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Alternative splicing of precursor mRNA is an important mechanism that increases

transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA

levels. Alternative splicing occurs at high frequency in brain tissues and contributes

to every step of nervous system development, including cell-fate decisions, neuronal

migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA

sequencing have provided insights into the molecular mechanisms underlying the

effects of alternative splicing in stem cell self-renewal and neuronal fate specification.

Timely expression and perhaps post-translational modification of neuron-specific splicing

regulators play important roles in neuronal development. Alternative splicing of many key

transcription regulators or epigenetic factors reprograms the transcriptome and hence

contributes to stem cell fate determination. During neuronal differentiation, alternative

splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways.

Moreover, alternative splicing impacts cortical lamination and neuronal development

and function. In this review, we focus on recent progress toward understanding the

contributions of alternative splicing to neurogenesis and brain development, which has

shed light on how splicing defects may cause brain disorders and diseases.

Keywords: alternative splicing, splicing factors, neurogenesis, neuronal differentiation, neuronal migration,

neuronal development

INTRODUCTION

Alternative splicing is a crucial step of post-transcriptional gene expression that substantially
increases transcriptome diversity and is critical for diverse cellular processes, including cell
differentiation and development as well as cell reprogramming and tissue remodeling. Our
understanding of the physiological significance and disease implications of alternative splicing has
been greatly improved by genetic approaches and RNA deep sequencing. In this review, we focus
on alternative splicing in neuronal differentiation from stem/progenitor cells, neuronal migration
and functional development of neurons (Figure 1).

Alternative Splicing and Its Role in Development
Approximately 95% of human multi-exon genes undergo alternative splicing of precursor mRNAs
(pre-mRNAs) (Pan et al., 2008; Wang et al., 2008). In mammals, alternative splicing involves
differential use of intron splice sites or the inclusion/exclusion of exons. Alternatively spliced
mRNAs may generate protein isoforms with distinct and perhaps antagonistic functions or
with altered stability or subcellular localization (Dredge et al., 2001; Matlin et al., 2005). In
addition, alternative splicing may introduce premature termination codons into the resulting
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FIGURE 1 | Function of splicing regulatory proteins in the mammalian nervous system. Splicing factors (yellow boxes) participate in a number of different processes

during brain development, including (A) self-renewing division and fate determination of neural stem cells, and neuronal cell differentiation, (B) migration of newly born

neuron during corticogenesis, and (C) synaptogenesis or neural activity-regulated synaptic function.

mature mRNAs, leading to mRNA downregulation via nonsense-
mediated decay (Lareau et al., 2007). Alternative splicing
is governed by the interplay between trans-acting splicing
regulators and cis-elements of pre-mRNAs (Matera and Wang,
2014). In general, a splicing activator may enhance splice-site
recognition or utilization by the spliceosome, whereas a splicing
suppressor may prevent the association of spliceosomal factors
with pre-mRNAs or compete off splicing activators. Moreover,
alternative splicing is also influenced by transcription rate,
histone modifications, and chromatin structure (Kornblihtt et al.,
2004, 2013; Luco et al., 2010). Alternative splicing may occur
in a tissue- or developmental-specific manner or in response to
cellular signals and no doubt plays critical roles in many cellular
processes (Nilsen and Graveley, 2010).

Alternative splicing provides a means to differentiate gene
expression between cell types during development. Tissue-
specific regulation of alternative splicing involves the coordinated

actions of splicing factors. Cell type-specific or timely expression
of certain splicing regulators is important for precise control
of alternative splicing. For example, the RNA-binding protein
CUGBP and ETR-3-like factor 1 (CELF1) and muscleblind-like 1
(MBNL1) exhibit switched expression during heart development
to regulate splicing of cardiac mRNAs (Kalsotra et al., 2008).
Forced expression of embryonic CELF1 or ablation of MBNL1
in the adult mouse heart reverts splicing toward embryonic/early
postnatal patterns (Kalsotra et al., 2008). Similarly, switching
of splicing regulators also occurs in the developing brain (see
below). Thus, temporal control of alternative splicing is critical
for fetal-to-adult transitions during development. Coordinated
splicing networks contribute substantially to the development of
various tissues and organs as well as their physiology.

Splicing abnormalities are linked to human genetic diseases,
including brain disorder (Raj and Blencowe, 2015; Vuong
et al., 2016). For example, familial dysautonomia is caused by
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a 5′ splice site mutation of the IKBKAP gene (Slaugenhaupt
et al., 2001). This mutation reduces IKBKAP expression
via alternative splicing-coupled nonsense-mediated decay, and
hence downregulates a set of cell migration-related genes
(Anderson et al., 2001; Yoshida et al., 2015). Gene abnormalities
in the splicing factor RBFOX1 gene have been linked to autism
spectrum disorder and additional neuromuscular abnormalities
(Barnby et al., 2005; Martin et al., 2007; Conboy, 2017). The
associations between splicing defects and human disease have
been reviewed extensively elsewhere, and will not be emphasized
in this review.

Experimental Insights into the Role of
Alternative Splicing in Brain Development
Emerging new technologies for RNA studies have greatly
enhanced our knowledge of alternative splicing in development.
Capture of specific mRNA ribonucleoproteins followed by high-
throughput sequencing or splicing microarrays has identified
dynamic alternative splicing programs during cell differentiation
or development and also revealed the tissue-specific or
developmentally regulated RNA-binding landscapes of splicing
factors (Rossbach et al., 2014). Use of knockout and transgenic
mice has identified the targets and physiological roles of neuronal
splicing regulators and revealed how their defects impact brain
development and neuronal function (Table 1). Moreover, genetic
tagging with a reporter provides a tool for isolating specific
cell types for transcriptome comparison (Wang et al., 2011).
For example, by using Tbr2 promoter-driven green fluorescent
protein as a tracer, neural progenitor cells (NPCs) can be
distinguished from neurons in the developing brain (Zhang
et al., 2016). Recently, single-cell profiling techniques enabled
the resolution of population heterogeneity and revealed insights
into cellular differentiation and development (Darmanis et al.,
2015). Computational analysis of deep-sequencing data and
annotated databases helped establish the correlation between
genetic mutations, splicing variants, and disease (Kircher et al.,
2014; Mort et al., 2014). Recently, an unbiased “deep-learning”
computational method provided a more powerful link between
rare single-nucleotide variations and neurological disorders such
as spinal muscular atrophy and autism spectrum disorder
(Xiong et al., 2015). Advanced sequencing tools would likely
facilitate the detection of cell type- and stimulus-dependent
splicing changes and perhaps the identification of previously
unrecognized splicing products such as circular RNAs during
neuronal development (van Rossum et al., 2016).

Neuronal Differentiation Involves
Coordinated Changes in the Expression of
Splicing Factors
Genome-wide transcriptome analysis has revealed an
exceptionally high level of alternative splicing in the mammalian
brain (Yeo et al., 2004). The nervous system adopts alternative
splicing for cell differentiation, morphogenesis, the formation of
complex neuronal networks, and the establishment/plasticity of
delicate synapses (Norris and Calarco, 2012; Zheng and Black,
2013). Splicing regulation may involve some neuron-specific

splicing factors and their interplay with ubiquitous factors
(Raj and Blencowe, 2015; Vuong et al., 2016). A switch from
predominant expression of PTBP1 to its neuronal paralog PTBP2
(nPTB), which occurs during differentiation of progenitor cells
into postmitotic neurons, is important for the stem cell-to-
neuron transition (Boutz et al., 2007; Vuong et al., 2016). PTBP1
is downregulated by the neuron-specific microRNA miR-124
(Makeyev et al., 2007). Notably, PTBP1 suppresses the inclusion
of exon 10 of PTBP2, producing an exon 10-skipped mRNA
that is susceptible to nonsense-mediated decay (Figure 2).
Thus, PTBP1 restricts the level of PTBP2 in non-neuronal cells
or NPCs. RBM4 is a ubiquitous RNA-binding protein, but
its level is elevated during neuronal differentiation of mouse
embryonal carcinoma P19 cells (Tarn et al., 2016). Interestingly,
RBM4 acts in the same manner as PTBP1 to suppress exon
11/10 of PTBP1/PTBP2 in myoblast cells, and it downregulates
PTBP1/PTBP2 levels (Lin and Tarn, 2011; Figure 2). However,
during neuronal differentiation of mesenchymal stem cells,
RBM4 induces the skipping of mammalian-specific exon 9
of PTBP1, which produces a functional PTBP1 isoform with
compromised splicing activity compared with full-length PTBP1
(Su et al., 2017). Therefore, RBM4 attenuates the activity of
PTBP1 in splicing regulation (Su et al., 2017; Figure 2). Notably,
PTBP2 does not contain an exon equivalent of exon 9 of PTBP1,
so PTBP2 is likely resistant to regulation by RBM4 during
stem cell differentiation. On the other hand, the neural-specific
SR-related protein of 100 kDa (nSR100/SRRM4) promotes
exon 10 inclusion of PTBP2 and thus maintains PTBP2 level in
neurons (Calarco et al., 2009).

PTBP1 and PTBP2 regulate overlapping but distinct
repertoires of splicing events. PTBP1 suppresses the splicing
of a subset of neural targets to inhibit neuronal differentiation.
PTBP2 expression is elevated in differentiating neuronal cells
and activates certain neural targets that promote differentiation
(Boutz et al., 2007). Nevertheless, PTBP2 is downregulated
as cells mature and undergo synaptogenesis. This sequential
downregulation of PTBP1 and PTBP2 is important for
two transitions of splicing regulation throughout neuronal
differentiation and maturation and for functional expression of
postsynaptic density protein-95 (PSD-95) via splicing control
(Zheng et al., 2012). Both RBM4 and PTBP1 have preference for
CU-rich cis-elements and hence antagonize each other during
splicing regulation; thus, in general, they function oppositely in
cell differentiation.

Besides the above, the neuron-specific splicing regulator
Nova-1 can negatively autoregulate its own expression by
suppressing exon 4 inclusion (Dredge et al., 2005). A study
revealed that RBM4 promotes Nova-1 exon 4 inclusion
during differentiation and maturation of brown adipocytes
(Lin J. C. et al., 2016), but whether this regulation occurs in
neurons is unclear. Moreover, all three Rbfox family members
exploit a conserved mechanism of splicing autoregulation to
produce a splice isoform with a truncated RNA-recognition
motif; this isoform has dominant-negative activity in
splicing (Damianov and Black, 2010). The splicing switch
of RBFOX3 from the truncated isoform to the full-length
protein occurs in a development-dependent manner, and the

Frontiers in Molecular Biosciences | www.frontiersin.org 3 February 2018 | Volume 5 | Article 12

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Su et al. Alternative Splicing in Neurogenesis and Brain Development

TABLE 1 | Examples of the function of neuronal splicing regulators in neuronal differentiation and brain development.

Splicing regulators Targets Knockout/downregulation of splicing regulators References

Target exon Phenotypes

nSR100/SRRM4 Protrudin (Zfyve27) suppressed inclusion of exon L between

exon 8 and 9

impaired neurite outgrowth Ohnishi et al., 2017

Ptbp1 & 2 PSD-95 (Dlg4) exon 18 inclusion impaired development of glutamatergic

neurons

Zheng et al., 2012

Ptbp1 Flna included the poison exon brain specific malformation Zhang et al., 2016

Ptbp2 Dnm1 altered mutually exclusive selection of

exons 9a/9b

impaired synaptic function, and caused

seizures and behavioral deficits

Li et al., 2014

Nova2 Dab1 exon 7bc (9bc) inclusion impaired radial migration and Purkinje neuron

migration

Yano et al., 2010

Rbfox3 Numb repressed Numb exon 12 inclusion impaired neuronal differentiation Kim et al., 2013

Rbfox1 Snap25 altered mutually exclusive selection of

exons 5a/5b

caused seizure Gehman et al., 2011

SRSF1 ApoER2 promote exon 19 inclusion impaired synapse formation and function Hinrich et al., 2016

hnRNP H1/H2 TRF2 exon 7 (TRF2-S) inclusion impaired neuronal differentiation. Grammatikakis et al., 2016

RBM4 Numb increased exon 3 skipping and exon 9

inclusion

impaired neuronal differentiation and neuronal

outgrowth

Tarn et al., 2016

PSD-95: postsynaptic density protein 95.

Dnm1: dynamin1.

Flna: filamin A.

Dab1: disabled homolog-1.

hnRNP: heterogeneous nuclear ribonucleoprotein.

Snap25: synaptosomal-associated protein 25.

ApoER2: apolipoprotein E receptor 2.

TRF2: telomeric repeat-binding factor 2.

latter is necessary for late neuronal differentiation (Kim et al.,
2013).

Together, precise timing and level control of splicing
regulators is critical for dynamic alternative splicing regulation
during cell differentiation and development.

Alternative Splicing in Self-renewal and
Differentiation of Stem Cells
Alternative splicing also plays a critical role in self-renewal
of pluripotent cells as well as in cell-fate determination
and reprogramming (Graveley et al., 2011; Ye and Blelloch,
2014). Genome-wide RNA sequencing (RNA-seq) studies
have revealed that stem cells and differentiated cells exhibit
different splicing profiles (Pritsker et al., 2005). Fine-tuning
the expression of several stemness-related transcription factors
such as Oct4, Nanog, Sox2, and Tcf3 is important for
pluripotency maintenance (Chen et al., 2008; Kim et al., 2008).
In particular, different isoforms of Tcf3 and Oct4 influence
self-renewal of stem cells (Atlasi et al., 2008; Salomonis
et al., 2010). The forkhead box transcription factor FoxP1
plays a hierarchical role in the transcription network of
pluripotency; the switching of its mutually exclusive exons
controls pluripotency and reprogramming of embryonic stem
cells (Gabut et al., 2011). Several splicing factors modulate
alternative splicing in embryonic stem cells and contribute
positively (such as Rbfox2 and SRSF2) or negatively (such
as MBNL1/2) to maintaining the stem cell splicing program
(Ye and Blelloch, 2014). Thus, alternative splicing plays a

critical role in the decision between stem cell self-renewal and
differentiation.

Alternative splicing modulates the activity of certain histone
modification enzymes in neuronal cells and hence influences the
epigenetic status (Fiszbein and Kornblihtt, 2016). The histone
methyltransferase G9a is a suppressor of pluripotency-related
genes (Kellner and Kikyo, 2010). During neuronal differentiation
of neuroblastoma neuro-2a cells, alternative exon inclusion of
G9a promotes its nuclear localization and hence increases the
dimethylation of histone 3 lysine 9 (H3K9me2). Thus, the
regulation of G9a alternative splicing is necessary for efficient
neuronal differentiation (Fiszbein et al., 2016). More intriguingly,
alternative splicing also modulates the activity of the demethylase
LSD1 (Laurent et al., 2015). Therefore, the balanced methylation
of H3K9 is likely important for regulating gene expression
profiles during neuronal differentiation.

Alternative Splicing in Differentiation of
Neuronal Stem/Progenitor Cells
Transcriptome profiling demonstrated the dynamic nature of
alternative splicing events in different cell types, brain regions,
and developmental stages (Johnson et al., 2009; Zhang et al.,
2014; Yan et al., 2015). RNA-seq analysis of purified NPCs
and differentiating neurons in the mouse cortex revealed
an alternative splicing switch for a set of neuron-specific
exons during differentiation (Zhang et al., 2016). Analysis of
human cerebral organoids and fetal neocortex also revealed
different splicing patterns in intermediate progenitor cells, redial
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FIGURE 2 | RBM4 regulates PTBP1 expression or splicing activity by

modulating exon selection during the differentiation of non-neuronal or

neuronal cells. (A) RBM4 suppresses the cellular level of both PTBP1 and

PTBP2 during non-neuronal cell differentiation via activating exon 11/10

skipping of PTBP1/PTBP2 mRNAs (Left). PTBP1 also downregulates PTBP2

level by promoting exon 10 skipping of PTBP2 mRNA (Left). During neuronal

differentiation, PTBP1 level is downregulated by miR-124, whereas

RBM4-induced exon 9 skipping of PTBP1 mRNA generates an isoform with

reduced splicing activity, which compromises the splicing effect of PTBP1

during neural differentiation (Right). (B) Exclusion of exon 11/10 (red box) of

PTBP1/PTBP2 generates splicing isoforms with a premature

translation-termination codon, and such isoforms are subjected to degradation

via alternative splicing-coupled nonsense-mediated decay. RBM4 promotes

exon 9 (blue box) skipping, which is specific to PTBP1.

glial cells, immature neurons, and neurons during cortical
development (Camp et al., 2015; Zhang et al., 2016). Therefore,
splicing regulation establishes cell type- and stage-specific gene
expression profiles during neurogenesis and brain development,
which rely on proper expression and function of splicing
regulators (Raj and Blencowe, 2015; Vuong et al., 2016; Baralle
and Giudice, 2017).

Among neuronal splicing regulators, PTBP1 is exclusively
expressed in embryonic stem cells and NPCs, whereas PTBP2
and Rbfox proteins are mainly expressed in neurons. A recent
report showed that PTBP1 and Rbfox antagonistically modulate
neuronal fate via their roles in regulating alternative exon
selection (Zhang et al., 2016). Rbfox switches the centrosomal
isoform of Ninein to the non-centrosomal form as a result of
alternative splicing and hence influences centriolar dynamics
and promotes NPC differentiation. On the other hand, PTBP1
suppresses a premature stop codon-containing exon of filamin
A (Flna) in NPCs and hence maintains apical progenitors.
Genetic mutations that generate aberrant Flna splice isoforms
in NPCs are linked to periventricular nodular heterotopia, a
neuronal migration disorder. Thus, a better understanding of
the mechanisms of neuronal alternative splicing may provide
plausible treatment strategies for neuronal disorders.

The Notch receptors play a critical role in fate decisions of
various stem/progenitor cells, and Numb is a critical effector of
Notch signaling. Alternative splicing of exons 3 and 9 of Numb
generate four different isoforms, which differentially modulate
Notch activity. The detail of how alternative splicing of Numb
modulates cell differentiation is not completely known. Rbfox3
can regulate alternative splicing of Numb, and Rbfox3 depletion
impairs neurogenesis in the hippocampal dentate gyrus (Kim
et al., 2013; Lin Y. S. et al., 2016). Our recent study showed that
RBM4 determines the selection of two alternative exons, and its
overexpression preferentially produces a Numb isoform with the
highest potential to promote Mash1 expression and subsequent
differentiation of neuronal progenitor cells. Moreover, additional
splicing regulators ofNumb have been implicated in either cancer
progression or tumor suppression (Bechara et al., 2013; Zong
et al., 2014). Thus, it is conceivable that fine-tuning the expression
of Numb isoforms during fate decision of neuronal progenitor
cells may constitute a combinatorial effect of multiple splicing
regulators.

Different Alternative Splicing Patterns in
Neurons and Glia
Brain tissues comprise a variety of cell types including neural
precursor cells, neurons, and various subtypes of neuroglia.
Tantalizing issues remain as to whether and how alternative
splicing influences neural fate determination and which splicing
regulators are involved (Raj and Blencowe, 2015). Expression
of specific alternatively spliced isoforms in distinct neurons
has been reported in Caenorhabditis elegans and Drosophila
(Lah et al., 2014; Norris et al., 2014). For example, UNC75
and EXC7 (respective homologs of mammalian CELF and
Hu/ELAV) differentially modulate alternative splicing of unc-16
in GABAergic motor neurons and cholinergic motor neurons
(Norris et al., 2014). The energy requirement of different types
of brain cells varies; the oxidative and glycolytic pathways
predominate in neurons and astrocytes, respectively (Magistretti
and Allaman, 2015). Transcriptome profiling has revealed
distinct pyruvate kinase M (PKM) splice isoforms, i.e., PKM1
and PKM2 in neurons and glial cells, respectively (Zhang
et al., 2014). The PKM1 and PKM2 isoforms result from
mutually exclusive exon selection. Selective expression of PKM
isoforms is also critical for regulating glucose metabolism in
muscle and cancer (Christofk et al., 2008). Gradual switching
of embryonic PKM2 to adult PKM1 occurs during mouse brain
development and during neuronal differentiation of human
mesenchymal stem cells (Su et al., 2017). RBM4 antagonizes
PTBP1 activity and hence promotes the PKM2-to-PKM1
switch. Overexpression of RBM4 or PKM1 increases oxygen
consumption and accordingly facilitates neuronal differentiation.
These results support the high energy demand of neurons.
Because neuroenergetics is dynamic and changes in response
to neuronal activity such as glutamatergic stimulation and
hypoxia (Bélanger et al., 2011), whether the expression of
the splice isoforms of certain synthetic enzymes, including
PKMs, is coordinately changed remains to be investigated.
PKM is involved not only in cell metabolism but also in the
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modulation of gene expression. PKM2 acts coordinately with
β-catenin during gene activation underlying the epithelial-to-
mesenchymal transition and thus promotes cell proliferation
and tumorigenesis (Yang et al., 2011). A recent report
demonstrated that the RNA binding protein Quaking maintains
neural stem cell functions during early brain development by
preventing the PKM2 switch to PKM1 (Hayakawa-Yano et al.,
2017).

Alternative Splicing in Neuronal Migration
and Brain Development
The mammalian cerebral cortex has a highly organized six-
layered structure consisting of a variety of neuron subtypes
(Molyneaux et al., 2007). Positioning of newborn neurons
that originate from the ventricular zone and subventricular
zone in the embryonic cortical plate occurs in a birth
date-dependent “inside-out” manner (Cooper, 2008; Gao and
Godbout, 2013). Several signaling cascades regulate neuronal
migration in the cortical plate, including the Reelin-Disabled
homolog 1 (Dab1) pathway (Franco et al., 2011; Gao and
Godbout, 2013). Upon binding to the very low density
lipoprotein receptor (VLDLR) or apolipoprotein E receptor
2 (ApoER2), Reelin induces differential phosphorylation of
the cytosolic adaptor protein Dab1 and elicits subsequent
downstream events that link Dab1 to the control of neuronal
migration. Reeler mutant mice and mice with spontaneous or
targeted mutations of Dab1 or either of the receptors exhibit
similar phenotypes characterized by ataxia, tremors, and a
reeling gait (D’Arcangelo et al., 1995; Howell et al., 1997;
Sheldon et al., 1997; Trommsdorff et al., 1999). Differential exon
selection of Dab1 occurs during brain development, resulting
in multiple splice isoforms (Gao et al., 2012). Nova2 suppresses
the inclusion of mouse Dab1 exon 9b/c (Yano et al., 2010).
Nova2 knockout causes neuronal migration defects in both
the cerebral cortex and cerebellum due to increasing aberrant
exon 9 b/c-containing Dab1. Differential selection of exons
7 and 8 of Dab1 is also intriguing because these two exons
encode a domain containing critical tyrosines that are targets
of Reelin-mediated phosphorylation. Moreover, ApoER2 also
undergoes alternative splicing. The exon 19-containing domain
of ApoER2 is important for synapse formation and function
via its interaction with PSD-95 (Beffert et al., 2005; Hinrich
et al., 2016). Exon 19 inclusion is reduced in the brain of
Alzheimer’s patients. It has been shown that SRSF1 inhibits
exon 19 inclusion of ApoER2 and that blocking SRSF1-binding
sites using an antisense oligonucleotide has therapeutic potential
(Hinrich et al., 2016). Reelin signaling also plays a role in
dendritic spine formation and modulates synaptic plasticity in
the developing and adult brain (D’Arcangelo, 2014). Therefore,
imbalance of splicing factors likely affects neuronal migration
and cortical lamination.

Alternative Splicing in Neurologic
Functions
Alternative splicing also regulates neurologic functions such
as axon guidance and synaptogenesis. A number of neuronal

mRNAs undergo alternative exon selection to generate isoforms
in response to neuronal stimulation. Synaptic activity promotes
exon 19 inclusion of ApoER2, which then binds Reelin and
enhances long-term potentiation (Beffert et al., 2005). Moreover,
alternative splicing of the synaptic cell-adhesion molecules
neurexins and neuroligins generates multiple isoforms, and
interactions between the various isoforms modify their activity
toward glutamatergic and GABA-mediated synaptogenesis.
Therefore, alternative splicing can shape the strength and
functions of synapses. PTBP2 and Sam68 are involved in splicing
regulation of neurexins (Resnick et al., 2008; Iijima et al.,
2011). Notably, Sam68 activity is regulated by depolarization-
induced calcium/calmodulin-dependent kinase IV, indicating
that neuronal activity controls the diversity of neurexins via
splicing regulation and hence influences synaptic functions
(Iijima et al., 2011). Moreover, alternative splicing also regulates
the dynamics of neuronal transcriptomes. In pilocarpine-
stimulated neurons, exclusion of a cryptic “poison” exon of
the sodium channel Scn9a mRNA increases the SCN9A level
(Eom et al., 2013). A more recent report revealed that neurons
can rapidly regulate the expression of several dendritic mRNAs
by removing introns that are retained in existing transcripts
stored in the nucleus (Mauger et al., 2016). Thus, rapid and
signal-responsive splicing regulation is critical for neurological
functions.

Perspectives
The combination of various genetic tools and RNA-seq has
advanced our knowledge of the impact of alternative splicing
on neural development and function. Recently, the use of
cell-surface or genetically engineered fluorescent protein
markers and fluorescence-activated cell sorting has enabled
the isolation of stem/progenitor cells and specific neuronal
types (Zhang et al., 2016). Using Cre recombinase-expressing
mouse lines, one can manipulate the temporal expression of
a splicing regulator or wild-type or disease-related mutant
in specific types of neurons and investigate changes in the
transcriptome or splicing patterns or isolate target mRNA
ribonucleoproteins (Möröy and Heyd, 2007). Single-cell RNA-
seq has begun to clarify cell-to-cell transcriptome variability.
Since mammalian brains comprise complex and diverse
neuronal cell types, to decipher alternative splicing patterns
at the single-neuron level still remains challenged. More
recently, a single-cell topological data analysis revealed time-
series gene expression changes of individual cells throughout
murine embryonic stem cell differentiation into motor neurons
(Rizvi et al., 2017). With the aid of new technologies, future
investigations will paint a more comprehensive picture and
define the dynamic scope of how splicing programming
determines stem/progenitor cell fate determination and
differentiation into the various brain cell types as well as
neural circuit development. Emerging in situ sequencing
and single-cell fluorescence in situ hybridization strategies
(Liu and Trapnell, 2016) may allow revealing topological
changes of alternative splicing in a brain network and
perhaps unveiling pathological mechanisms at the single-cell
level.
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