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Fumarase is an enzyme of the tricarboxylic acid (TCA) cycle in mitochondria, but in recent

years, it has emerged as a participant in the response to DNA double strand breaks

(DSBs) in the nucleus. In fact, this enzyme is dual-targeted and can be also readily

detected in the mitochondrial and cytosolic/nuclear compartments of all the eukaryotic

organisms examined. Intriguingly, this evolutionary conserved cytosolic population of

fumarase, its enzymatic activity and the associated metabolite fumarate, are required

for the cellular DNA damage response (DDR) to double-strand breaks. Here we review

findings from yeast and human cells regarding how fumarase and fumarate may precisely

participate in the DNA damage response. In yeast, cytosolic fumarase is involved in

the homologous recombination (HR) repair pathway, through its function in the DSB

resection process. One target of this regulation is the resection enzyme Sae2. In

human cells, fumarase is involved in the non-homologous end joining (NHEJ) repair

pathway. Fumarase is phosphorylated by the DNA-dependent protein kinase (DNA-PK)

complex, which induces the recruitment of fumarase to the DSB and local generation of

fumarate. Fumarate inhibits the lysine demethylase 2B (KDM2B), thereby facilitating the

dimethylation of histone H3, which leads to the repair of the break by the NHEJ pathway.

Finally, we discuss the question how fumarase may function as a tumor suppressor via

its metabolite substrate fumarate. We offer a number of models which can explain an

apparent contradiction regarding how fumarate absence/accumulation, as a function

of subcellular location and stage can determine tumorigenesis. Fumarate, on the one

hand, a positive regulator of genome stability (its absence supports genome instability

and tumorigenesis) and, on the other hand, its accumulation drives angiogenesis and

proliferation (thereby supporting tumor establishment).

Keywords: fumarase, DNA damage response, organic acids, mitochondria, protein dual targeting, tumor

suppressor, metabolite signaling, DNA damage repair

INTRODUCTION

Themaintenance of genome integrity is one of themost important problems of all living organisms.
An average human cell suffers approximately one hundred thousand different DNA lesions each
day (Lindahl and Barnes, 2000; Alberts et al., 2004; Jackson and Bartek, 2009). Failure to repair the
damaged DNA can lead to disease, the most prominent of which is cancer (Hanahan andWeinberg,
2011; O’Driscoll, 2012).
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DNA double-strand breaks (DSBs) are one of the most
cytotoxic damages that can be inflicted on our genetic
material. Defective repair of these lesions can lead to gross
chromosomal rearrangements, such as large deletions,
translocations and insertions. Such rearrangements can lead to
loss of tumor suppressor genes and oncogene misexpression,
both of which have been implicated in cancer induction
and progression (Lengauer et al., 1998; Richardson and
Jasin, 2000; van Gent et al., 2001; Shiloh and Lehmann,
2004; Hanahan and Weinberg, 2011; O’Driscoll, 2012).
Thus, identifying and characterizing unknown factors
that play a role in the response to DSBs, is extremely
important.

Different cellular mechanisms that repair DSBs have evolved
during evolution (van Gent et al., 2001; Shiloh and Lehmann,
2004). In human and yeast cells there are two major pathways
which are responsible for DSB repair; the first, non-homologous
end joining (NHEJ), re-joins the DNA broken ends and is
regulated in the yeast Saccharomyces cerevisiae by the yKu70/80
complex, Dnl4 and Lif1 (Feldmann and Winnacker, 1993;
Boulton and Jackson, 1996; Feldmann et al., 1996; Mages
et al., 1996; Schar et al., 1997; Teo and Jackson, 1997; Wilson
et al., 1997; Herrmann et al., 1998; Ramos et al., 1998; Lewis
and Resnick, 2000; Pracharoenwattana et al., 2010; Durdikova
and Chovanec, 2017). In human cells this repair mechanism
is induced by the DNA-dependent protein kinase (DNA-PK)
complex, which is composed of the Ku70/80 heterodimer and the
DNA-PK catalytic subunit (DNA-PKcs), and additional factors
like the X-ray cross complementing protein 4 (XRCC4), DNA
Ligase IV, XRCC4-like factor (XLF) andAprataxin-and-PNK-like
factor (APLF) (Mimori et al., 1986; Reeves et al., 1989; Yaneva
et al., 1989; Paillard and Strauss, 1991; Higashiura et al., 1992;
Gottlieb and Jackson, 1993; Li et al., 1995; Otevrel and Stamato,
1995; Wei et al., 1995; Critchlow et al., 1997; Grawunder et al.,
1997; Ahnesorg et al., 2006; Buck et al., 2006; Bekker-Jensen
et al., 2007; Iles et al., 2007; Kanno et al., 2007; Davis and Chen,
2013). The repair of DSBs using NHEJ is more error-prone and
seldomly used in yeast, while in human cells this is the dominant
repair pathway (Kramer et al., 1994; Moore and Haber, 1996;
Lewis and Resnick, 2000; Shibata, 2017). The second DSB repair
mechanism is homologous recombination (HR), in which an
intact homologous DNA sequence is used to accurately repair
the DSB (van Gent et al., 2001; Aylon and Kupiec, 2004; Shiloh
and Lehmann, 2004). In order to repair the break by HR the
DNA flanking the DSB, first must be exonucleolytically cleaved to
form a 3′overhang structure in a process termed DSB resection.
This process contains two sequential steps, initial resection which
produces a short 3′ overhang region in the immediate vicinity
of the DSB, and extensive resection that processively cleaves the
5′ strand to form a longer 3′ overhang structure. In yeast, the
resection process is orchestrated by Mre11, Sae2, Exo1, and the
Dna2-Sgs1/Top3/Rmi1 (STR) complex (White and Haber, 1990;
Rattray et al., 2001; Clerici et al., 2005; Mimitou and Symington,
2008; Zhu et al., 2008; Cannavo and Cejka, 2014). In human
cells, the DSB resection is performed by MRE11, C-terminal
binding protein interacting protein (CtIP), EXO1 and the DNA2-
Bloom helicase (BLM) complex (Sartori et al., 2007; Buis et al.,

2008; Nimonkar et al., 2011; Zhou et al., 2014; Anand et al.,
2016).

FUMARASE, ITS CANONICAL FUNCTION
AND SUBCELLULAR LOCATIONS

Fumarase is a member of the class II fumarase enzymes which is
conserved from prokaryotes to humans. In the yeast, S. cerevisiae,
the enzyme fumarase is encoded by the FUM1 gene whose
product is a homotetramer with a molecular weight of about
200 kDa (Wu and Tzagoloff, 1987;Woods et al., 1988; Burak et al.,
2013). Fumarase catalyzes the hydration of fumarate to L-malate
and the reverse dehydration reaction (Mann and Woolf, 1930;
Woods et al., 1988). Fumarase is found in mitochondria where
it participates in the tricarboxylic acid (TCA) cycle.

In addition to the mitochondrial fumarase, the enzyme can
also be found in the cytosolic compartment. The cytosolic
localization of fumarase is highly conserved, as the enzyme
can be found in the cytosol of most eukaryotes extending
from yeast to human (Tolley and Craig, 1975; Edwards and
Hopkinson, 1979; Kobayashi and Tuboi, 1983; Akiba et al.,
1984; O’Hare and Doonan, 1985; Wu and Tzagoloff, 1987).
These dual localized proteins are coined “echoforms,” indicating
repetitious forms of the same protein distinctly placed in
the cell. There are a number of known mechanisms that
regulate the subcellular distribution of fumarase in eukaryotes
(Figure 1). In S. cerevisiae, both cytosolic and mitochondrial
fumarase echoforms are encoded by the FUM1 gene (Wu
and Tzagoloff, 1987). In the course of translation, a subset of
FUM1 translation products, which are partially translocated, fold
outside mitochondria and are blocked for full mitochondrial
import by a mechanism termed reverse translocation (Figure 1,
right, S. cerevisiae). Upon translation termination, these folded
translation products remain in the cytosol constituting the
cytosolic fumarase population (Stein et al., 1994; Sass et al.,
2001, 2003; Yogev and Pines, 2011; Kalderon and Pines, 2014).
In human cells, the human homolog of fumarase, termed
fumarate hydratase (FH), is expressed from a single gene
(Figure 1, top middle) (van Someren et al., 1974; Craig et al.,
1976). The fumarase gene promoter was shown to contain
multiple transcription start sites from which two groups of
fumarase mRNAs are transcribed. The first group includes
transcripts, which are translated into proteins that contain
the fumarase mitochondrial targeting sequence (MTS), while
the second group translates into fumarase proteins which lack
this sequence. Following translation, these two versions of the
protein constitute the mitochondrial and cytosolic echoforms
of fumarase, respectively (Dik et al., 2016). In rat liver, it has
been suggested that the two translation products (as above in
human), one containing and one lacking the MTS, are formed by
alternative translation initiation (Figure 1, top left) (Suzuki et al.,
1989; Tuboi et al., 1990). This same situation of two translation
products is achieved in Arabidopsis thaliana by two nearly
identical genes, one that encodes fumarase with an MTS and one
that lacks the MTS (Figure 1, bottom) (Pracharoenwattana et al.,
2010).
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FIGURE 1 | Mechanisms of fumarase dual targeting in different organisms. In S. cerevisiae all fumarase molecules are first targeted to mitochondria, begin their

translocation and are processed by the mitochondrial processing peptidase (MPP). Some of the molecules move back to the cytosol in a process termed “reverse

translocation”; If folding of the fumarase protein molecule starts in mitochondria it will be localized to the mitochondrial matrix, however, if folding of the protein

molecule starts outside mitochondria it will reside in the cytosol. In other words, the folding of fumarase is the driving force for its localization. In human, a single

fumarase gene encodes two groups of mRNAs either encoding a full-length mitochondrial precursor that harbors an MTS, or a shorter cytoplasmic polypeptide that

lacks it. In rat, a single fumarase gene encodes a single mRNA, which by differential translation initiation produces a full-length mitochondrial precursor that harbors an

MTS and a shorter cytoplasmic polypeptide that lacks it. A. thaliana harbors two highly homologs fumarase genes that encode a mitochondrial or cytosolic protein,

either containing or lacking an MTS respectively. Sequences encoding or indicating the mature fumarases are in green lines for DNA, purple for mRNA and light blue

for protein. The MTS sequences are indicated by yellow lines and ribosomes colored red.

CYTOSOLIC FUMARASE PLAYS A ROLE IN
THE DNA DAMAGE RESPONSE (DDR) TO
DNA DOUBLE STRAND BREAKS (DSBs)

With the canonical role of fumarase in the TCA cycle and
mitochondria, it was unclear what the function of the enzyme in
the cytosol is. To address the question of the cytosolic fumarase
function in S. cerevisiae, Yogev et al. constructed a strain termed
FumM. The FUM1 gene in this strain was deleted from its original
location on chromosome 16 and inserted into the mitochondrial
DNA. This resulted in the depletion of cytosolic fumarase, while
the mitochondrial population of the enzyme was retained, thus
presenting an opportunity to determine the cytosolic function of
fumarase (Yogev et al., 2010).

The FumM strain exhibited significant sensitivity to HO-
induced DSBs, γ-irradiation and DSB-inducing chemicals. As a
consequence of DSB induction in wild type (WT) yeast, fumarase
expression levels increased and the enzyme was now also found
in the cell nucleus. Expression of cytosolic fumarase or exposure

of the cells to fumarate, suppressed the DSB sensitivity of the
FumM strain (Yogev et al., 2010).We conclude that the enzymatic
activity of cytosolic fumarase is important for the DNA damage
response (DDR) to DSBs.

Yogev et al. also showed that fumarase is required for the

DSB DDR in human cell lines. Following DSB induction the
cellular levels of fumarase increased and localization of the

protein to the nucleus was observed. In addition, fumarase

knockdown has been shown to increase cell susceptibility to

ionizing radiation and hydroxyurea (HU) induced DSBs (Yogev
et al., 2010). These results from human and yeast cells were the
basis for our original model of fumarase function in the DDR

(Figure 2A). Worth mentioning here, as will be referred to in
the “Concluding remarks,” is the finding that a bacterial fumarase
(of Bacillus subtilis, Fum-bc) is induced upon DNA damage, co-
localized with the bacterial DNA and participates in the DDR
(Figure 2B). Thus, the dual function of fumarase in the TCA
cycle and the DDRmay be an ancient feature of prokaryotes and
eukaryotes.
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FIGURE 2 | Fumarase is involved in the eukaryotic and prokaryotic DNA damage response. (A) Human and yeast. Fumarase is a TCA cycle enzyme which catalyzes

the conversion of fumarate to L-malate in the mitochondria. Upon DNA damage the cytosolic echoform of fumarase is localized to the nucleus, there, its enzymatic

activity catalyzes the reverse conversion of malate to fumarate, so causing local accumulation of fumarate. This accumulation of fumarate (by fumarase) is required for

the proper function of the DNA damage response (DDR) to double strand breaks (DSBs), in both human (FH) and yeast (Fum1) cells via targets such as KDM2B and

Sae2 respectively. (B) Bacterium, Bacillus subtilis. Fumarase of Bacillus subtilis. (Fumbc) is also a TCA cycle enzyme and is induced upon DNA damage. Fumbc is

co-localized with the bacterial DNA. Fumbc dependent intracellular signaling of the B. subtilis DNA damage response is achieved via production of L-malate, which

affects the translation of RecN, the first protein recruited to DNA damage sites (Singer et al., 2017). Blue circles indicate fumarase in the different organisms (human,

yeast, and bacteria).

YEAST FUMARASE IS INVOLVED IN DSB
RESECTION

Leshets et al., have found that yeast cytosolic fumarase is
important for the HR repair pathway, through its function in the
initial step of the DSB resection process (Figure 3, right) (Leshets
et al., 2018). Supporting this notion is that no genetic interactions
were detected with the extensive resection factors Exo1 and Sgs1
(Leshets et al., 2018). Moreover, previous publications indicated
that during the initial step of resection 50 to 1,600 bases of DSB
flanking DNA can be processed (Mimitou and Symington, 2008;
Zhu et al., 2008; Garcia et al., 2011). In that study the resection
assay measures resection 0.29 kbp upstream the HO cut site. If
following the depletion of cytosolic fumarase only the extensive
step of resection is affected, one would detect at least some level
of initial resection 0.29 kbp from the DSB. In fact, resection
was not detected, suggesting that cytosolic fumarase is involved
in the initial step of the DSB resection process (Leshets et al.,
2018).

The functional interaction between Sae2 and cytosolic
fumarase further supports the role of fumarase in the
initial step of resection. The interaction was first suggested
by the similar phenotypes of the FumM and the 1sae2
strains. Both strains exhibit postponed dissociation of Mre11
from DSBs, decreased resection and impaired kinetics of

DSB repair (Lisby et al., 2004; Clerici et al., 2005; Ferrari
et al., 2015). The DSB susceptibility of the FumM strain
was partially suppressed by overexpression of Sae2 and this
reconstituted its resection capacity. A split-ubiquitin assay
indicated that these proteins physically interact in vivo,
and a direct interaction in vitro was shown by a column
retention assay. We still did not know whether cytosolic
fumarase acts upstream of Sae2, and if so, how does it
regulate this endonuclease? One hint was the reduced protein
levels of Sae2 in cytosolic fumarase depleted cells, suggesting
that fumarase acts upstream of Sae2, which we presume
is regulated by determining its protein abundance. In this
regard, cytosolic fumarase regulation of Sae2 is at the protein
level, and not at the Sae2 mRNA level (Leshets et al.,
2018). It is possible that cytosolic fumarase may enhance
the translation of Sae2 or have a negative effect on its
degradation.

Mre11 nuclease activity has been shown to be part of the
initial step in the resection process, both in human, and yeast
cells (Cannavo and Cejka, 2014; Anand et al., 2016). Exposure
to the metabolite fumarate can inhibit the DSB sensitivity of
the Mre11 nuclease dead (mre11-nd) mutant cells (Leshets
et al., 2018), suggesting that fumarate is involved in the
resection process. Nevertheless, how fumarate affects Sae2 is still
unclear.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 July 2018 | Volume 5 | Article 68

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Leshets et al. Fumarase, TCA-Cycle, DDR and Tumor Suppression

FIGURE 3 | Fumarase functions in the human and yeast DNA damage response (DDR) to double-strand breaks (DSBs). Two DSB repair pathways in human and yeast

are non-homologous end joining (NHEJ) and homologous recombination (HR). Left panel: Upon DSB formation in human cells, fumarase (FH) is phosphorylated on

Thr236 by the DNA-dependent protein kinase (DNA-PK) complex. This modification induces the recruitment of fumarase to the DSB and local generation of fumarate.

Fumarate inhibits the lysine demethylase 2B (KDM2B), thereby facilitating the dimethylation of histone H3 on lysine 36 (H3K36me2) by the SET domain and mariner

transposase fusion protein (SETMAR). This leads to the repair of the break by the NHEJ pathway. Right panel: The repair of a DSB by the HR pathway, requires that

the DNA flanking the DSB undergoes resection. In yeast, the resection process is orchestrated by the Mre11-Rad50-Xrs2 complex, Sae2, Exo1, and the Dna2-STR

complex. The yeast cytosolic fumarase and the metabolite fumarate affect the DSB resection process, by regulating the protein level of the resection factor Sae2.

DOES YEAST CYTOSOLIC FUMARASE
HAVE ADDITIONAL ROLES IN THE DSB
DDR PATHWAY?

We assume that cytosolic fumarase may be important for the
DDR not only through its functional relationship with Sae2.
Supporting this assumption is the fact that fumarase and Sae2 are
not epistatic (Leshets, thesis 2018). It has been previously shown
that the depletion of Sae2 only partially impairs the resection
process (Clerici et al., 2005; Ferrari et al., 2015). In comparison,
the inhibition of resection is muchmore profound upon cytosolic
fumarase depletion (Leshets et al., 2018). These observations
suggest that cytosolic fumarase may be involved with additional
resection factors. In this regard, no genetic interactions have been
detected with Exo1 or Sgs1 (Leshets et al., 2018).

HUMAN FUMARASE AND THE NHEJ
PATHWAY

A consequence of DSB formation, is the phosphorylation of

fumarase on Thr 236 by the DNA-dependent protein kinase
(DNA-PK) (Jiang et al., 2015). This phosphorylation is required

for the recruitment of fumarase to the DSB. Following its

recruitment, fumarase-mediated fumarate production inhibits
the α-ketoglutarate-dependent lysine demethylase 2B (KDM2B).
KDM2B inhibition increases the histone H3 dimethylation on
lysine 36 (H3K36me2) which leads to accumulation of the
DNA-PK complex and subsequent repair of the break by NHEJ
(Figure 3, left). The phosphorylation of histone H2AX (γ-H2AX)
is a central event during DSB DDR. One of the kinases, which
was shown to induce H2AX phosphorylation, is the DNA-PK
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complex. Interestingly, the mutation of Thr 236 of fumarase
does not affect γ-H2AX levels, even though it is expected
to do so due to the reduced DNA-PK accumulation at the
DSB (Stiff et al., 2004; An et al., 2010; Jiang et al., 2015).
The aberrant kinetics of H2AX phosphorylation because of
the fumarase knockdown was previously described by Yogev
et al. and confirmed by Jiang et al. Nevertheless, the Thr 236
mutation did not affect γ-H2AX (Yogev et al., 2010; Jiang et al.,
2015). This observation suggests that fumarase’s role in the DSB
DDR is not restricted to the NHEJ pathway (e.g., HR as in
yeast).

IS HUMAN FUMARASE ALSO INVOLVED IN
THE HR PATHWAY?

A functional relationship between fumarase and α-ketoglutarate-
dependent histone demethylases is very intriguing due to the
emerging importance of histone methylation for the DDR.
Indeed, fumarase has been shown to influence the global
histone methylation pattern and fumarate was shown to inhibit
several members of the KDM family, including KDM4A
(Xiao et al., 2012). KDM4A is a tri-methylase capable of
converting H3K36me3 to H3K36me2, while SET domain-
containing protein 2 (Setd2) methyltransferase is responsible
for the generation of H3K36me3 (Whetstine et al., 2006;
Edmunds et al., 2008). These observations suggest that fumarase-
dependent fumarate production may inhibit KDM4A, thus
facilitating the generation of H3K36me3 by Setd2. This
histone modification is especially intriguing due to the fact
that H3K36me3 has been shown to be important for the
repair of DSBs by the HR pathway (Carvalho et al., 2014;
Pfister et al., 2014). This is supported by the observation
that transcriptionally active chromatin which is marked by
H3K36me3, is preferentially repaired by HR (Aymard et al.,
2014).

It has been proposed that H3K36me3 is important for the
HR repair due to its involvement in the DSB resection process.
Two comprehensive studies proposed that Setd2-dependent
H3K36me3 is required for recruitment of the lens epithelium-
derived growth factor p75 splice variant (LEDGF) to the
chromatin. Following DSB induction, LEDGF has been shown
to recruit CtIP which facilitates the initiation of resection
(Sartori et al., 2007; Daugaard et al., 2012; Pfister et al., 2014;
Anand et al., 2016). In concert, these results may imply that
fumarase facilitated H3K36 tri-methylation can induce DSB
resection, thus committing the cell to the repair of the DSB by
HR.

The deduction above and the results presented by
Jiang et al. propose a complex model of fumarase
involvement in the response to DSBs in human cells.
Fumarase mediated fumarate production may facilitate the
generation of H3K36me2 or H3K36me3 by the inhibition
of KDM2B or KDM4A, respectively (Xiao et al., 2012;
Jiang et al., 2015). These suggested capacities of fumarase
support its importance in both NHEJ and HR repair
pathways.

HUMAN FUMARASE FUNCTIONS AS A
TUMOR SUPPRESSOR

Fumarase was shown to be a tumor suppressor. Heterozygous
mutations in the fumarase gene are associated with hereditary
leiomyomatosis and renal cell cancer (HLRCC) syndrome.
Patients with HLRCC can suffer from multiple uterine and
cutaneous leiomyomas and tend to develop type II papillary
renal cell carcinoma. HLRCC is a syndrome which is dominantly
inherited and is considered a two-hit condition. Essentially all
of the HLRCC tumors of patients exhibit inactivation of both
fumarase alleles. These findings emphasize that the complete loss
of fumarase activity is required for the tumorigenesis process
(Reed et al., 1973; Kiuru et al., 2001; Launonen et al., 2001;
Tomlinson et al., 2002). While there is well-known involvement
of fumarase in HLRCC, mutations in it are rarely detected in
sporadic tumors. Nonetheless, biallelic inactivation of fumarase
has been reported in some cases of uterine leiomyomas, soft tissue
sarcoma, and type II papillary renal cell carcinomas (Barker et al.,
2002; Kiuru et al., 2002; Lehtonen et al., 2004; Gardie et al., 2011).

Much effort has been put into determining the mechanism
by which fumarase functions as a tumor suppressor. The sole
leading model for some years was that the loss of fumarase
activity and the buildup of fumarate concentrations inhibits
PHD 1, 2 and 3, which are α-ketoglutarate-dependent prolyl
hydroxylase enzymes. PHD inhibition stabilizes the α subunit
of HIF (hypoxia-inducible transcription factor), which leads to
the establishment of an active HIF transcription complex. High
levels of HIF have been shown to enhance angiogenesis and
glucose metabolism, both of which are known to be essential
for tumorigenesis (Isaacs et al., 2005; Pollard et al., 2005; Selak
et al., 2005; Vanharanta et al., 2006; Hanahan and Weinberg,
2011). Nevertheless, the recent data discussed above suggest that
fumarase is also important in order to maintain genomic stability
(Yogev et al., 2010; Jiang et al., 2015). According to this scenario,
the loss of fumarase, as a guardian of genome integrity, can also
contribute to the development of cancer.

THE PARADOXICAL NATURE OF THE
MECHANISM BY WHICH FUMARASE ACTS
AS A TUMOR SUPPRESSOR

There are two proposed models for the activity of fumarase as a
tumor suppressor. In the first, the loss of fumarase is suggested to
block the TCA cycle in mitochondria causing the accumulation
of fumarate, which subsequently leads to the stabilization of
HIF (Isaacs et al., 2005; Pollard et al., 2005; Selak et al., 2005;
Vanharanta et al., 2006). The second model, suggests that the loss
of fumarase diminishes the ability of the cell to generate fumarate,
thereby compromising genomic stability (Yogev et al., 2010;
Jiang et al., 2015). In both models, fumarate is the key effector
molecule, but in the first model it induces an oncogenic effect,
while in the second, fumarate acts as an inhibitor of oncogenicity.
Considering both models, the problem is that inactivation of
fumarase in a cell is proposed to lead to both accumulation of
fumarate, due to the blockage of the TCA cycle, and also to the
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FIGURE 4 | Two stage model of fumarase depletion leading to tumorigenesis. (A) Fumarase and its metabolite fumarate are involved in the DNA damage response in

human cells. (B) Depletion of fumarase can contribute to the tumorigenesis process. In the first stage (Stage 1), biallelic inactivation of fumarase in a single tumor cell

may abolish the ability of the cell to generate fumarate in the proximity of the cellular DNA, thereby decreasing genomic stability, leading to creation of additional

mutations. At this stage, the fumarate concentration in the single tumor cell may not be sufficient for HIF stabilization. In the second stage (Stage 2), proliferation of the

fumarase deficient cells may form a closely positioned cell population, in which the fumarate levels rise and the concentration required for HIF stabilization can be

achieved.

inability to generate fumarate for the DDR. This discrepancy
raises the question how can these two apparently contradictory
models be reconciled.

The first plausible answer to this question may rely on the
possibility that in order to function in the DDR, fumarase
must generate high concentrations of fumarate near the cellular
DNA, in proximity of the DSB (Figure 4A). This possibility is
supported by the fact that upon DSB induction fumarase was
shown to localize to the cell nucleus and even form nuclear
foci (Yogev et al., 2010; Jiang et al., 2015). Considering this, it
is plausible that upon biallelic inactivation of the enzyme, the
increase in the cellular concentration of fumarate is sufficient
for the stabilization of HIF, but not high enough to compensate
for the lack of fumarase near the cellular DNA. The second
possibility which, is an extension of the first, argues that the
two mechanisms by which fumarase acts as a tumor suppressor,
occur at different stages of tumor development (Figure 4B). In
the first stage, biallelic inactivation of fumarase in a single tumor
cell may abolish the ability of the cell to generate fumarate in
the proximity of the cellular DNA, thereby decreasing genomic
stability. Nevertheless, at this stage the fumarate concentration in
the single tumor cell may not be sufficient for HIF stabilization.
In the second stage, proliferation of the fumarase deficient cells
may form a closely positioned cell population, in which the
fumarate concentration required for HIF stabilization can be
achieved. According to this scenario, the loss of fumarase first

reduces the genomic stability of the cell, and only later causes HIF
stabilization (Figure 4B). Unfortunately, while fumarate levels
have been determined in established FH-deficient tumors, there
is no data regarding the levels of this metabolite at stages in which
the loss of FH occurs. Until suchmeasurements of fumarate levels
at different stages of tumor development are available, the second
scenario above, although plausible, remains speculative.

CONCLUDING REMARKS

Fumarase is a highly conserved metabolic enzyme of the TCA
cycle which is involved in the two main DSB repair pathways
in eukaryotes; NHEJ in human and HR in yeast. The enzyme
and its associated metabolite fumarate, interact and affect
different components of the DDR pathways (e.g., KDM2B, Sae2,
Figure 2A, 3). To this setting we can add a recent study by Singer
et al.which shows that fumarase in prokaryotes already possessed
both TCA cycle and DDR functions (Singer et al., 2017).
Fumarase of Bacillus subtilis (Fum-bc) a prokaryote bacterium is
induced upon DNA damage, co-localized with the bacterial DNA
and participates in the DDR (Figure 2B). Intriguingly, Fum-
bc can complement both eukaryotic functions (TCA cycle and
DDR) when expressed in yeast. Fumarase dependent intracellular
signaling of the B. subtilis DDR is achieved via production of
L-malic acid, which affects the translation of RecN, the first
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protein recruited to DNA damage sites (Singer et al., 2017). Thus,
different fumarase related metabolites function in the DDR of
different organisms. One take home message is that it is the
fumarase related metabolites which are the active molecules in
the DDR, but they must be administered at specific locations in
the cell and that is why the enzyme that produces these molecules
must be localized to the right place in the cell.

With respect to evolution, it appears that for fumarase, the
two functions came first, already in the prokaryote, thereby
creating the driving force for dual localization of the protein in
the eukaryotic cell. The notion that during evolution, cellular

functions such as the DDR can recruit different primary
metabolite signaling molecules is exciting.

Recent studies have extended our understanding of the

possible functions of fumarase in the DDR. Nevertheless,
additional enquiries are needed in order to decipher the complex

role of this enzyme and its associated metabolites in the different

DDR pathways. Deeper comprehension of this role will help us
fully understand the function of fumarase in health and disease,
and in particular its functions as a tumor suppressor (Figure 4).
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