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The computational modeling of peptide inhibitors to target protein-protein binding

interfaces is growing in interest as these are often too large, too shallow, and too

feature-less for conventional small molecule compounds. Here, we present a rare

successful application of an alchemical binding free energy method for the calculation

of converged absolute binding free energies of a series of protein-peptide complexes.

Specifically, we report the binding free energies of a series of cyclic peptides derived

from the LEDGF/p75 protein to the integrase receptor of the HIV1 virus. The simulations

recapitulate the effect of mutations relative to the wild-type binding motif of LEDGF/p75,

providing structural, energetic and dynamical interpretations of the observed trends. The

equilibration and convergence of the calculations are carefully analyzed. Convergence is

aided by the adoption of a single-decoupling alchemical approach with implicit solvation,

which circumvents the convergence difficulties of conventional double-decoupling

protocols. We hereby present the single-decoupling methodology and critically evaluate

its advantages and limitations. We also discuss some of the challenges and potential

pitfalls of binding free energy calculations for complex molecular systems which have

generally limited their applicability to the quantitative study of protein-peptide binding

equilibria.

Keywords: protein-peptide complexes, binding free energy, alchemical calculations, single-decoupling, implicit

solvent, LEDGF/p75, HIV integrase

1. INTRODUCTION

Protein-protein interactions are pervasive in biological systems as they drive and regulate
critical functions within the cell (Kastritis and Bonvin, 2013). Concomitantly, there is a strong
interest in developing therapeutic drugs targeting protein-protein interactions (Higueruelo
et al., 2009; Basse et al., 2013; Labb et al., 2013; Arkin et al., 2014). The rationale
of using small-molecules or peptides to influence protein-protein binding rests on the
observation that, even though they may involve large and complex molecular assemblies
consisting of thousands of atoms, often protein-protein interactions are commanded by a
relatively small number of interfacial amino acid residues that are part of short linear
recognition motifs (London et al., 2010). Standard drug design approaches employed
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for the development of small molecule inhibitors have been
found generally insufficient compared to peptide constructs in
disrupting protein-protein interactions. Peptides, being larger
than most small molecule inhibitors, can target large and shallow
binding sites with a small ratio of binding energy per atom
(Kastritis and Bonvin, 2013), which are often categorized as
“undruggable” by standard definition.

A large variety of approaches are available to model small
molecule-protein interactions. These range from ligand-based
cheminformatic and pharmacophore models (Lavecchia and
Di Giovanni, 2013; Yan et al., 2016), to structure-based docking
and scoring (Ewing et al., 2001; Gray et al., 2003; Verdonk et al.,
2003; Friesner et al., 2004; Kozakov et al., 2006; Zhou et al.,
2007; Perryman et al., 2014; Pierce et al., 2014) and physics-based
atomistic models (Gilson et al., 1997; Wang et al., 2015; Bell et al.,
2016; Ellis et al., 2016; Zuckerman and Chong, 2017). Which
are the focus of this work. The ultimate goal of physics-based
computational models of binding is the quantitative prediction of
equilibrium constants of binding (or, equivalently, standard free
energies of binding) from statistical mechanics principles and
models of interatomic interactions (Chang et al., 2007; Gallicchio
and Levy, 2011). Pathway-based models of binding measure the
free energy changes along a thermodynamic path linking the
unbound and bound states of the molecular complex. These take
the form of physical pathways in which ligand and receptor are
brought together along a spatial coordinate (Hénin et al., 2005;
Gumbart et al., 2013; Jo et al., 2015; Lapelosa, 2017), as well as
pathways in so-called alchemical space in which ligand-receptor
interactions are progressively dialed-in (Chodera et al., 2011;
Deng et al., 2017).

Models targeting protein-peptide binding are generally not
as established (Kilburg and Gallicchio, 2016). Bioinformatic and
knowledge-based approaches based, for example, on sequence
and structure-based homology and phylogenetic profiles, are
commonly employed to search for likely interacting protein pairs
(Shoemaker and Panchenko, 2007; Zhang et al., 2012). The ability
of predicting binding affinities of protein-peptide interactions
from structural models is a crucial challenge that would enhance
our understanding of biological regulatory systems and be
highly beneficial for drug design and development. Even though
estimating binding free energies from physical principles is a
daunting computational problem, worthwhile attempts should be
made to solve it. A main obstacle is that the size and flexibility
of peptides make them difficult systems to model (You et al.,
2016). Following the work of characterizing physical pathways
approaches for this problem (Hénin et al., 2005; Gumbart et al.,
2013; Jo et al., 2015; Kilburg and Gallicchio, 2016; Lapelosa,
2017), the purpose of this work is to assess the applicability of
alchemicalmethods for the estimation of protein-peptide binding
free energies.

The double-decoupling method (Gilson et al., 1997), is the
leading approach for the alchemical calculation of absolute
binding free energies from first principles. It is based on a
thermodynamic cycle involving the free energies of decoupling
the ligand from the solution with and without the presence of
the receptor. One of the difficulties of this approach is that
the binding free energy, which in reversible binding processes
is relatively small and weakly dependent on ligand size, is

obtained as the difference of two much larger values which grow
with ligand size and ligand charge and whose statistical and
systematic errors combine additively (Deng and Roux, 2009). For
example, for a protein-peptide complex, the double-decoupling
approach would require the challenging calculation of the large
solvation free energy of the peptide within an uncertainty small
in comparison to the binding free energy (ideally a fraction
of a kilocalorie per mole). Furthermore, the free energy of
decoupling from the receptor environment, which arguably
involves much slower and complex reorganization processes than
the decoupling from the solution, would have to be converged to
the same degree (Gumbart et al., 2012).

To begin to address these challenges, in this work we
assess the applicability of a single-decoupling alchemical method
(Gallicchio et al., 2010) (referred to hereafter as “SDM” for short)
to the calculation of protein-peptide binding free energies. As
outlined below, the method employs a λ-dependent potential
energy function which interpolates between the dissociated
and associated states of the complex in solution, avoiding the
intermediate gas-phase state required by the double-decoupling
method. Because it computes the binding free energy directly, the
method is expected to exhibit favorable convergence properties
sufficient to handle challenging protein-peptide systems. Indeed
the method has been already tested with relatively large ligands
including some to the same receptor site (discussed below) which
is the object of this work (Lapelosa et al., 2012; Gallicchio et al.,
2014).

HIV-1 is a RNA retrovirus that must integrate a reverse
transcribed copy of its RNA genome into host DNA to
permanently infect a cell (Smith and Daniel, 2006). Essential
viral catalytic enzymes include reverse transcriptase (RT) and
integrase (IN). The former converts the viral RNA genome into
double stranded cDNA. Once inside the nucleus, IN catalyzes the
insertion of viral cDNA into the host chromosome (Cherepanov
et al., 2005a). Integrase catalyzes this reaction in two ways:
(1) it removes the 3′ terminal GT nucleotides from both ends
of the viral cDNA and (2) inserts the newly processed 3′

termini into host chromosomal DNA (Cherepanov et al., 2005b).
However, HIV1-IN itself cannot associate with chromatin and
requires an endogenous transcriptional coactivator, p75, more
commonly known as LEDGF (lens epithelium-derived growth
factor) (Cherepanov et al., 2005b). In recent years, several small
molecule inhibitors of the HIV1-IN interaction with LEDGF
have been designed by focusing on interactions with selected
residues of LEDGF, most notably Ile365, Asp366, and Leu368
(Cherepanov et al., 2005b; Rhodes et al., 2011). However, known
mutations of HIV1-integrase have shown high resistance to
these inhibitors, prompting further study into other potential
interactions between LEDGF and integrase (Rhodes et al., 2011).

An extensive study by Tsiang et al. (2009) reported the binding
affinities of native LEDGF to HIV1-IN as well as many LEDGF
derived peptides, including both linear and cyclized motifs. One
of the goals of their study was to find the smallest LEDGF-
peptide sequence capable of inhibiting integrase. They found that
small peptides are indeed capable of displacing LEDGF from
HIV1-IN and concluded that cyclizing the peptides resulted in
greater potency. Building on this, Rhodes et al. (2011) studied
the interactions between HIV1-IN and multiple linear and
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FIGURE 1 | Representation of the wild-type cyclic peptide (SLKIDNLD) bound

to the LEDGF binding domain of HIV1 integrase (PDB id: 3AVB). The cyclic

peptide (green) is shown in tube representation. The integrase receptor is

shown in surface representation colored by electrostatic charge.

cyclic peptides derived from the SLKIDNLD (residues 362-369)
binding motif of LEDGF (Figure 1). This motif is located on a
loop region, between the α1 and α2 helices of LEDGF, which is
considered the main interaction site (Cherepanov et al., 2005b).
Rhodes et al. found that, in agreement with previous studies
(Tsiang et al., 2009), the linear peptide, H-SLKIDNLD-OH, gave
no activity up to 1 mM, while a cyclized version of the same
sequence produced an IC50 value of 70.0 µM using a strand
transfer inhibition assay.

In this work we conduct alchemical single-decoupling
calculations of the binding free energies of a set of LEDGF-
derived peptides to the HIV1-IN receptor. The results
recapitulate the effect of mutations relative to the wild-type
binding motif of LEDGF, particularly those at positions that have
been found to be critical for binding, and they provide structural,
energetic, and dynamical interpretations of the observed binding
affinities. The equilibration of the systems and the convergence
of the results are carefully analyzed. The method is found to yield
reliable binding free energies of cyclic peptides while it fails to
produce a converged estimate for a linear peptide. We discuss the
SDM methodology and the procedure of choosing appropriate
simulation parameters. We also discuss some of the challenges
and potential pitfalls of binding free energy calculations of
complex molecular systems which have generally limited their
applicability to the quantitative study of protein-peptide binding
equilibria.

2. METHODS

2.1. System Preparation
The LEDGF binding site construct of HIV integrase was prepared
as previously reported (Gallicchio et al., 2014). Water molecules,

bound ligands, and crystallization ions were removed and protein
sidechain protonation states were assigned assuming pH 7 and
absence of significant pKa shifts (Glu and Asp deprotonated and
Lys and Arg protonated). A key residue in the LEDGF binding
site, His171, was protonated at the Nδ position as previously
investigated (Gallicchio et al., 2014). The cyclic SLKIDNLD
peptide was adapted from the crystal structure of HIV integrase
from which it was bound, 3AVB, as formerly reported (Rhodes
et al., 2011). Four cyclic mutants (ALKIDNLD, ALKIDNMD,
SLKINNLD, and SLKADNLD) in addition with a linear peptide
H-SLKIDNLD-OH were constructed by modifying the cyclic
SLKIDNLD peptide using the Maestro program (Schrödinger,
LLC).

2.2. Single-Decoupling Binding Free
Energy Protocol
Absolute binding free energies of the HIV-IN with the cyclic
and linear H-SLKIDNLD-OH peptide complexes were computed
with implicit solvation using the Single Decoupling (SDM)
(Gallicchio et al., 2010) version of Double Decoupling Method
(DDM) (Gilson et al., 1997). SDM was originally introduced
as the Binding Energy Distribution Analysis Method (BEDAM)
(Gallicchio et al., 2010) when it was based on the Weighted
Analysis Histogram Method (WHAM) (Kumar et al., 1992).
Recent applications of SDM have been based on multi-state bin-
less free energy inferencemethods (Shirts andChodera, 2008; Tan
et al., 2012). Similarly to double-decoupling, in SDM the standard
binding free energy1G◦

b between a receptor R and the ligand L is
expressed as:

1G◦
b = −kBT lnC◦Vsite + 1Gb (1)

where C◦ is the standard concentration of ligand molecules
(1M or 1,668 Å−3), Vsite is the volume of the binding site (see
below), and 1Gb is the excess binding free energy, defined as
the free energy difference between the coupled state, in which
the receptor and ligand are fully interacting, and the uncoupled
state, in which the receptor and ligand are only interacting with
the solvent and not with each other. In both the coupled and
uncoupled states the ligand is sequestered in the binding site
region as defined below.

Unlike the Double-Decoupling Method (DDM), which
requires two alchemical calculations going through an
intermediate “vacuum” state (Gilson et al., 1997; Boresch
et al., 2003), SDM employs a λ/temperature-dependent reduced
effective potential energy function which allows for a direct
alchemical thermodynamic path between the uncoupled and
coupled states of the complex, as follows:

Uλ(r) = β[U0(r)+ λu(r)] , (2)

where β = 1/kBT,

U0(r) = UR(rR)+ UL(rL) (3)

is the effective potential energy function corresponding to the
uncoupled state, and

u(rR, rL) = U(rR, rL)− U(rR)− U(rL) (4)
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is the binding energy function defined as the effective potential
energy difference between the coupled and uncoupled states
of the complex in conformation r = (rr , rL), obtained by
translating the ligand from the solvent and into the receptor
without changing the internal coordinates of either molecule.
It is straightforward to show that the λ-dependent potential
energy function in Equation (2) linearly interpolates between the
uncoupled and coupled states of the complex as λ is varied from
0 to 1.

In lieu of simulating each λ and/or temperature state
independently and to improve conformational sampling
efficiency, with SDM we utilize a Hamiltonian replica exchange
(HREM) λ/temperature-hopping approach where λ and
temperature values are swapped periodically according to a
Monte Carlo procedure with acceptable exchanges adhering to
the Metropolis algorithm (Pal et al., 2016).

To further improve convergence of the free energy at values
around λ = 0, we apply in this work a “soft core” binding energy
function:

u′(r) =

{

umax tanh
(

u(r)
umax

)

if u(r) > 0

u(r) if u(r) ≤ 0
(5)

where umax is some large positive value compared to the thermal
energy. In this work we have set umax = 1000 kcal/mol. The
energy function modeled in Equation (5) replaces the binding
energy function in Equation (4), when applicable, by limiting
the maximum value of the binding energy for very small λ

values while leaving the values of the favorable binding energies
unchanged. The resulting data is subsequently processed using
UWHAM analysis (Tan et al., 2012) to calculate the binding free
energy of the complex.

The reorganization binding free energy is calculated by taking
the difference between the binding free energy and the average
interaction energy as:

1G◦
reorg = 1G◦

b − 1Eb (6)

Additionally, an advantage of calculating the binding free energy
multiple temperatures is the availability of the conformational
entropy of binding 1S◦

b

1S◦b = −
∂

∂T
1G◦

b (7)

As we have only several binding free energies at discrete
temperatures, the above differential was solved by using a linear
least squares approximation.

f =
∑

i

(

b+mxi − yi

σi

)2

(8)

∂f

∂m
=

∑

i

(

(b+mxi − yi)xi
σ 2
i

)

= 0 (9)

and

∂f

∂b
=

∑

i

(

(b+mxi − yi

σ 2
i

)

= 0 (10)

Solving these two simultaneous equations yields

1S◦b =
∑

(1/σ 2
i )

∑

(xiyi/σ 2
i )−

∑

(xi/σ 2
i )

∑

(yi/σ 2
i )

∑

(1/σ 2
i )

∑

(x2i /σ
2
i )−

(
∑

xi/σ
2
i

)2 (11)

The error on the entropy was calculated using the errors on the
individual points.

1

σ 2 =
∑

(

(xi− < x >)2

σ 2
i

)

(12)

Finally, the binding reorganization energy1Ereorg was computed
as the residual of the reorganization free energy of binding after
subtraction of the entropic component:

1Ereorg = 1Greorg + T1S◦b (13)

The errors reported for: 1Ereorg and 1Greorg were calculated
using standard error propagation. For 1Eb we used the standard
error of the mean. All statistical uncertainties, including error
bars in plots, are reported as twice the standard deviation (96%
confidence interval).

2.3. Computational Details
In this work we employ an effective potential energy function
based on the AGBNP2 implicit solvent model (Gallicchio and
Levy, 2004; Gallicchio et al., 2009), and the OPLS-AA force field
(Jorgensen et al., 1996; Kaminski et al., 2001) for the covalent
and non-covalent interactions. Parallel molecular dynamics
simulations were performed with the IMPACT program (Banks
et al., 2005). Replica exchange conformational sampling was
conducted for all combinations of eight temperature spanning
300 to 379 K, and 26 intermediate λ steps at λ = 0.0, 0.002,
0.0048, 0.006, 0.008, 0.01, 0.015, 0.02, 0.0225, 0.025, 0.03, 0.0325,
0.035, 0.04, 0.07, 0.1, 0.25, 0.35, 0.45, 0.55, 0.65, 0.71, 0.78, 0.85,
0.92, and 1, for a total of 208 replicas. The binding site volume
was defined as any conformation in which the peptide center
of mass is within 6 Å of the center of mass of the Cα atoms of
residues 168-174 and 178 of chain A and residues 95-99, 102,
125, 128, 129, and 132 of chain B (residue and chain designations
according to 3NFB crystal structure) of HIV1-IN. The peptide
was sequestered within the binding site by means of a flat-bottom
harmonic potential with a force constant of 3.0 kcal/mol Å2

applied to atoms with distances greater than 6 Å. The volume
of the binding site is calculated to be 904 Å corresponding to
kBT lnC◦Vsite = 0.69 kcal/mol. As in previous work (Gallicchio
et al., 2014), the Cα atoms of the residues of the CCD domain
of HIV1-IN were restrained to the overall structure by means of
spherical harmonic restraints with a force constant of 1 kcal/mol
Å2, excluding the residues closest to the binding site (residues
167-178 of chain A and 95-102 and 124-132 of chain B) which
were left unrestrained.
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We simulated the complexes of HIV1-IN with six peptides:
cyclic SLKIDNLD, linear H-SLKIDNKL-OH, cyclic ALKIDNLD,
cyclic ALKIDNMD, cyclic SLKINNLD, and cyclic SLKADNLD.
Multi-dimensional replica exchange calculations were performed
for about 3.3 ns of molecular dynamics per replica, or 867 ns of
average simulation time for each complex and approximately 5.2
µs of simulation time in total. Binding energies were sampled
with the frequency of 25 ps for a total of 35,000 binding energy
samples per complex. All binding free energy calculations were
conducted on Louisiana State University’s XSEDE SuperMic
supercomputer using the ASyncRE job distribution middleware
(Gallicchio et al., 2015).

2.4. Error Analysis and Determination of
Equilibration and Convergence
Statistical uncertainties of binding free energy estimates were
calculated using UWHAM’s built-in Fisher’s analysis. The
UWHAM formalism, based on mathematical distribution
theory, uses the curvature of the likelihood function to
calculate the variance of free energy estimates. A detailed
derivation is provided by Tan et al. (2012) Fisher’s analysis
assumes uncorrelated data, we therefore assessed the statistical
inefficiency of the binding energy time series data by computing
uncertainties based on a standard 1/

√
N error on progressively

smaller, random sets of the data and then subsequently
plotted those errors against the error provided by UWHAM
that contained the same number of data points. From these
comparisons, as well as the data obtained from running auto-
correlation analysis, we have concluded that binding energies
were collected with sufficiently small frequency so as to make
statistical correlations negligible.

Most molecular dynamics simulations are initiated with
structures that are atypical of equilibrium conformations. As
binding energy calculations are sensitive to small perturbations
in configuration, it is typical practice to remove an initial portion
of the trajectory in which the system is approaching equilibration
so as not to adulterate the equilibrium result (Klimovich et al.,
2015). To determine the amount of initial data to eliminate, in
this work we employ a method similar in the spirit of reverse
cumulative averaging from Yang and Karplus (2003) and the
autocorrelation analysis discussed recently by Chodera (2016)
In this approach, we examine the time series of binding free
energy estimates as a function of increasing equilibration time teq
measured from the beginning of the simulation. Specifically, we
define 1G◦

b
[teq] as the binding free energy estimate obtained by

discarding initial data up to simulation time teq. The sequence
of binding free energy estimates so obtained is referred to as
the reverse cumulative profile (Yang and Karplus, 2003). In
these profiles (see Figure 2 as an example) binding free energy
estimates to the right, at long equilibration times, are those
least affected by bias introduced by unequilibrated data at early
times. Conversely, estimates to the left, at short equilibration
times, are expected to be the most biased. The decision of which
equilibration time to pick is not obvious because the least biased
estimates, since they correspond to the smallest binding energy
samples, are also those with the largest statistical uncertainties.

FIGURE 2 | Representative reverse cumulative convergence plot for the

binding free energy for the complex with peptide Mutant 2 (S362A/L368M)

highlighting the different methods for choosing equilibration time.

(1) represents the equilibration time, teq, returned by the quantitative protocol

we adopted in this work as described in the text, (2) represents the teq chosen

qualitatively based on the first observed inflection point of the plot and (3)

represents the smallest teq corresponding to a free energy estimate

statistically indistinguishable from those at longer equilibration times. The

resultant 1G0
b
(teq) are −7.7± 0.2, −7.5± 0.2, and −7.1± 0.4 kcal/mol with

the three methods, respectively. The three methods yield statistically equivalent

results in this case.

A suitable equilibration time can be chosen qualitatively as,
for example, the smallest equilibration time that gives a free
energy estimate statistically indistinguishable from those at
longer equilibration times (see Figure 2) (Yang and Karplus,
2003).

In this work we have explored the quantitative protocol
for the choice of the equilibration time recently proposed for
averages of correlated time series (Chodera, 2016). When applied
to a generic time series xi = x(ti), this method consists of
picking the equilibration time so as to maximize the effective
number, neff, of statistically independent samples of the time
series (Allen and Tildesley, 1993) which remains after removing
the first neq data points collected prior to the chosen equilibration
time (see Figure 3 for an example). The number of statistically
independent samples is given by

neff =
n− neq

g(neq)
, (14)

where n is the total number of points in the time series, n− neq is
the number of points remaining in the time series after removing
the first neq data points, and

g(neq) = 1+ 2τeq (15)

is the statistically inefficiency of the time series, where τeq is the
correlation length given by:

τeq =
tmax−1
∑

t=1

(

1−
t

tmax

)

Ct (16)
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FIGURE 3 | (A) Reverse cumulative binding free energy convergence plot for

the complex with peptide Mutant 4, I365A. The arrow points to the computed

equilibration time. (B) Plot of the effective number of independent samples,

neff, as a function of equilibration time for the same complex. The maximum

indicates the estimated equilibration time of 1.9 ns.

where the autocorrelation function, Ct is defined as:

Ct =
〈xnxn+t〉 − 〈xn〉2

〈x2n〉 − 〈xn〉2
(17)

It was found that this approach incorporates the trade-off,
discussed above, between minimizing the variance while at the
same time minimizing the bias in the estimate. The variance
obviously decreases as the number of samples included in the
estimate increases, that is as neq decreases. In contrast, Chodera
observed that the correlation length, and, consequently, the
statistical inefficiency, grow as atypical samples at the beginning
of the simulation are included (Chodera, 2016), presumably
because these introduce an overall drift in the time series.

We obtained reasonable estimates of equilibration times by
applying the approach above to the reverse cumulative profile of
the binding free energy1G◦

b
[teq]. We rationalize this observation

by noting that, while the reverse cumulative profile is not a time
series of an observable, neff still captures the trade-off between
maximization of the number of samples and minimization of
the statistical inefficiency, which is larger at small equilibration
times due the overall drift of the reverse cumulative profile in that
region (see Figure 3). Specifically, we considered the family of
reverse cumulative free energy profiles1G◦

b
[t > teq], that is those

derived by the full reverse cumulative profile after removal of the
values for t < teq. For each profile we performed autocorrelation
analysis to compute the corresponding correlation length τ (teq),
the statistical inefficiency g(teq) = 1 + 2τ (teq) and effective
number of statistically independent samples neff ∝ (tmax −
teq)/g(teq). We then selected the optimal equilibration time as
that one that maximizes neff. As illustrated in Figure 3, in the

FIGURE 4 | (A) Reverse cumulative convergence plot and (A) corresponding

neff plot for the binding free energy of the complex of HIV integrase with the

SLKIDNLD linear peptide. Both figures show that neither a qualitative (A) nor a

quantitative approach (B) provides a valid equilibration time for this system.

The conclusion is that the binding free energy for this system has not reached

equilibration.

case of mutant 4 (I365A), for example, this procedure returns an
equilibration time of 1.9 ns per replica.

In general, we observe that the outlined procedure returns
small equilibration times for systems that would be considered
to have equilibrated quickly based on qualitative arguments,
statistical uncertainties, and the shape of the reverse cumulative
profiles. Conversely, the procedure returned relatively long
equilibration times (see Results) for systems that qualitatively
appear to equilibrate slowly, for example those that display
persistent drift of the reverse cumulative profile for short
equilibration times (Figures 3, 4). In the case of a linear peptide,
considered from multiple perspective to have failed to achieve
equilibration, this procedure correctly indicated the lack of a
reasonable equilibration time as the neff curve did not display a
clear maximum as shown in Figure 4.

Having determined the equilibration time, we then assessed
convergence of the free energy calculations by examining the
conventional forward cumulative profiles (see Figure 5 and
Figure S1 for an example) obtained considering only binding
energy samples collected at times following the equilibration
time until some maximum time t, which is varied. Systems
that are considered converged display a forward cumulative
profile with monotonically decreasing uncertainties, ideally
random fluctuations, or, more often, small downward or upward
drifts contained within computed uncertainties. To better assess
convergence, it has also been helpful to consider the quantity
(δ1G0

b
/δt), which measures the differential effect of adding

samples contained between t and t + 1t. As shown for example
in Figure 5, in converged calculations this function progressively
decays to zero with smaller and smaller fluctuations with
increasing simulation time.
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3. RESULTS

3.1. Thermodynamic Parameters
Computed thermodynamic parameters for the binding of five
cyclic LEDGF-derived peptides considered in this work are listed
in Table 1. The complexes with wildtype (SLKIDNLD), mutant 1
(ALKIDNLD), and double-mutant 2 (ALKIDNMD) have been
studied by Rhodes et al. (2011) who obtained IC50 values and
crystal structures. Mutants 3 (SLKINNLN) and 4 (SLKADNLD)
have been included in this study to probe the thermodynamic
and structural consequences of mutations in residues known to
be critical for successful binding (Tsiang et al., 2009). We have
been unsuccessful at computing the binding free energy of the
linear wild type peptide (see below), which showed weak or no
activity in experimental tests (Tsiang et al., 2009; Rhodes et al.,
2011).

The computed binding free energies for wildtype and mutant
1 cyclic peptides are qualitatively consistent with µM-range IC50

values (Rhodes et al., 2011) measured for these peptides (85.2 ±
24.5 µM and 39.7 ± 7.1 µM, respectively). Also in agreement
with inhibition experiments, mutation of the S366 serine residue
to alanine causes minor changes in binding affinity. The double
mutant S366A/L368M (M2 in Table 1), while undergoing a
greater conformational change relative to wild type and mutant
1 (Figures 7, 8), is predicted to have similar binding affinity to
the wild type and the single mutant (Figure 6B). Experimental
values for this double-mutant are contradictory. Rhodes et al.
(2011) report no detectable inhibition activity for this peptide,
while they were able to obtain a crystal structure of it bound
to HIV integrase (PDB id 3AVJ) (Rhodes et al., 2011). Taken
together, this evidence suggests that, while mutant 2 (M2) is
capable of binding to HIV integrase, somehow it can not inhibit
it effectively.

FIGURE 5 | (A) Forward cumulative convergence plot for Mutant 4 after the

initial bias has been removed. (B) Plot of the fluctuations of 1G0
B
that shows a

steady decay toward zero.

Consistent with experimental findings (Tsiang et al., 2009;
Rhodes et al., 2011), mutation of the critical D366 residue
(M3 in Table 1) resulted in a significant reduction of binding
affinity. This residue is known to form a strong hydrogen
bonding interaction motif with the backbone atoms of His171
and Glu170 of HIV integrase (Figure 8), which is also found in
many small-molecule inhibitors (Gallicchio et al., 2014). The loss
of this interaction is observed to lead to major disruption of the
peptide-receptor binding interface and loss of binding affinity.
Analogously, mutation of I365 to alanine (M4 in Table 1) causes
disruption of favorable hydrophobic packing peptide-receptor
interactions and loss of binding affinity, although to a smaller
degree than the D366N mutation.

Table 1 also reports the decomposition of the computed
binding free energies into average binding energies and
reorganization free energies, and the further decomposition of
the latter into reorganization energy and conformational entropy
of binding. Average binding energies (1Eb, third column in
Table 1) reflect the strength of direct interatomic interactions
between the peptide and the protein receptor. These are relatively
constant around −58 kcal/mol across the peptide set, with the
exception of mutant 3, for which 1Eb is about 20 kcal/mol less
favorable than the others. This behavior confirms that the loss
of binding affinity for mutant 3 is mainly due to the loss of key
hydrogen bonding interactions between D366 and a histidine
residue in the binding pocket of the receptor (Figure 8). The
magnitude of the interaction energy loss (20 kcal/mol) is also
consistent with the loss of two strong hydrogen bonds and the
corresponding favorable electrostatic interactions.

In contrast, the weakening of the binding of mutant 4 (M4
in Table 1), in which a bulky isoleucine residue is replaced
by alanine, displays a completely different thermodynamic
signature. The average binding energy for this peptide complex
is of similar magnitude than the higher affinity peptides, and
it is actually predicted to be greater than that of mutant
1 even though their predicted binding constants differ by
at least two orders of magnitude. The weaker binding of
mutant 4 is predicted to be mainly due to a large unfavorable
reorganization free energy (fourth column in Table 1), which,
in turn, is caused by unusually large intramolecular energy
strain (1Ereorg) only partially compensated by a smaller entropic
penalty (T1S0

b
). As further discussed below, this behavior

is consistent with the observed structural response of the
peptide and receptor attempting to compensate for the loss
of favorable packing interactions (Figure 8D). In contrast, the
thermodynamic parameters collected in Table 1 indicate that
the loss of hydrogen bonding interactions in mutant 3 results,
effectively, in the unbinding of the peptide with little or no
tendency for conformational reorganization aimed at regaining
binding as shown in Figure 8C (see below for a discussion of the
observed structural changes).

3.2. Structural Considerations
The equilibration times of the complexes are found to be
highly correlated with the extent of their conformational
reorganization to go from the starting structure (which in all
cases was the crystal structure of the wildtype peptide) to
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the equilibrated conformational ensemble. Thus, as expected,
the binding free energy of the wildtype peptide converged
relatively quickly (Figure 9B). Conversely, the I365A mutation
caused extensive conformational rearrangements which required
a longer equilibration (Figure 6D).

Consistent with the crystal structure (3AVB), residues Ser362,
Lys364, Ile365, Asp366, and Asn367 of the cyclic WT peptide
form the primary intermolecular interactions with the receptor
(Figure 7). The carboxylate group of Asp366 of the peptide forms
the strong hydrogen bonds with the NH backbone groups of
Glu170 and His171 of the receptor which are the hallmark of
the LEDGF-HIV IN complex (Cherepanov et al., 2005a) as well
as those with peptido-mimetic synthetic inhibitors (Peat et al.,
2014). The carboxylate group of Asp366 is further anchored

by an hydrogen bond with the hydroxyl group of Thr174 and
with a salt bridge with the protonated nitrogen atom of His171.
Both Ser362 and Lys364 of the peptide forms strong interactions
with the sidechain of Glu170. Ile365 forms backbone-backbone
interactions with Gln168 and Thr174. The sidechain of Ile365 is
additionally nestled into an hydrophobic pocket of the receptor
lined by residues Ala128, Trp131, Trp132, and Met178. The
solvent-exposed residues of the peptide (Leu363, Leu368, and
Asp369), do not interact consistently with the receptor although
they make occasional intramolecular interactions with each
other.

A serine to alanine mutation of residue 362 (M1 mutant)
causes a slight, but statistically significant decrease in the
predicted binding affinity (Table 1). Auto-correlation analysis of

TABLE 1 | Computed thermodynamic parameters for the binding between HIV1-integrase and a series of cyclic peptides derived from the LEDGF protein.

Peptide 1G◦

b
a

1Eb
a

1Greorg
a

1Ereorg
a T1S◦

b
a

SLKIDNLD (WT) −8.6 ± 0.4 −59.3 ± 0.5 50.6 ± 0.5 23.6 ± 1.9 27.0 ± 1.8

ALKIDNLD (M1) −8.1 ± 0.2 −56.9 ± 0.4 48.8 ± 0.4 22.1 ± 0.4 26.7 ± 0.1

ALKIDNMD (M2) −7.6 ± 0.2 −59.5 ± 0.5 51.9 ± 0.5 24.6 ± 0.8 27.3 ± 0.6

SLKINNLD (M3) 2.7 ± 0.2 −36.1 ± 0.6 38.3 ± 0.6 12.4 ± 0.6 25.9 ± 0.6

SLKADNLD (M4) −3.7 ± 0.2 −57.6 ± 0.5 53.9 ± 0.5 33.2 ± 0.6 20.7 ± 0.4

a In kcal/mol.

FIGURE 6 | Reverse cumulative binding free energy convergence plots for (A) Mutant 1 (S362A), (B) Mutant 2 (S362A/L368M), (C) Mutant 3 (D366N), and

(D) Mutant4 (I365A). Arrows mark the estimated equilibration times based on auto correlation analysis: (A) 0.20 ns, (B) 0.25 ns, (C) 0.20 ns, and (D) 1.90 ns.
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FIGURE 7 | Representative structure extracted from the simulation of the

wildtype cyclic peptide (WT in Table 1) bound to the LEDGF-binding domain

of HIV integrase. The following intermolecular interactions are highlighted:

Lys364-Glu170, Asp366-Thr174, His171, and Asn367-Gln95. Also shown in

the intramolecular interaction between Asp168 and Gln169 of the peptide and

the key bidentated interaction between Asp366 and the backbone nitrogen

atoms of Glu170 and His171.

the reverse cumulative binding free energy profiles (Figure 6A)
revealed only a small equilibration bias of about 1 kcal/mol,
consistent with the relatively minor conformational changes
relative to the wildtype peptide (Figure 8A). The most noticeable
structural difference is the shift of the interaction between
Glu170 and Ser362, now absent, to Asn 367 and the concomitant
weakening of the Lys364–Glu170 salt bridge which now occurs
less often. These subtle changes are the cause of the weakening
of the binding energy and the slight less favorable binding free
energy relative to the wildtype (Table 1).

The double mutation S362A:L368M (M2 in Table 1) resulted
in no significant change of binding free energy relative to
the S362A single-mutant. However, the methionine sidechain
at position 368 now affords additional polar interactions with
Thr125 and it induces the recruitment of Asp369 (previously
completely solvent exposed) in the same interaction (Figure 8B).
As a result, the peptide shifts overall position toward the 124-131
α-helix of the receptor.

The D366N mutation resulted, essentially, in the dissociation
of the complex (Figure 8C), consistent with the unfavorable
computed binding free energy (Table 1, M3 mutant) and
previous experiments (Tsiang et al., 2009). The peptide was
kept in proximity of the pocket only by the applied tether (see
Methods). The conformations of the receptor and the peptide
rapidly reorganized to screen the unmet positive charge of
His171 while the Asn366 sidechain shifted away from the Glu170
backbone. The rapid equilibration of the peptide, freed from
strong intermolecular interactions, is the cause of the smaller
equilibration time observed (Figure 6C) for the M3 mutant
relative to the other mutants.

The I365A mutant (M4 in Table 1) displayed the most
significant and lengthy equilibration of the binding free energy
among the peptides studied (Figure 6D). Unlike the other

mutants, the most significant structural rearrangement occurred
for the receptor. The void in the hydrophobic binding pocket
left from the isoleucine to alanine mutation slowly collapsed
around the alanine sidechain (Figure 8D). Concomitantly, the
peptide moves deeper into the binding cavity causing the
solvent-exposed residues (Leu363, Leu368, and Asp369) to
make increased interactions with the receptor while slightly
decreasing interactions between Asp366 and Glu170/His171.
These rearrangements recover most of the interaction energy
of binding (Table 1, third column) at the expense of higher
conformational strain (fifth column), resulting in a binding free
energy 5 kcal/mol less favorable than wildtype in agreement with
experimental evidence (Cherepanov et al., 2005b; Tsiang et al.,
2009).

3.3. The Potential Pitfalls of
Protein-Peptide Binding
Alchemical binding free energy calculations require careful
planning and assessment of the results (Klimovich et al., 2015).
This is particularly so for protein-peptide complexes due to their
large conformational variability. Here we discuss the challenges
we encountered in applying our calculation protocols, tuned for
small molecule binding, to peptides.

The first challenge we encountered turned out to be related
to our initial choice of the λ schedule, which was based on the
one that had been used with success on large ligands for the
same receptor site (Gallicchio et al., 2014). With this λ schedule
we collected a substantial amount of binding free energy data
that, when displayed using a traditional forward cumulative
plots showed no particular disturbance (Figure 9B) beyond a
persistent drift signaling slow convergence. It was only when
we analyzed the reverse cumulative plot (Figure 9A) that we
discovered that the slow convergence was a symptom of a serious
numerical artifact.

The reverse cumulative plot (Figure 9A) shows an abrupt shift
in the binding free energy corresponding to an equilibration
time of approximately 1 ns. Subsequent examination of the error
bounds returned by the UWHAM (Tan et al., 2012) procedure,
revealed that without the equilibration data bias introduced by
the binding energy data collected at times prior to 1 ns, the
uncertainty in the computed binding free energy was so large (on
the order of 1000 kcal/mol) as to make the results meaningless.

It was eventually established that the failure in obtaining a
reasonable binding free energy estimate was due in this case to
the choice of the λ schedule, which lacked sufficient intermediate
λ values between 0.1 and 0.4 to ensure sufficient ensemble
“overlap” of adjacent alchemical states (Klimovich et al., 2015).
Specifically, after some equilibration, for λ < 0.1 all of the
binding energy values clustered around the maximum value
umax [see Equation (5)], which were not observed in any of the
other λ states. As a result, the UWHAM multi-state maximum
likelihood function (Tan et al., 2012) lacked a well-defined
maximum corresponding to the binding free energy profile. This
problem had not been apparent when unequilibrated data at the
beginning of the simulation, which contained a small amount of
binding energy data bridging alchemical states across λ = 0.1,
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FIGURE 8 | Representative structures extracted from the simulations of (A) the S362A mutant cyclic peptide (M1 in Table 1) and (B) the S362A:L368M double

mutant cyclic peptide (M2), (C) the D366N cyclic peptide (M3), and (D) the I365A mutant cyclic peptide (M4) with the HIV integrase LEDGF-binding domain. All

interactions shown were previously described in Figure 7. Notice in (C) that the D366N mutation causes severe distortion of the peptide as well as the receptor

relative to the bound conformation of the complex.

was included in the estimate, resulting in a forward cumulative
convergence plot not clearly out of the ordinary.

As a result of this assessment, we modified the λ scheduled
to insert intermediate λ states between 0.1 and 0.4 more likely
to sample both large and smaller binding energy values. This
resulted in binding free energy estimates with reasonable error
bounds when analyzed with both forward and reverse cumulative
plots (Figures 9C,D).

This experience highlights the need for careful examination
of equilibration artifacts and error bounds when assessing the
results of alchemical binding free energy calculations. Clearly, in
this case, the choices of simulation length and λ schedule tuned
for small-molecule binding were not suitable for the modeling of
the binding of the larger peptides studied here. The optimized
λ schedule addressed the requirement of a suitable, unbroken,
thermodynamic path between the coupled and uncoupled states
of the complex and enabled the assessment of equilibration
bias in the binding free energy estimates. However it did not
guarantee convergence of the binding free energy estimates when
these are affected by challenges of a different nature, as the
following example illustrates.

One of aims in this work had been to study the
thermodynamic factors that favor the binding of the cyclic
wild-type peptide over the linear one, H-SKIDNLD-OH (Tsiang
et al., 2009; Rhodes et al., 2011) (Figure 10). However, we
were unable to obtain a converged binding free energy for the

linear form of the wild-type peptide (H-SKIDNLD-OH). As
shown in Figure 4, the reverse cumulative plot for the complex
with this peptide does not show a plateau, indicating that the
system was still in the equilibration phase up until the longest
simulation time considered. Lack of convergence is confirmed by
the forward cumulative plot including all of the binding energy
samples (Figure 11A).

Analysis of molecular dynamics trajectories revealed that
the lack of convergence was due to the slow equilibration
of the relative populations of two competing conformational
states of the complex (Figure 11B). The first state corresponds
to a compact conformation of the linear peptide tethered by
an intramolecular salt bridge similar to the conformation of
the cyclic peptide. The other, more extended, conformation
resulted from the replacement of the intramolecular salt bridge
with intermolecular salt bridges between the termini of the
peptide and residues lying on the rim of the protein receptor
pocket (Figure 10). This extended bound conformation, whose
formation was found to be reproducible across independent
runs, is strongly favored by binding energy (approximately−120
kcal/mol, compared with binding energies of half this magnitude
for cyclic peptides and for the compact conformation of the linear
peptides–see Table 1 and Figure 11 –and strongly disfavored by
reorganization free energy.

Because of the trade-off between energetic and reorganization/
entropic opposing thermodynamic driving forces, the compact
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FIGURE 9 | Cumulative plots for the wildtype cyclic peptide. (A) Reverse cumulative and (B) forward cumulative plots obtained with the original smaller lambda

schedule. (C) Reverse cumulative and (D) forward cumulative plots of the data with the improved lambda schedule. Notice that when there is no equilibrium bias the

forward and reverse plots are near mirror images.

FIGURE 10 | Key interactions observed in the conformational ensemble at low

binding energies (around −120 kcal/mol) of the complex of HIV integrase with

the linear peptide. Notable differences relative to the complexes with the cyclic

peptides include the participation of Asp369 with α2 helix residues of HIV

integrase.

and extended binding modes were found to coexist at λ = 1,
producing a characteristic bimodal binding energy distribution
(Figure 11). The binding free energy estimate is found to be very
sensitive to the relative population of these two binding modes,

which, however, could not be determined with certainty due to
lack of interconversion events. As a result, the binding free energy
exhibits a slow drift as a function of simulation time with no
identifiable convergence point (Figure 4).

Cases, such as this, of slow convergence due to slow
intramolecular conformational equilibration can not be easily
addressed by conventional conformational sampling acceleration
methods based, for example, on Hamiltonian replica exchange
on the alchemical variable as done here. Some success has
been gained with biasing potentials targeting specific degrees of
freedom (Ensing et al., 2006; Kim et al., 2010; Procacci et al., 2013;
Cavalli et al., 2014), such as dihedral angles (Wang et al., 2012;
Lindert et al., 2013). We have not attempted, in this work, to
obtain a converged estimate of the relative population of the two
binding modes of the linear peptide using these methods. This is
partly because of the awareness that implicit solvation may not
be an optimal model for conformational equilibria involving salt
bridges (Okur et al., 2008; Gallicchio et al., 2009), even if these
could be sampled thoroughly.

4. DISCUSSION

Despite decades of intense medical research, HIV infections
continue to be a major widespread problem for worldwide health
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FIGURE 11 | (A) Forward cumulative plot and (B) histogram of the binding energy distribution at λ = 1 and temperature = 300K for the complex of HIV integrase with

the linear peptide.

with 37 million people living with AIDS and 21 million on
antiretroviral therapy (World Health Organization, 2017). The
integrase enzyme of the HIV virus is one of the main targets
of ongoing anti-viral treatments. Raltegravir, for example, is an
inhibitor of integrase’s strand transfer reaction approved for
clinical use in 2008. It remains one the most used integrase
inhibitors in conjunction with other viral inhibitors in highly
active antiretroviral treatment courses (Summa et al., 2008).
Even though they are able to significantly reduce viral load, a
significant downside of strand transfer integrase inhibitors is that
HIV becomes readily resistant to their effects (Murray et al., 2007;
Sarkis et al., 2008). There has been therefore great interest in
identifying alternative inhibitory pathways for HIV integrase.

The interaction between integrase and LEDGF/p75 is
considered one of the most promising untapped targets.
LEDGF/p75 is an endogenous cofactor that is essential to
viral replication. It facilitates the integration of viral DNA by
transporting the viral protein into the cell nucleus and inserting
the viral DNA into host DNA. LEDGF/p75 is also believed to
play a role in the protection of integrase from degradation by
the host cell (Smith and Daniel, 2006). Because it targets a host
protein, the LEDGF binding domain of HIV integrase is believed
to be less susceptible to the insurgence of resistance mutations.
There have been efforts to identify peptido-mimetic compounds
capable of disrupting the interaction between HIV integrase and
LEDGF/p75 (Gallicchio et al., 2014; Peat et al., 2014).

Cherepanov et al. (2005a) reported in 2005 the crystal
structure of the complex betweenHIV integrase and the integrase
binding domain of LEDGF (PDB code: 2B4J). The structure
revealed key residues responsible for mediating the interaction.
Ile365 of LEDGF/p75 is found into the hydrophobic cavity of the
integrase binding site that consists of Leu102, Ala128, Ala129,
Trp131, Trp132, Thr174, and Met178. Ile365 of LEDGF also
formed a hydrogen bond between its backbone amide and the
backbone carbonyl group of Gln168 of integrase. Asp366 of
LEDGFmakes two-pair hydrogen bonds with Glu170 andHis171
of integrase. In addition, a salt-bridge is found between Lys364

of LEDGF and Glu170 of integrase. Mutations of these critical
residues weaken the LEDFG/integrase interaction (Tsiang et al.,
2009).

Based on these earlier studies, Rhodes et al. (2011) investigated
the structures of HIV integrase bound to a series of cyclic peptides
including the wild-type sequence SLKIDNLD, corresponding
to residues 362-369 of LEDGF/p75, as well as single and
double mutants. Rhodes et al. obtained crystal structures for
13 of the complexes they investigated (PDB codes: 3AV9, and
3AVA through 3AVN) (Rhodes et al., 2011). While we did
not use the obtained crystal structures as templates for our
S362A and S362A:L368M mutants, our resulting structures
matched well with those reported by Rhodes et al. (2011) The
structure for the wild-type cyclic peptide matched most of the
intermolecular interactions found in the structure of the complex
with LEDGF/p75.

We simulated the SLKIDNLD, ALKIDNLD, and ALKIDNMD
cyclic peptides investigated by Rhodes et al. (2011) to compare
directly with their findings. We also simulated two other cyclic
peptides with known fatal mutations, D366N and I365A, to
compare with earlier experiments (Cherepanov et al., 2005a,b;
Tsiang et al., 2009). The results of our calculations recapitulate all
of the experimental findings and identify the specific interactions
responsible for the binding trends (Figures 7, 8, and Table S1).
We were able to confirm that three residues of the peptides,
corresponding to Lys364, Ile365, and Asp367 of LEDGF, are
responsible for the most critical protein-peptide interactions.
Conversely, the residue pairs Leu363-Leu368 and Ser362-Asn367
form the most stable intramolecular interactions within the
peptides.

In this study, we used an alchemical approach to compute
the binding free energies for the complexes of HIV integrase
with one linear peptide and five cyclic peptides derived from
LEDGF. A significant portion of the effort was devoted to
error and convergence analysis (Shirts, 2013; Klimovich et al.,
2015). In normal circumstances, visual inspection of the binding
data time series could be sufficient to get a good estimate of
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equilibration time and convergence. In more complex systems,
as in this case, variations of binding free energy estimates over
the course of the simulation are slow and gradual and require
careful consideration. The onset of equilibration is particularly
slight, but not less important, when the starting conformation is
close to the equilibrium conformation. To estimate equilibration
times, that is the amount of data to neglect at the beginning
of the simulation, we employed techniques inspired by previous
work (Yang and Karplus, 2003; Chodera, 2016).We tested various
approaches and concluded that the process described above
based on reverse cumulative averaging gave the most reliable and
consistent results. We established that, while failing for the linear
peptide, the method yielded robust binding free energy estimates
for a series of cyclic peptides.

This work represents a rare successful application of an
alchemical binding free energy method to the calculation
of converged absolute binding energies of protein-peptide
complexes (Kilburg and Gallicchio, 2016). This has been
possible by employing multi-dimensional replica exchange
conformational sampling and by adopting an implicit model
of solvation which speeds up equilibration and convergence
by removing the fluctuations of the solvent. Statistical errors
are further reduced by designing a direct alchemical path
from the unbound to bound states of the complex. This
is in contrast to double decoupling strategies (Gilson et al.,
1997), necessary with explicit solvation, which require going
through an intermediate decoupled “vacuum” state of the
ligand. Because the free energy changes and the corresponding
errors leading to and from the intermediate decoupled state
are generally large, double decoupling estimates are affected
by slow convergence (Deng and Roux, 2009), especially for
large and charged ligands such as these (Gumbart et al.,
2012).

Potential of mean force methods (Hénin et al., 2005;
Woo and Roux, 2005; Comer et al., 2014; Sandberg et al.,
2015; Casasnovas et al., 2017; Deng et al., 2017) have been
applied to protein-peptide binding (Hénin et al., 2005; Gumbart
et al., 2013; Jo et al., 2015; Lapelosa, 2017). These circumvent
the difficulties of double decoupling alchemical methods by
following the direct physical path of the ligand in and out of
the receptor. Nevertheless, slow conformational reorganization
remains a serious bottleneck in these calculations (Gan and
Roux, 2009). In some cases convergence has been achieved only
by imposing stiff conformational restraints, which introduce
significant systematic bias unless rigorous and time-consuming
treatments are applied (Gumbart et al., 2013). With the exception
of weak positional restraints on portions of the receptor
backbone distant from the peptide binding site and the wide
flat-bottom center of mass tether required by alchemical theory
(Gilson et al., 1997), in the present simulations the receptor
and the peptides were free to explore a wide variety of
conformations so as to properly respond to the appliedmutations
(Figure 8).

The implicit description of the solution environment, while
critical to achieving converged results, is likely less accurate than
the more established and tested explicit solvent descriptions.
Implicit solvation models, based on the rigorous concept of

the solvent potential of mean force (Roux and Simonson,
1999), are not intrinsically less accurate than other models.
However, because they are asked to model a free energy rather
than a potential energy, they are more difficult to design and
parametrize than explicit models of solvation (Chakavorty et al.,
2016). Some implicit solvent implementations, in particular, are
known to overemphasize the formation of salt bridges between
protein residues (Okur et al., 2008; Wickstrom et al., 2015).

Here we adopt the AGBNP2 implicit solvent model
(Gallicchio et al., 2009) which incorporates short-ranged terms
and other features designed specifically to tune intermolecular
interactions and, in particular, the occurrence of protein salt
bridges as seen in experimental NMR structures and explicit
solvent simulations. Despite these steps, it is possible that the
long-lived intermolecular electrostatic interactions between the
termini of the linear peptide and the protein receptor site and
the opposing intramolecular interactions between the termini,
which prevented convergence of the binding free energy in that
case, are artifacts of the AGBNP2 implicit solvent model and the
specific choice of fixed protonation state (Ellis et al., 2016; Harris
et al., 2017). The model may overestimate the strength of salt
bridges or overestimate the free energy barrier separating them
from solvent-separated states. The good quantitative agreement
between calculated and experimental binding affinities for the
cyclic peptides, which also form salt bridges with the protein
receptor, suggests that the latter circumstance is more likely.
Thus, it appears that the failure for the linear peptide is caused
by the slow interconversion rates between competing ion-paired
conformations which prevents the reliable estimation of their
relative populations and, ultimately, of their relative contribution
to the binding free energy.

Specialized conformational sampling techniques based on
collective variables (Zheng et al., 2008; Di Leva et al., 2014) and
constant pH molecular dynamics (Mongan et al., 2004; Ellis and
Shen, 2015) could be applied here to treat these specific slow
degrees of freedom related to salt-bridge formation.

While successful in this circumstance, the methodology we
employed here for the estimation of protein-peptide binding is
not without hurdles. The choice of λ schedule as well as the
temperature ladder of the multi-dimensional replica exchange
conformational sampling turned out to be critical for the
overall realization of convergence. The larger the ligand the
more dense the λ and temperature schedules have to be to
form enough critical overlap between alchemical states. Careful
monitoring of equilibration bias and analysis of convergence
proved essential to ensure the robustness and reproducibility of
the results in these difficult systems. Furthermore, due to the
larger size of the systems, the large number of replicas, and
the slow conformational reorganization as compared to small-
molecule inhibitors, these calculations are quite expensive and
time consuming. We are currently working to port our SDM
implementation to GPUs and parallel processors to leverage their
high computational power (Zhang et al., 2017).

These hurdles, however, should not be seen as a deterrent.
Free energy modeling of protein-peptide binding is an
exciting, emerging field with great potential in biomedical
research and drug discovery. We have shown here that our
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single-decoupling strategy, while not perfect, can be used to
calculate converged binding free energies for protein-peptide
complexes. Advancements in models, algorithms and computer
hardware are progressing steadily and making calculations more
efficient and practical.

5. CONCLUSIONS

In this work we evaluate a single-decoupling alchemical
method (SDM) combined with implicit solvation and advanced
conformational sampling strategies toward the calculation of
the binding free energies of protein-peptide complexes. We
report converged binding free energy estimates of a set of
cyclic LEDGF-derived peptides to the HIV1-IN receptor. The
binding free energy estimates recapitulate the observed effect
of mutations relative to the wild-type binding motif. We show
that careful error analysis and monitoring of equilibration
and convergence is essential to ensure the reliability of
the results. For example, the analysis detected the failure
of the method for a linear peptide due to conformational
trapping. In overall, the results of this work confirm that,
together with advanced conformational sampling strategies,
accurate solvation models, careful quality control, and careful

convergence analysis, the single-decoupling alchemical strategy
employed here is a viable approach to the quantitative
calculation of the binding free energies of protein-peptide
complexes.
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