity is applied as a filter (Robinson et al., 2012; van Eijk
et al., 2017). There are several classes of compound known to
inhibit the PolC-type polymerases: the 6-anilinouracils, which
are competitive inhibitors of dGTP binding (Tarantino et al.,
1999b; Wright et al., 2005); the guanine inhibitors, which are
similar to the 6-anilinouracils in functioning as competitive
inhibitors, but which target both PolC and DnaE (Wright et al.,
2005; Xu et al., 2011); the non-nucleobase inhibitors, which
include the anilinopyrimidinediones (such as 6-anilinouracils,
competitive inhibitors of dGTP) (Rose et al., 2006) and the
quinazolin-2-ylamino-quinazolin-4-ols (or BisQuinols), whose
precise MOA remains to be elucidated but appears to involve
competitive binding with the DNA template (Guiles et al., 2009);

and, finally, the very recently described dicoumarin, 3,3
′

-(4-
Nitrobenzylidene)-bis-(4-hydroxycoumarin) (Hou et al., 2015).
In contrast, finding DnaE1-specific inhibitors has proved much
more challenging, with some encouraging exceptions.

Very recent work has identified another natural product,
nargenicin A1, as a putative DnaE1 inhibitor (Painter et al.,
2015). This compound, a macrolide produced by Nocardia sp.
ACC18, was shown to be active against both E. coli and S.
aureus in vitro and, importantly, was effective against S. aureus in
two separate mouse infection models. In S. aureus, spontaneous
resistance was observed at a very low frequency (∼10−9), and
mapped to dnaE. This observation—in combination with in Vitro
data which confirmed that nargenicin binds to the S. aureus
DnaE protein in the presence of DNA, thereby inhibiting DNA
replication—identified the replicative polymerase as the likely
molecular target (Painter et al., 2015). However, the MOA
remains to be elucidated definitively: the sole SNP in dnaE was
not located in the DnaE active site, moreover nargenicin-resistant
mutants displayed only low-level resistance (∼4-fold over MIC).
Although limited literature are available to support the potential
antimycobacterial utility of nargenicin, a patent lodged by Merck
claims that the compound is bactericidal against M. tuberculosis
and, on that basis, under development as potential anti-TB agent
(Young et al., 2016). It is assumed, therefore, that ongoing work
aims to determine whether DnaE1 is the molecular target in
M. tuberculosis and, furthermore, whether the bacillus is able to
develop resistance—and at what cost to replicative fitness.

Compound 251D, a hybrid molecule comprising 6-(3-ethyl-
4-methylanilino)uracil and fluoroquinolone moieties is another
bacterial Pol IIIα inhibitor that has been identified as worthy of
investigation as a potential anti-mycobacterial agent. Whether
it will prove efficacious though is unclear: the target of 251D is
the PolC-type replicative polymerase (Butler et al., 2007), most
commonly found in low-GC Gram-positive bacteria (Timinskas
et al., 2014). As noted above, M. tuberculosis encodes only the
dnaE-type, which is found in both Gram-positive and Gram-
negatives. Therefore, while bioinformatic analyses have predicted
that the compound might be capable of docking with DnaE1,
these studies utilized a model based on the replicative subunit
from the Gram-negative Thermus aquaticus (Chhabra et al.,
2011); inhibition of the mycobacterial DnaE1 in vitro is still to
be demonstrated, so too is the activity in whole-cell assays. As
noted elsewhere (Plocinska et al., 2017), an attraction of this
type of hybrid compound is the potential to target both DNA
gyrase and Pol IIIα with a single molecule, thereby limiting the
potential for resistance development in drug-susceptible cases
and retaining activity against fluoroquinolone-resistant isolates
in drug-resistant TB.

Targeting the Mycobacterial Primosome
Together with nine other proteins (namely, Pol IIIα, the β2
sliding clamp, ε proofreading subunit, τ , δ, and δ′, DnaA,
DNA ligase, and Pol I), the DnaB helicase, DnaG primase,
and SSB constitute the basic replication module that is found
across almost all sequenced bacterial genomes (McHenry, 2011;
Robinson et al., 2012). DnaB and DnaG form the helicase-
primase complex which, in combination with the PriA helicase
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TABLE 3 | Potential, non-validated, essential Mtb targets involved in DNA replication.

Name Encoding

genea
In vitro

essentiality

Comment References

PolA/Pol

I

Rv1629 ED1/E2 Only the 5
′

-3
′

exonuclease domain is essential; the polymerase domain is dispensable in

Mycobacterium smegmatis and yields a phenotype of DNA damage hypersensitivity. The

exonuclease domain is unable to discriminate against dideoxynucleotide 5
′

-triphosphates and

can be inhibited by chain-terminating nucleotide analogs during DNA synthesis.

Gordhan et al., 1996;

Mizrahi and Huberts,

1996

RecO Rv2362c ED1 Involved in DNA repair and RecF-dependent recombination; functions to assemble and

disassemble RecA filaments at single-stranded gaps

Mizrahi and Andersen,

1998; Singh et al., 2016

HolA Rv2413c E1,3 Putative DNA polymerase III δ subunit

UvrD2 Rv3198c ED1/E2 Component of nucleotide excision repair and methyl-directed mismatch repair; possesses an

essential DNA-dependent ATPase activity linked to DNA translocation and protein

displacement, as well as a dispensable helicase activity

Kazarian et al., 2010;

Williams et al., 2011

DnaZX Rv3721c E1,2 Putative DNA polymerase III τ and γ subunits

E, Essential; ED, Essential domain.
aCole et al. (1998); 1DeJesus et al. (2017); 2Griffin et al. (2011); 3Xu et al. (2014).

loader, functions as the mycobacterial primosome: there are no
identifiable mycobacterial homologs of DnaC, DnaT, PriB, or
PriC. As core proteins, these represent compelling drug targets
and, while much further work is required, some recent progress
(summarized below) suggests that a validated clinical candidate
targeting different components of the primosome is a genuine
possibility.

Within any cell, ssDNA generated during DNA replication (as
well as other processes, including exposure to genotoxic stress)
is vulnerable to damage and prone to form secondary structures
that can restrict DNA metabolic processes with potentially lethal
consequences. SSB proteins have evolved to protect ssDNA, and
so are essential to bacillary viability during normal replication
as well as under DNA damaging conditions. Several recent
high-throughput screens have been successful in identifying
small-molecule inhibitors of SSB-protein interactions (Lu et al.,
2010; Marceau et al., 2013; Glanzer et al., 2016). These include
an attempt to identify inhibitors of SSB that might disrupt
both DNA replication and SOS-mediated resistance pathways
within Gram-positive and Gram-negative bacteria (Glanzer et al.,
2016): following in vitro screening, six molecules were identified
which successfully inhibited a broad range of bacterial SSBs,
with a further four exhibiting species-specific activity—thereby
establishing the potential for both broad-spectrum and species-
targeted use. Notably, five of the six compounds were found to
have whole-cell activity against a variety of the tested species,
of which a single compound, 9-hydroxyphenylfluoron, was
associated withminimal activity against the human SSB homolog.
While the potential utility of this approach remains to be
determined for M. tuberculosis, these results suggest the value of
investigating SSB as novel anti-mycobacterial target.

An analogous approach sought to identify compounds that
specifically target the eight highly-conserved residues at the
C-terminus of Klebsiella pneumonia SSB with the objective of
inhibiting interactions between SSB and other proteins (Voter
et al., 2017). Using the interaction between SSB and the essential
protein helicase, PriA, as basis for a high-throughput screen
of more than 72,000 compounds, this study aimed to identify

small molecules capable of inhibiting SSB interactions. Seven
SSB-PriA interaction inhibitors were found to bind to SSB,
with a further two binding PriA, all with IC50 values below
40µM. No data were presented on the activity (or lack thereof)
of these compounds in whole-cell assays; however, this work
reinforces a common theme which suggests that protein-protein
interaction inhibitors may be of specific value in inhibiting the
large complex of proteins which enables DNA replication. In
a similar vein, two potential PriA inhibitors, kaempferol and
myricetin, were shown to inhibit the ATP hydrolysis activity of S.
aureus PriA in vitro (Huang et al., 2015). While these compounds
were also not validated in whole-cell assays, they too represent
encouraging steps in the effort to identify antibiotics that target
primosome proteins and, importantly, provide useful insight
into the isolation of tractable pharmacophores for optimization
against the mycobacterial homologs as part of rational structure-
activity relationship (SAR) efforts.

The DnaG primase synthesizes primers for lagging strand
Okazaki fragments. An early study investigating plant-derived
natural products discovered two phenolic monosaccharides
from Polygonum cuspidatum with low micromolar IC50 values
against E. coli DnaG (Hegde et al., 2004). Similarly, another
molecule from Penicillium verrucosum was shown to inhibit E.
coli primase activity in biochemical assays (Chu et al., 2003).
However, whole-cell activity was attainable only in a mutant
E. coli strain deficient in the lipopolysaccharide layer of the
cell wall as well as the AcrAB efflux system, reinforcing the
potential obstacles associated with permeation and efflux as
part of antibiotic discovery. This is echoed in another study
which identified two classes of compounds with efficacy against
E. coli DnaG in vitro and in efflux pump-deficient whole-cell
assays (Agarwal et al., 2007). In that case, in vitro and whole-
cell activity analyses of related pyrido-thieno-pyrimidines and
benzo-pyrimido-furans identified numerous hits with attractive
IC50 and MIC values, again suggesting the potential to identify
novel primase inhibitors as possible anti-mycobacterial agents.
In this context, it is worth noting the “natural validation” of
DnaG as a suitable target for inhibiting replication: in many
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bacteria including M. tuberculosis, endogenous production of
guanosine tetra- and penta-phosphate, (p)ppGpp, as part of
the stringent response prevents the function of the replicative
primase, curtailing bacterial growth (Maciąg et al., 2010).

The interaction of primase with the ssDNA template is
facilitated by the replicative DNA helicase encoded by DnaB,
another essential protein in M. tuberculosis (Sassetti et al.,
2003; DeJesus et al., 2017). A number of flavonols have been
shown to inhibit DnaB function in other bacteria (Griep et al.,
2007; Lin and Huang, 2012), though no reports exist regarding
the activity of these (or other) compounds in M. tuberculosis.
Unusually, DnaB is among five mycobacterial proteins that
contain inteins, two others of which are also involved in DNA
replication: GyrA and RecA. This observation recently prompted
the interesting proposal from Dziadek and colleagues (Plocinska
et al., 2017) to block the protein splicing machinery as part of
a polypharmacologic approach that would prevent activation of
these intein-containing proteins, potentially disrupting multiple
pathways simultaneously.

Targeting DNA Unwinding: DNA Gyrase
and DNA Topoisomerase
Replication of the chromosomal DNA requires controlled
alterations of the DNA topology to ensure processive synthesis
while limiting the stresses imposed by negative supercoiling
and concatenation of the double-stranded DNA molecule.
The type II topoisomerase, DNA gyrase, functions to relieve
torsional strain by introducing transient double-strand DNA
(dsDNA) breaks which generate negative supercoils in the
bacterial chromosome. Unlike those bacteria which rely on two
type II topoisomerase enzymes—DNA gyrase and TopoIV—
to accomplish these tasks, M. tuberculosis employs only a
GyrA2B2 gyrase comprising gyrA-encoded supercoiling subunits
and gyrB-encoded ATPase proteins. As a drug target, DNA
gyrase represents one of the most successful in antibiotic
history, primarily of the fluoroquinolones which have been
used to treat both Gram-negative and Gram-positive bacterial
pathogens. A series of chemical scaffolds has been employed
in developing successive generations of fluoroquinolones, all
of which function as topoisomerase II poisons, stabilizing the
cleaved DNA-topoisomerase II complex and so resulting in
a large number of double-stranded DNA breaks within the
replicating bacillus which are thought to overwhelm the repair
machinery, triggering a cascade of events that results in bacterial
death (Dwyer et al., 2015). Fluoroquinolones are currently used
as second-line anti-TB agents; however, the imperative to reduce
the duration of therapy has seen several large clinical trials of
novel combination regimens comprising a fluoroquinolone as
frontline agent (Gillespie et al., 2014; Jindani et al., 2014; Merle
et al., 2014). Although unsuccessful, these trials yielded valuable
lessons about the types of preclinical data which might better
inform the design of new therapies (Warner and Mizrahi, 2014),
as well as the potentially critical role of drug distribution and
lesion penetration in ensuring efficacy (Prideaux et al., 2015).

Other classes of gyrase inhibitors include the
aminocoumarins, such as novobiocin, which were the first

of many natural products found to act as gyrase inhibitors
(Barreiro and Ullán, 2016). Since these compounds preferentially
inhibit ATPase (GyrB) function (Lewis et al., 1996), they
are less vulnerable to pre-existing resistance against the
fluoroquinolones, which generally maps to mutations in
gyrA (Chopra et al., 2012). Moreover, in contrast to the
fluoroquinolones which result in dsDNA breaks and so
upregulate the mycobacterial DNA damage response (Gillespie
et al., 2005), the risk of aminocoumarin-induced mutagenesis is
likely to be lower, especially inM. tuberculosis in which exposure
to novobiocin does not trigger expression of the SOS regulon
(Boshoff et al., 2004). However, the relatively poor penetration of
aminocoumarins across cell membranes, their limited solubility,
and the development of the synthetic fluoroquinolones have
limited the clinical utility of this compound class (Barreiro and
Ullán, 2016). In addition, issues with cytotoxicity remain a major
hurdle, particularly for TB which requires extended therapeutic
duration. Recent progress in the development of novel bacterial
topoisomerase inhibitors (NBTIs) targeting DNA gyrase (Grillot
et al., 2014; Blanco et al., 2015; Jeankumar et al., 2015a,b;
Locher et al., 2015) nevertheless suggests that alternatives
to the fluoroquinolones might become available in the
future.

In contrast to the Type II enzymes, Type I topoisomerases
have been very sparsely explored for antibiotic drug discovery.
These enzymes, which cause single-stranded nicks in relaxing
the DNA, perform an essential function in remodeling the
chromosome for various processes including DNA replication
and recombination, RNA transcription, and condensation
and therefore represent an attractive target (Tse-Dinh, 2016).
For this reason, Sridevi et al. conducted virtual screens of
two chemical libraries for the capacity to dock with M.
tuberculosis TopA (Sridevi et al., 2015). Subsequent in vitro
verification of the putative hit compounds identified three
with activity against purified TopA: amasacrine, tryptanthrin,
and hydroxycamptothecin, a derivative of the anticancer
topoisomerase inhibitor camptothecin (Wall et al., 1966). The
latter hit compound was subsequently modified with terminal
hydrophobic moieties to yield a library of fifteen 7-ethyl-10-
hydroxycomptothecin derivatives which exhibited activity
against both drug-susceptible and XDR M. tuberculosis, with
MICs as low as 5.92 and 2.95µM, respectively—a significant
improvement over previous TopA inhibitors (Godbole et al.,
2014, 2015). Moreover, the XDR isolates exhibited enhanced
susceptibility to five of the hydroxycamptothecin derivatives
relative to the drug-susceptible strains, suggesting that this
might offer an attractive target in these otherwise highly
resistant forms. Furthermore, four hydroxycamptothecin
derivatives were identified to be more effective at inhibiting
the resuscitation of non-replicating persisters in both nutrient
starvation as well as oxidative and nitrosative stress models.
These results, together with compounds identified in other
studies and which still require validation in whole-cell assays
(Ravishankar et al., 2015; Sandhaus et al., 2016), highlight
the possibility of successfully and specifically inhibiting
TopA as a novel therapeutic target for drug-susceptible and
drug-resistant TB.
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TARGETING OTHER FUNCTIONS IN
CHROMOSOMAL REPLICATION

During replication, Okazaki fragments are generated which must
be joined together by the bacterial NAD+-dependent DNA
ligase. The enzyme is therefore essential, making it a highly
attractive target for drug development. Inhibition of purified M.
tuberculosis LigA has been reported numerous times (Gong et al.,
2004; Srivastava et al., 2005a,b); however, very few compounds
have been shown to exhibit whole-cell, micromolar-range activity
against M. tuberculosis. Following the high-throughput, in silico
screening of potential LigA inhibitors, Korycka-Machala et al.
identified pinafide and mitonafide as attractive inhibitors of Mtb
growth in vitro (Korycka-Machala et al., 2017). Both compounds
exhibited an MIC of 25µM in 7H9 liquid media and half
maximal inhibitory concentration (IC50) of 50µM. In addition,
the in vitro analysis of LigA inhibition suggested that the two
compounds failed to inhibit T4 ATP-dependent DNA ligase
effectively and, therefore, had specificity for NAD+-dependent
DNA ligase, which is not utilized by eukaryotes. Although
preliminary, these results hold great promise for the development
of similar compounds or analogs capable of inhibiting Mtb
growth at low-micromolar concentrations in vivo through the
inhibition of LigA.

Proof-of-concept Targets from Other
Bacterial Systems
Sporulation Protein SirA and the SocB Toxin
Further insight into the inhibition of essential DNA replicative
pathways can be obtained from natural phenomena which
characterize normal bacterial physiology. Both DnaA and DnaN
have been shown to be inhibited by bacterial-derived molecules,
including a sporulation protein in B. subtilis and a toxin-antitoxin
(TA) system found inCaulobacter crescentus. In the first example,
the interaction of the sporulation protein SirA with domain I
of DnaA prevents the replication initiator protein from binding
to the origin of replication during the start of sporulation of B.
subtilis, effectively inhibiting DNA replication initiation (Rahn-
Lee et al., 2011). As noted above, DnaA is essential for initiation
of DNA replication, with domain I of DnaA being required for
interactions between DnaA monomers and other proteins, such
as the essential dnaB-encoded helicase (Seitz et al., 2000; Abe
et al., 2007). This domain of DnaA is thus an attractive target for
therapeutic intervention.

In a further example, the toxin component of the atypical
SocAB TA system in C. crescentus was found to inhibit DNA
elongation through an interaction with the dnaN-encoded β

sliding clamp (Aakre et al., 2013). Notably, mutations conferring
resistance to SocB mapped to the hydrophobic Pol III-binding
domain of DnaN, indicating a similar binding site to the
previously mentioned antibiotic, griselimycin. Themechanism of
resistance is different, though, and so cross-resistance is unlikely.
In summary, these examples further validate the inhibition of
novel DNA replication components and can potentially be used
as a basis for the rational design of synthetic inhibitors againstM.
tuberculosis DnaA and DnaN in the future.

OTHER MYCOBACTERIAL DNA
REPLICATION AND REPAIR FUNCTIONS

In addition to the specialist DNA replication proteins detailed
above (and see Figure 1), M. tuberculosis encodes a number of
other DNA metabolic functions which are essential for cellular
viability. For some of these, the potential to yield novel drugs
and drug targets is compelling, and includes pathways and
enzymes required for de novo synthesis, salvage, and recycling
of dNTPs for incorporation in newly synthesized DNA, as well
as during repair. A detailed discussion is beyond the scope of
this review, however some examples include the mycobacterial
ribonucleotide reductase (Nurbo et al., 2013; Bueno et al., 2014;
Karlsson et al., 2015), thymidylate synthase (Kogler et al., 2011;
Fivian-Hughes et al., 2012; Singh et al., 2015), and inosine
monophosphate dehydrogenase (Park et al., 2017; Singh et al.,
2017) enzymes. Notably, the roles of these and other related
proteins in maintaining nucleotide homeostasis within the
mycobacterial cell suggests the potential to inhibit replication
and repair functions at multiple stages and, moreover, raises
the possibility of disrupting indirectly other macromolecular
pathways such as RNA transcription and cell wall biosynthesis
owing to their convergence on many common metabolic
precursors and intermediates (Singh et al., 2015, 2017).

A deeper analysis of other specialist DNA replication and
repair functions reveals several more candidates such as Pol
I, RecO, and UvrD2, all of which either are essential or
contain essential domains (Table 3; DeJesus et al., 2017). For
some of these, their perceived potential as novel drug targets
requires further validation. PolA/Pol I is a DNA-dependent
polymerase that possesses bi-directional exonuclease activity.
Previous work identified the 5′-3′ exonuclease domain of PolA
as essential to the growth of M. tuberculosis; furthermore,
while the polymerase domain was shown to be dispensable
in M. smegmatis, deficiency in this function was associated
with DNA damage hypersensitivity (Gordhan et al., 1996;

FIGURE 1 | Essential components of DNA replication and repair in M.

tuberculosis. The schematic highlights the essential DNA replication and repair

functions which are targeted by existing clinical or experimental drugs, as well

as those which have been identified as potential targets for the development of

novel antimycobacterial compounds. See text for details.
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Mizrahi and Huberts, 1996). Importantly, the exonuclease
domain was determined incapable of discriminating against

dideoxynucleotide 5
′

-triphosphates, and could be inhibited by
chain-terminating nucleotide analogs during DNA synthesis,
suggesting the druggability of the target (Mizrahi and Huberts,
1996). Moreover, the involvement of Pol I in DNA damage
tolerance has identified this protein as potential target for
antimutagenesis agents (Plocinska et al., 2017), as explored
further below.

Mycobacterium tuberculosis Rv2362c exhibits 28% identity
with S. typhimurium RecO (Mizrahi and Andersen, 1998),
a protein required in DNA repair and RecF-dependent
recombination and which functions to assemble and disassemble
RecA filaments at single-stranded gaps. Recently, it was reported
that Rv2362c contains a domain that is essential for M.
tuberculosis growth (DeJesus et al., 2017), indicating potential
of targeting the under-investigated protein with therapeutic
compounds in the future. Similarly, UvrD2—a component
of nucleotide excision repair and methyl-directed mismatch
repair pathways—is another mycobacterial protein containing
an essential DNA-dependent ATPase activity implicated in DNA
translocation and protein displacement, as well as a dispensable
helicase activity (Kazarian et al., 2010; Williams et al., 2011).
Although no compounds have been reported to inhibit either of
these proteins, their implication in essential replication functions
appears to warrant further investigation.

Targeting Mutagenesis
The notion of developing “anti-evolution” drugs to prevent
the function of mutagenic repair pathways in M. tuberculosis
has been discussed previously (Warner, 2010). This strategy
seems likely to be especially appropriate for M. tuberculosis
as adaptive evolution of this organism depends solely on
chromosomal rearrangements and point mutations, and all
drug resistance arises through spontaneous mutations in
target or complementary genes (Galagan, 2014). These factors
suggest that inducible mutagenic mechanisms—such as the
imuA’-imuB/dnaE2 mycobacterial mutasome (Warner et al.,
2010)—might drive the evolution of M. tuberculosis within
its host. The limited distribution of ImuA′ and ImuB among
sequenced bacterial genomes therefore identifies the mutasome
as a compelling target for limiting drug resistance. In some
ways, this strategy is analogous to targeting virulence factors
(Liu et al., 2008) and assumes that the selective pressure
to mutate to antibiotic resistance is not as great where
the pathway is essential for pathogenesis but not survival
(Clatworthy et al., 2007). Moreover, inhibiting mutagenesis
should be effective in immune compromised individuals, and
might facilitate clinical trials by identifying compounds that
could supplement existing regimens without compromising
efficacy.

To this end, several approaches appear worth pursuing:
in the first, recent evidence suggests that selective inhibition
of DnaE2 by anilinouracils might be possible (Jadaun et al.,
2015), provided structural data are available to enable rational
identification of compounds which target this alternative α

subunit, and not the replicative DnaE1, the structure of which
was recently elucidated (Banos-Mateos et al., 2017). For this
reason, nargenicin may not be appropriate, though dual targeting
of both DnaE proteins might nevertheless represent a profitable
strategy. Secondly, targeting the PHP domain exonuclease of
DnaE1 provides another attractive option as inactivation of
this domain was found to render M. smegmatis hypersensitive
to the chain-terminating adenosine analog, ara-A (Rock et al.,
2015). The recent determination of the structure of the PHP
domain, which lacks a human homolog, has created an
opportunity for structure-guided design of inhibitors against this
exonuclease (Banos-Mateos et al., 2017). In the third approach,
the identification of griselimycin supports the potential for
developing novel protein-protein interaction inhibitors designed
to disrupt mutasome function. Further work is underway in
our laboratory to elucidate the molecular interactions which
are essential to DnaE2-dependent mutagenesis, with genetic
evidence indicating that preventing ImuB from functioning as
“hub” protein might collapse this pathway (Warner et al., 2010).
In conclusion, the possibility of targeting replication and repair
mechanisms implicated in the evolution of drug resistance seems
a challenge worth tackling: if successful, it is proposed that these
compounds might be co-administered with other agents in novel
combination therapies designed to protect existing antibiotics.
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