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Structural disorder is an essential ingredient for function in many proteins and protein

complexes. Fuzzy complexes describe the many instances where disorder is maintained

as a critical element of protein interactions. In this minireview we discuss how

intramolecular fuzzy interactions function in signaling complexes. Focussing on the Src

family of kinases, we argue that the intrinsically disordered domains that are unique for

each of the family members and display a clear fingerprint of long range interactions

in Src, might have critical roles as functional sensor or effectors and mediate allosteric

communication via fuzzy interactions.
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A large majority of proteins are build from domains, classically defined as functional
autonomous folding units. In a typical divide-and-conquer approach, the structure-function
analysis proceeds through the characterization of the individual domains followed by the study
of their mutual interactions. This approach makes a clear distinction between the “functional”
domains and the linkers separating them.

The same strategy is taken in the analysis of the also very abundant multiprotein complexes,
in which the individual proteins are considered the building blocks (equivalent to domains of
multidomain proteins). Key components of multiprotein complexes are scaffolding proteins, which
would play the role of linkers in multidomain proteins.

The current view of protein-protein interactions is quite dynamic and intrinsically disordered
regions (IDR) are increasingly recognized as key players.

In this minireview we shall summarize some important aspects of (intermolecular) protein
binding by disordered proteins and extend them to the case of interdomain (i.e., intramolecular)
binding using the c-Src family of kinases as an example.

PROTEIN INTERACTIONS BY INTRINSICALLY DISORDERED
PROTEINS

Intrinsically disordered proteins (IDP) or proteins with long IDR form a significant portion of
the proteome of eukaryotes and are specially prevalent in signaling and regulation complexes
(Iakoucheva et al., 2002).

Protein complexes involving IDRs span a wide range of affinities and lifetimes as well as
specificities (Tompa et al., 2015). A recent analysis of Kd value statistics in the curated DIBS
database of IDR-folded protein complexes (Schad et al., 2017) confirms a wide range of affinities
spanning from the subnanomolar to the milimolar regimes.
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In their review on experimental thermodynamic data
from binary protein complexes involving IDPs or ordered
proteins, Teilum et al. (2015) found that the 1G◦ values
of their data sets involving IDPs were on average only
2.5 kcal mol−1 less stable than the values from complexes
between ordered proteins. In the two sets, isothermal enthalpy-
entropy compensation was observed, a general phenomenon
in biomolecular recognition processes (Chodera and Mobley,
2013). Thus, favorable binding enthalpy is associated to a loss
of entropy due to massive reduction of structural freedom
degrees.

The interaction surfaces involving folded proteins or IDRs
showed similar amino acid composition and size and the
distribution of 1H◦ values were statistically equal; so, all the
destabilizing contribution had an entropic origin (–T1S◦ > 0).

An entropic cost for binding an IDR is intuitively expected,
however, the surprising result is its relatively small value
suggesting compensatory mechanisms are an important
component of IDR interactions. The importance of entropy
compensation is highlighted by the similarity in the distribution
of 1H◦ values, a very interesting result in itself that emphasizes
the underlying short-range similarities between protein-protein
interactions involving folded and disordered proteins.

Flock et al. (2014) have reviewed the importance of entropy
control to tune IDR function. The importance of entropy in the
formation of complexes endows IDR-involving complexes with
their unique functional characteristics as molecular rheostats and
signal integrators, able to respond in a precise, continuous and
dynamic way to varying combinations of inputs with specific
outputs.

The formation of a stable complex between two proteins
(i.e., with a negative 1G◦

= 1H◦ –T 1S◦) can be achieved by
optimizing the enthalpy gain (1H◦

< 0), increasing the entropic
gain (–T 1S◦ < 0 => 1S◦ > 0) or minimizing the entropic loss
(–T 1S◦ ≈ 0). A fundamental aspect of the interplay between
enthalpy and entropy components is their “locality.”

Enthalpy effects usually reflect local short-range interactions
and may be considered additive and proportional to the contact
surface. Thus, large enthalpy components are usually associated
to large contact surfaces, although these interfaces do not
have to be necessarily continuous. Electrostatic contributions
to the enthalpy, however, are long range. They often drive
the partners together (thus reducing the translational and
possibly rotational entropy of the system) and, in the formed
complex, enable dynamic interactions that minimize the
entropy loss upon complex formation. A recent example of a
picomolar interaction between two IDPs without a significant
loss of flexibility is driven by electrostatics (Borgia et al.,
2018).

INTERACTING ELEMENTS AND
MULTIVALENCY

Entropy contains “local” components associated to the degree
of structure achieved by the contact regions of the two
interacting partners, as well as more global contributions

of which we may distinguish (i) the effect of regions
that can remain highly flexible in the complex (thus not
contributing an entropic penalty to binding), (ii) the possible
preexistence of long range intramolecular contacts restricting the
conformational freedom in the free IDR (therefore minimizing
the loss of entropy upon complex formation), and (iii)
the configurational entropy arising from multiple alternative
binding poses (“microstates”) contributing to the bound
state.

The first two situations reduce the entropic cost of binding
through IDRs and correspond to the strategies of not to pay (i) or
pre-pay (ii). The third situation actually contributes an entropic
gain.

In the interacting regions, pre-pay strategies may take the
form of preformed structural elements retained in the complex
(Davey et al., 2012; Pancsa and Fuxreiter, 2012) or bound solvent
molecules that are retained in the complex in water-mediated
interactions (London et al., 2010).

The dominant role of entropy in protein interactions is not
restricted to IDPs. The changes in internal dynamics of the
catabolite activator protein (CAP), measured by NMR in the
entirely protein, explain the dramatic changes in affinity observed
in CAP variants that form complexes with identical interfaces
(Tzeng and Kalodimos, 2012).

In IDRs the change in entropy upon binding is determined
by the interplay between local and global effects. Short linear
motifs (LM) play an important role in IDR interfaces. Although
the definition of LM is based on bioinformatic studies, they
can be interpreted using structural and dynamic concepts.
LM are often formed by hydrophobic residues grafted onto a
maleable template (Fuxreiter et al., 2007). The expected lower
enthalpy of the interaction by short elements, as compared
to the large rigid interfaces between ordered proteins, can be
partially compensated by the fact that IDPs often adopt extended
conformations permitting short motifs to establish a variety of
interactions through virtually any element of their backbone or
side chains, thus their interacting interfaces have a larger effective
area per residue than those of ordered proteins (Gunasekaran
et al., 2003). In addition, these short stretches are modular
recognition elements that can be combined to form multivalent
complexes. Thus, a favorable binding enthalpy, comparable to
that found associated to a large, rigid interface, can be achieved by
weaker but multiple sparse anchoring elements (Cumberworth
et al., 2013). The participating groups may be difficult to
identify either experimentally, because interactions are weak, or
statistically, because theymay appear in a variety of combinations
that are not repeated “motifs” (Van Roey et al., 2014).

The number and intrinsic properties of individual interacting
regions, as well as the size and dynamic properties of the spacers
between them collectively, and therefore non-linearly, determine
the binding properties of IDRs.

The effects of multivalent binding have been recognized
for a long time, beyond the field of IDPs. The strength by
which a multivalent antibiotic binds to its antigen, termed
avidity (Crothers and Metzger, 1972), can be explained
by the fact that when one of the sites is bound to its
cognate site receptor, a second site located close-by binds
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cooperatively, basically because of the lower entropic cost of a
(pseudo)-intramolecular interaction (Kitov and Bundle, 2003).
If the linker connecting the two sites is flexible, the average
distance between the sites is the main factor determining
the cooperativity. If the flexibility is limited, the linker may
also modulate the relative orientation of the components of
the second interacting site. A consequence of the model
is that avidity may be modulated either by modifying the
interacting sites or the flexibility of the linker (Cerofolini et al.,
2013).

The avidity model assumes multiple binding sites but the
interacting partners for each site are not interchangeable. The
scenario in which the multiple interaction sites in one of the
molecules can interact with, and therefore compete for, the
same site of the second molecule is referred to as allovalency

(Klein et al., 2003). Allovalency predicts a dependency on
the number of interacting sites, not through simultaneous
cooperative binding, because all of them compete for a single
site in the second molecule, but through local concentration
and rebinding. In the defining example, the binding of Sic1 to
Cdc4, the number of interacting sites is actively modulated by
the random phosphorylation of up to ten serine and threonine
residues, showing a sharp increase in the fraction of bound form
after six of them are phosphorylated (Mittag et al., 2010).

FUZZY COMPLEXES AND MULTIVALENCY

Fuzzy complexes, introduced by Tompa and Fuxreiter (2008)
describe binding situations in which at least one of the elements
in the complex remains dynamic. Therefore, the complex cannot
be properly described by a defined structure but has the
characteristics of an heterogeneous ensemble. Importantly, the
interaction heterogeneity of the fuzzy complex is an essential
component of the functional outcome of complex formation. The
functional character of the retained disorder, thus, differentiates
a fuzzy complex from a complex including a random region in
non-specific contact with the partner. An expanded repertoire
of examples can be found in recent reviews (Fuxreiter, 2012;
Fuxreiter and Tompa, 2012; Sharma et al., 2015; Miskei et al.,
2017).

Structural disorder in fuzzy complexes represents a
continuum, from rather rigid polymorphic complexes displaying
static disorder with only a few alternative conformations to
highly dynamic random complexes. The proportion between
regions directly involved in short range contacts and connector
regions decreases in this series. Individual regions contributing
to 1H◦

< 0 become smaller but may increase in number, thus
a favorable enthalpy contribution can be retained. Splitting the
interaction interface in many smaller areas, each binding weakly
and with high promiscuity, enhances binding degeneracy that
contributes an additional entropic term, 1S◦configurational, which

reflects the contribution stemming from the different forms in
which the IDR and its partner can associate.

A recent experimental example is the detailed study of the
thermodynamics of the fuzzy complex between the C-terminal
IDR of antitoxin CcdA, which adopts α helical structure at the

time of binding the toxin dimer CcdB (HadŽi et al., 2017).
The authors perform a series of mutations that affect contacting
and non-contacting residues. Their results show that mutations
in residues not directly involved in protein:protein interaction
reduce the degree of structuration both in the bound and free
forms (11S◦conformational ≈ 0), but also promote alternative
isoenergetic configurations (11S◦configurational > 0 and 11H◦

≈ 0) thus minimizing the particular 1G◦ of the mutant
complex.

NMR FINGERPRINT OF LONG-RANGE
ORGANIZATION OF IDR

Fuzziness is not associated to promiscuous binding. The
selectivity is encoded in the dynamic, non random, organization
of distant potentially interacting regions.

Operationally, a very efficient method to map a set of long
range interactions is by measuring the paramagnetic relaxation
enhancement (PRE) along the sequence induced by one or several
paramagnetic tags (Clore and Iwahara, 2009). Since paramagnetic
effects are sensitive to transient interactions and efficient over
considerable distances, in the case of disordered proteins the
key aspect is to differentiate specific from random coil effects.
In this respect, the Konrat’s group have introduced the concept
of paramagnetic relaxation interference (PRI) by comparing
the simultaneous effect of two paramagnetic centers (Kurzbach
et al., 2016) with the sum of the individual effects. A differences
between these values requires that the two sites move in a
correlated fashion. An alternative, often simpler, approach is to
compare the observed PREs with the predictions of a random coil
model. The 1PRE analysis (Arbesú et al., 2017) clearly identifies
the relevant transient contacts in IDRs.

1PRE analysis of several paramagnetically tagged forms
of the intrinsically disordered N-terminus of c-Src in the
presence and in the absence of the folded neighboring SH3
domain show a very similar profile, confirming the presence
of a conserved set of non-random long-range interactions and
validating the use of the term domain for this intrinsically
disordered region (Arbesú et al., 2017). Subtitution of residues
important for IDR pre-organization and interdomain contacts
showed that the 1PRE profiles are generally conserved upon
different perturbations—e.g., same profile trends, location of
maxima and minima, etc.—but can also reflect the functional
loss of interactions—i.e., consistent contact reduction upon
substitution. 1PRE profiling thus provides a structural signature
that captures non random ensemble conformational preferences
and their associated dynamics. This simple method enables
facile comparison for carrying out functional analysis based on
mutations.

In an analysis of the Pfam database, which identifies domains
based on multiple sequence alignments, Tompa et al. (2009)
found that a substantial number of the sequence defined domains
contained disordered regions and confirmed that disordered
domains are inheritable, evolvable, and functional units. Some
domains, such as the Unique domain, which is the most
discriminating feature of the distinct Src family kinases (SFK),
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is not identified as a domain using multisequence alignment
methods. This is not surprising since sequence variability is
its defining characteristic. We argue that the requirement of
“autonomous folding,” which would identify a domain without
using sequence conservation data, could be replaced in the field
of IDPs by that of a conserved, non-random, set of long range
interactions.

The PRE and chemical shift perturbation analysis of wild-
type Src as well as a number of mutated or truncated
variants, also showed the interaction between the intrinsically
disordered domain and specific regions of the SH3 domain.
Interestingly, the most affected regions in the folded scaffold
could be mapped to the loops that decorate its surface. The
interaction between the disordered N-terminal region of c-
Src and the SH3 domain has the characteristics associated
to fuzzy complexes: (i) the disordered region remains highly
dynamic, as seen by NMR, (ii) its overall dimension is
affected by the presence of the SH3 domain, as seen by Small
Angle X-ray Scattering, (iii) the local perturbations sensed
by chemical shifts are affected by modifications in distant,
well defined parts of the protein, and (iv) mutations in the
disordered region cause strong functional effects in the entire
protein.

INTRAMOLECULAR FUZZY COMPLEXES
AS SIGNAL SENSORS

Classical descriptions of multidomain signaling proteins
distinguish between regulatory/sensor and catalytical/effector
domains. IDR can act as linkers, effectors or sensors (Figure 1).
IDR-mediated signaling enables complex regulatory behavior,
including multiple signal integration and rheostat-like graded
responses (Tompa, 2014).

FIGURE 1 | IDRs and information transfer. IDRs can act as linkers, effectors,

or sensors. (A) In the linker case, the IDR transmits the information between

folded sensor and an effector domains. (B) The IDR can become an effector,

e.g., by folding as a response to a stimulus. (C) A fuzzy complex, like in Src,

can act as a sensor with the folded SH3 domain (in black) taking the role of the

linker.

IDRs can act as linkers through which information
is propagated to distant regions. This can occur without
concomitant structuration through remodeling of the protein
free energy landscape affecting the conformer populations and
causing specific functional outputs (Tsai et al., 1999; Hilser
and Thompson, 2007; Ma et al., 2011; Montlagh et al., 2014).
Examples include include the DNA binding Ets-1 transcription
factor (Pufall, 2005), the Sic1 cell cycle protein (Mittag et al.,
2008), or the Drosophila Ultrabithorax transcription factor (Liu
et al., 2008).

IDR conformational ensembles can be modified by “external”
signals and modulated by “internal” parameters, such as post-
translational modifications. Thus, they can act as sensitive
sensors with tunable selectivity and sensitivity. In a recent work,
the effect of a small drug interacting with a disordered region of
p27 was shown to cause a shift in its conformational landscape
(Ban et al., 2017) stressing the capacity of IDRs as sensor of their
environment (and not trivially, as drug targets).

Borrowing concepts from information theory (Shannon and
Weaver, 1949), the capacity to transfer information is determined
by the signaling event rate, and the size of the set formed
by possible events it permits. Fuzzy complexes provide fast
interconversion dynamics and a large set of configurations in
the interface. Thus, fuzzy interfaces have the ability to act as
high-capacity channels.

FUZZY INTERACTIONS IN SRC FAMILY
KINASES

The Src N-terminal regulatory element (SNRE) studied by our
group suggests an additional class of IDR allostery, in which the
disordered region acts a sensor but the connecting element is a
folded SH3 domain.

Mutations in the Unique domain of c-Src induce strong
phenotypes in Src-dependent colorectal cancer cells (Arbesú
et al., 2017). The Unique domain participates in a number
of interactions with proteins such as calmodulin (Pérez et al.,
2013) or N-methylaspartate receptor (Gingrich et al., 2004),
lipids (Pérez et al., 2013) and is subjected to phosphorylation
(Amata et al., 2014) and proteolytic processing (Hossain et al.,
2013). In order to integrate these capabilities into a functional
sensor-activator pair, the nature of the connector becomes
a key issue. The SH3 domain has been shown to act as
a scaffold of a fuzzy intramolecular complex (Maffei et al.,
2015; Arbesú et al., 2017). These findings suggests that the
SH3 domain may have a dual role in c-Src regulation: the
traditionally recognized one, as a sensor (docking site) of
polyproline peptide motifs, as well as that of a connector, relaying
the information sensed by the preceding IDR (Figure 2). An
enhanced capacity of SH3 motifs to interact with intrinsically
disordered regions has been suggested (Beltrao and Serrano,
2005). Recently, the N-terminal IDR of Abl kinase has been
shown to modulate its activity through the SH3 domain (Saleh
et al., 2017).

Recent NMR data (Tong et al., 2017) as well as SAXS
studies (Bernadó et al., 2008) confirm that the interaction
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FIGURE 2 | Switches and rheostats in Src Family Kinases. The conserved SH3-SH2-SH1 multidomain cassette implements an on/off switch based on the interaction

between the phosphorylated C-terminal tail and the SH2 domain, as well as interactions involving the SH3 domain. The intrinsically disordered N-terminal region forms

a fuzzy complex with the SH3 domain and enables a program that could direct different qualitative and quantitative outputs depending on the environment. Thus, the

IDRs can function as selective rheostats. Within the Src Family of Kinases, the high homology among of the SH3-SH2-SH1 cassette contrasts with the uniqueness of

the disordered N-terminal regions, suggesting a modular architecture in which specific responses are programmed in the IDR.

between the SH3-SH2 regulatory domains and the kinase
(SH1) domain is conserved in the active form of cSrc,
i.e., in the absence of the autoinhibitory interaction between
pTyr527 and the SH2 domain. The NMR results show that
this interaction is dynamic and suggests that modulation of
the interdomain dynamics may contribute to modulate c-Src
activity.

In spite of their large sequence divergence, the IDR regions
of the various SFK show coevolution with their respective
SH3 domains, suggesting that a fuzzy interaction such as the
one found in c-Src may be a functional element in all SFKs
(Arbesú et al., 2017). The large sequence variations in the Unique
domains contrasts with the very high homology displayed by
the SH3-SH2-SH1 cassette, suggesting that the Unique domain
has evolved to read the distinct environments required by
each SFK.

The 1PRE method is a simple and robust analytical approach
to generate a fingerprint of the long-range interactions within
intrinsically disordered domains. The complete processing tools
are part of the Farseer software (Teixeira et al., in press).

Simulations based on fuzzy logic recapitulate many features
of a kinase network (Aldridge et al., 2009). Proteins like the SFKs
can be considered as algorithms reading complex signaling inputs
to generate the proper responses. Thus, fuzzy interactions by
IDRs may, in fact, be implementing fuzzy logic at the level of
individual proteins.
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