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A fundamental issue in evolutionary systems biology is understanding the relationship

between the topological architecture of a biological network, such as a metabolic

network, and the evolution of the network. The rate at which an element in a metabolic

network accumulates genetic variation via new mutations depends on both the size

of the mutational target it presents and its robustness to mutational perturbation.

Quantifying the relationship between topological properties of network elements and the

mutability of those elements will facilitate understanding the variation in and evolution

of networks at the level of populations and higher taxa. We report an investigation into

the relationship between two topological properties of 29 metabolites in the C. elegans

metabolic network and the sensitivity of those metabolites to the cumulative effects

of spontaneous mutation. The correlations between measures of network centrality

and mutability are not statistically significant, but several trends point toward a weak

positive association between network centrality and mutational sensitivity. There is a

small but significant negative association between the mutational correlation of a pair

of metabolites (rM) and the shortest path length between those metabolites. Positive

association between the centrality of a metabolite and its mutational heritability is

consistent with centrally-positioned metabolites presenting a larger mutational target

than peripheral ones, and is inconsistent with centrality conferring mutational robustness,

at least in toto. The weakness of the correlation between rM and the shortest path length

between pairs of metabolites suggests that network locality is an important but not

overwhelming factor governing mutational pleiotropy. These findings provide necessary

background against which the effects of other evolutionary forces, most importantly

natural selection, can be interpreted.

Keywords: metabolic network, mutation accumulation, mutational correlation, mutational variance, network

centrality

INTRODUCTION

The set of chemical reactions that constitute organismal metabolism is often represented as a
network of interacting components, in which individual metabolites are the nodes in the network
and the chemical reactions of metabolism are the edges linking the nodes (Jeong et al., 2000).
Representation of a complex biological process such as metabolism as a network is conceptually
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powerful because it offers a convenient and familiar way of
visualizing the system, as well as a well-developed mathematical
framework for analysis.

If the representation of a biological system as a network
is to be useful as more than a metaphor, it must have
predictive power (Winterbach et al., 2013). Metabolic networks
have been investigated in the context of evolution, toward
a variety of ends. Many studies have compared empirical
metabolic networks to various random networks, with the goal of
inferring adaptive features of network architecture (e.g., Fell and
Wagner, 2000; Jeong et al., 2000; Wagner and Fell, 2001; Siegal
et al., 2007; Minnhagen and Bernhardsson, 2008; Papp et al.,
2009; Bernhardsson and Minnhagen, 2010). Other studies have
addressed the relationship between network-level properties of
individual elements of the network (e.g., node degree, centrality)
and properties such as rates of protein evolution (Vitkup et al.,
2006; Greenberg et al., 2008), within-species polymorphism
(Hudson and Conant, 2011), and mutational robustness (Levy
and Siegal, 2008).

One fundamental evolutionary process that remains
essentially unexplored with respect to metabolic networks
is mutation. Mutation is the ultimate source of genetic
variation, and as such provides the raw material for evolution:
the greater the input of genetic variation by mutation, the
greater the capacity for evolution. However, in a well-adapted
population, most mutations are at least slightly deleterious.
At equilibrium, the standing genetic variation in a population
represents a balance between the input of new mutations
that increase genetic variation and reduce fitness, and natural
selection, which removes deleterious variants and thereby
increases fitness. Because genetic variation is jointly governed
by mutation and selection, understanding the evolution of
any biological entity, such as a metabolic network, requires
an independent accounting of the effects of mutation and
selection.

The cumulative effects of spontaneous mutations can be
assessed in the near absence of natural selection by means of a
mutation accumulation (MA) experiment (Figure 1). Selection
becomes ineffective relative to random genetic drift in small
populations, and mutations with effects on fitness smaller than
about the reciprocal of the population size (technically, the
genetic effective population size,Ne) will be essentially invisible to
natural selection (Kimura, 1968). An MA experiment minimizes
the efficacy of selection by minimizing Ne, thereby allowing all
but the most strongly deleterious mutations to evolve as if they
are invisible to selection (Halligan and Keightley, 2009).

Our primary interest is in the relationship between the
centrality of a metabolite in the network and the sensitivity of
that metabolite to mutation. Roughly speaking, the centrality of a
node in a network quantifies some measure of the importance
of the node in the network (Koschützki and Schreiber, 2008).
A generic property of empirical networks, including metabolic
networks, is that they are (approximately) scale-free; scale-free
networks are characterized by a topology with a few “hub” nodes
(high centrality) and many peripheral nodes (low centrality;
Jeong et al., 2000). Scale-free networks are more robust to

FIGURE 1 | (A) Schematic diagram of the mutation accumulation (MA)

experiment. An MA experiment is simply a pedigree. The genetically

homogeneous ancestral line (G0) was subdivided into 100MA lines, of which

43 are included in this study. Lines were allowed to accumulate mutations for

t = 250 generations. At each generation, lines were propagated by a single

randomly chosen hermaphrodite (N = 1). Mutations, represented as colored

blocks within a homologous pair of chromosomes, arise initially as

heterozygotes and are either lost or fixed over the course of the experiment. At

the culmination of the experiment, each line has accumulated its own unique

set of mutations. MA lines were compared to the cryopreserved G0 ancestor,

which is wild-type at all loci. After Halligan and Keightley (2009). (B) Expected

outcome of an MA experiment. As mutations accumulate over time, relative

fitness (solid dark blue line) declines from its initial value of 1 at rate 1M per

generation and the genetic component of variance (solid orange line) increases

from its initial value of 0 at rate VM per generation. Trait X (light blue dashed

line) is positively correlated with fitness and declines with MA; trait Y (green

dashed line) is negatively correlated with fitness and increases with MA.

Trajectories are depicted as linear, but they need not be. (C) Accumulation of

mutational covariance in an MA experiment. Coordinate axes represent two

traits, X and Y. Concentric ellipses show the increase in genetic covariance

with MA, beginning from the initial value of zero; the orientation of the ellipses

(red arrow) represents the linear relationship between pleiotropic mutational

effects on the two traits.
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random perturbation than are randomly-connected networks
(Albert et al., 2000).

Mutation is an important source of perturbation to biological
systems, and much effort has gone into theoretical and empirical
characterization of the conditions under which mutational
robustness will evolve (Wagner et al., 1997; De Visser et al., 2003;
Proulx et al., 2007). Mutational robustness can be assessed in two
basic ways: top-down, in which a known element of the system is
mutated and the downstream effects of the mutation quantified,
or bottom-up, in which mutations are introduced at random,
either spontaneously or by mutagenesis, and the downstream
effects quantified. Top-down experiments are straightforward
to interpret: the greater the effects of the mutation (e.g., on a
phenotype of interest), the less robust the system. However, the
scope of inference is limited to the types of mutations introduced
by the investigator (which in practice are almost always gene
knockouts), and provide limited insight into natural variation in
mutational robustness.

Bottom-up approaches, in which mutations are allowed to
accumulate at random, provide insight into the evolution of a
system as it actually exists in nature: all else equal, a system,
or element of a system (“trait”), that is robust to the effects
of mutation will accumulate less genetic variance under MA
conditions than one that is not robust (Figure 1B; Stearns et al.,
1995). However, the inference is not straightforward, because all
else may not be equal: different systems or traits may present
different mutational targets (roughly speaking, the number of
sites in the genome that potentially affect a trait; Houle, 1998).

Ultimately, disentangling the evolutionary relationship
between network architecture, mutational robustness, and
mutational target is an empirical enterprise, specific to the
system of interest. As a first step, it is necessary to establish
the relationship between network architecture (e.g., topology)
and the rate of accumulation of genetic variance under MA
conditions. If a general relationship emerges, targeted top-down
experiments can then be employed to dissect the relationship in
more mechanistic detail.

In addition to the relationship between metabolite centrality
andmutational variance, we are also interested in the relationship
between network topology and the mutational correlation
(rM) between pairs of metabolites (Figure 1C). In principle,
mutational correlations reflect pleiotropic relationships between
genes underlying pairs of traits (but see below for caveats; Estes
et al., 2005). Genetic networks are often modular (Newman,
2006), consisting of groups of genes (modules) within which
pleiotropy is strong and between which pleiotropy is weak
(Wagner et al., 2007). Genetic modularity implies that mutational
correlations will be negatively correlated with the length of the
shortest path between network elements. However, it is possible
that the network of gene interactions underlying metabolic
regulation is not tightly correlated with the metabolic network
itself, e.g., if trans acting regulation predominates.

Here we report results from a long-term MA experiment
in the nematode Caenorhabditis elegans, in which replicate
MA lines derived from a genetically homogeneous common
ancestor (G0) were allowed to evolve under minimally effective
selection (Ne≈1) for approximately 250 generations (Figure 1A).

We previously reported estimates from these MA lines of two
key quantitative genetic parameters by which the cumulative
effects of mutation on the metabolome can be quantified: the
per-generation change in the trait mean (the mutational bias,
1M) and the per-generation increase in genetic variation (the
mutational variance, VM) for the standing pools of 29metabolites
(Davies et al., 2016); Supplementary Table 1. In this report,
we interpret those results, and new estimates of mutational
correlations (rM), in the context of the topology of the C. elegans
metabolic network.

Studies with C. elegans have contributed significantly to
our understanding of the mutational process, and of short-
term evolution more generally (reviewed in Teotónio et al.,
2017). However, the key feature of C. elegans that makes it
such a powerful model system in many contexts—small size,
with its many associated benefits—presents a challenge in the
context of metabolomics, because current methods require
pooling samples from thousands of individual worms. Because
metabolomic profiles vary over the course of development,
meaningful comparisons between groups require that samples be
carefully controlled for timing of development.

MATERIALS AND METHODS

Metabolic Network
The metabolic network of C. elegans was constructed following
the criteria of Ma and Zeng (2003b), from two reaction databases
(i) fromMa and Zeng (2003b); updated at http://www.ibiodesign.
net/kneva/; we refer to this database as MZ, and (ii) from
Yilmaz and Walhout (2016); http://wormflux.umassmed.edu/;
we refer to this database as YW. Subnetworks that do not
contain at least one of the 29 metabolites were excluded from
downstream analyses. The method includes several ad hoc
criteria for retaining or omitting specific metabolites from the
analysis (criteria are listed on p. 272 of Ma and Zeng, 2003b). The
set of reactions in the MZ and YW databases are approximately
99% congruent; in the few cases in which there is a discrepancy
(listed in Supplementary Table 2), we chose to use the MZ
database because we used the MZ criteria for categorizing
currency metabolites (defined below).

To begin, the 29 metabolites of interest were identified
and used as starting sites for the network. Next, all forward
and reverse reactions stemming from the 29 metabolites were
incorporated into the subnetwork until all reactions either looped
back to the starting point or reached an endpoint. Currency
metabolites were removed following the MZ criteria; a currency
metabolite is roughly defined as a molecule such as water, proton,
ATP, NADH, etc., that appears in a large fraction of metabolic
reactions but is not itself an intermediate in an enzymatic
pathway. Metabolic networks in which currency metabolites are
included have much shorter paths than networks in which they
are excluded. When currency metabolites are included in the
network reported here, all shortest paths are reduced to no more
than three steps, and most of the shortest paths consist of one or
two steps. The biological relevance of path length when currency
metabolites are included in the network is unclear (Ma and Zeng,
2003b).
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A graphical representation of the network was constructed
with the Pajek software package (http://mrvar.fdv.uni-lj.si/
pajek/) and imported into the networkX Python package
(Hagberg et al., 2008). Proper importation from Pajek to
networkX was verified by visual inspection.

Network Parameters
Properties of networks can be quantified in many ways,
and different measures of network centrality capture different
features of network importance (Table 1).We did not have strong
prior hypotheses about which specific measure(s) of centrality
associated with a given metabolite would prove most informative
in terms of a relationship with the mutational properties of that
metabolite (i.e., 1M and/or VM). Therefore, we assessed the
relationship between the mutational properties of a metabolite
and several measures of its network centrality: betweenness,
closeness, and degree centrality, in- and out-degree, and core
number (depicted in Figure 2). These network parameters are
all positively correlated. Definitions of the parameters are given
in Table 1; correlations between the parameters are included
in Table 2. Calculation of network parameters was done using
built-in functions in NetworkX.

Mutation Accumulation Lines
A full description of the construction and propagation of the
mutation accumulation (MA) lines is given in Baer et al. (2005).
Briefly, 100 replicate MA lines were initiated from a nearly-
isogenic population of N2-strain C. elegans and propagated by
single-hermaphrodite descent at 4-day (one generation) intervals
for approximately 250 generations. The long-term Ne of the
MA lines is very close to one, which means that mutations
with a selective effect less than about 25% are effectively neutral
(Keightley and Caballero, 1997). The common ancestor of
the MA lines (“G0”) was cryopreserved at the outset of the
experiment; MA lines were cryopreserved upon completion of
the MA phase of the experiment. Based on extensive whole-
genome sequencing (Denver et al., 2012; Saxena et al., 2018),
we estimate that each MA line carries approximately 70 mutant
alleles in the homozygous state.

At the time the metabolomics experiments reported in Davies
et al. (2016) were initiated, approximately 70 of the 100MA
lines remained extant, of which 43 ultimately provided sufficient
material for Gas Chromatography/Mass Spectrometry (GC-MS).
Each MA line was initially replicated five-fold, although not
all replicates provided data of sufficient quality to include in
subsequent analyses; the mean number of replicates included per
MA line is 3.9 (range = 2–5). The G0 ancestor was replicated
nine times. However, the G0 ancestor was not subdivided
into “pseudolines” (Teotónio et al., 2017), which means that
inferences about mutational variances and covariances are
necessarily predicated on the assumption that the among-line
(co)variance of the ancestor is zero.

Each replicate consisted of stage-synchronized young adult
worms taken from a single 10 cm agar plate. Cultures were
stage-synchronized by treatment with hypochlorite (“bleaching”)
following Stiernagle (2006); details of the synchronization are
given in Davies et al. (2016). Following synchronization, worms

were incubated at 20◦C until young adulthood, defined as
the point at which some eggs were seen on plates but no
second generation worms had hatched. At this point, worms
were washed from plates and collected for metabolomics. Each
sample contained tens of thousands of worms, and although
the samples were stage-synchronized, there was almost certainly
some variation among samples in both the relative frequency of
eggs on the plate and the (small) proportion of worms that had
yet to reach adulthood.

Recently, whole-genome sequencing revealed that two MA
lines, MA563 and MA564, share approximately 2/3 of their
accumulated mutations; the simplest explanation is that the
two lines were cross-contaminated around generation 150–175
of the MA protocol. However, averaged over all metabolites,
the between-line standard deviation of those two lines is >3X
that of either within-line SD, which suggests that the ∼1/3 of
the mutations in each genome that are unique to each line
contribute meaningfully to the differences between those two
lines. Accordingly, we chose to include both lines. Further, since
only 21 (out of 33) lines that we sequenced are represented in
the metabolome dataset, the possibility of further unidentified
cross-contamination cannot be ruled out. Comparisons between
metabolites will not be biased by shared mutations, although the
sampling (co)variance will increase by a factor k≤ N

N−x+1 , where
N is the total number of lines and x is the number of lines that
share mutations; k= N

N−x+1 if all lines that share mutations share
all their mutations.

Metabolomics
Details of the extraction and quantification of metabolites are
given in Davies et al. (2016). Briefly, samples were analyzed using
an Agilent 5975c quadrupole mass spectrometer with a 7890
gas chromatograph. Metabolites were identified by comparison
of GC-MS features to the Fiehn Library (Kind et al., 2009)
using the AMDIS deconvolution software (Halket et al., 1999),
followed by reintegration of peaks using the GAVIN Matlab
script (Behrends et al., 2011). Metabolites were quantified and
normalized relative to an external quantitation standard. 34
metabolites were identified, of which 29 were ultimately included
in the analyses. Normalized metabolite data are archived in
Dryad (http://dx.doi.org/10.5061/dryad.2dn09).

Mutational Parameters
In what follows, a “trait” is the (normalized) concentration of
a metabolite. There are three mutational parameters of interest:
(i) the per-generation proportional change in the trait mean,
referred to as the mutational bias, 1M; (ii) the per-generation
increase in the genetic variance, referred to as the mutational
variance, VM; and (iii) the genetic correlation between the
cumulative effects of mutations affecting pairs of traits, the
mutational correlation, rM . Details of the calculations of 1M
and VM are reported in Davies et al. (2016); we reprise the basic
calculations here.

Mutational Bias (1M)
The mutational bias is the change in the trait mean due to the
cumulative effects of all mutations accrued over one generation.
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TABLE 1 | Definitions of network parameters, following the documentation of NetworkX, v.1.11 (Hagberg et al., 2008) and mutational parameters.

Parameter Heuristic definition Formal definition

In Degree (IN◦), deg+( v) The number of incoming edges to node v in a directed

graph

Self-explanatory

Out Degree (OUT◦), deg−( v) The number of outgoing edges from node v in a directed

graph

Self-explanatory

Shortest Path Length, d(v, u) Shortest distance from node v to another node u with no

repeated walks

Self-explanatory

Betweenness Centrality (BET), cB(v) Betweenness centrality of node v is the sum of the

fraction of all-pairs shortest paths that pass through v.

The greater cB(v), the greater the fraction of shortest

paths that pass through node v.

cB(v)
(n−1)(n−2)

, where cB (v) =
∑

s,t∈V
σ (s,t|v)
σ (s,t)

, V is the set of

nodes, σ (s, t) is the number of shortest paths from node s to

node t, σ (s, t|v) is the number of paths from s to t that pass

through node v, and n is the number of nodes in the graph.

The denominator (n-1)(n-2) is the normalization factor for a

directed graph that scales cB(v) between 0 and 1

Closeness Centrality (CLO), C(v) Closeness centrality of node v is the reciprocal of the

sum of the shortest path lengths to all n-1 other nodes,

normalized by the sum of minimum possible distances

n-1. The greater C(v), the closer v is to other nodes

C (v) = n−1
∑n−1

u=1 d(u,v)
, where n is the number of nodes and

d(u, v) is the shortest path distance between u and v

Degree Centrality (DEG), CD(v) Degree centrality of node v is the fraction of nodes in the

network that node v is connected to

CD (v) = deg+(v)+deg− (v)
n−1 , where n is the number of nodes

in the network

Core Number (CORE) A k-core is the largest subgraph that contains nodes of

at least degree k. The core number of node v is the

largest value k of a k-core containing node v

Calculated using the algorithm of Batagelj and Zaversnik

(2011).

Mutational Bias (1M) Per-generation rate of change of the trait mean in an MA

experiment. Equivalent to the product of the

genome-wide mutation rate, µG, and the average effect

of a mutation on the trait, α

Mz = zMA−z0
tz0

; zMA and z0 represent the MA and ancestral

(G0) trait means and t is the number of generations of MA

Mutational Variance (VM) Per-generation rate of increase in genetic variance for a

trait in an MA experiment. Equivalent to the product of

the genome-wide mutation rate, µG, and the square of

the average effect of a mutation on the trait, α2

VM = VL = VL,MA−VL,G0
2t , where VL,MA is the variance among

MA lines, VL,G0 is the among-line variance in the G0

ancestor, and t is the number of generations of MA

Squared coefficient of variation (IM, IE ) IM is the mutational variance (VM) scaled by the square

of the trait mean, and provides a measure of the

evolvability of a trait. IE is the residual variance (VE)

scaled in the same way

Mutational heritability (h2
M
) Mutational variance (VM) scaled as a fraction of the

residual variance (VE). Provides a measure of the

short-term response to selection on mutational variance

h2M = VM
VE

Mutational correlation (rM ) Genetic correlation between two traits in MA lines.

Provides an estimate of pleiotropic effects of new

mutations

rM = COVM (X,Y )√
VM(X)VM (Y )

, where COVM is the mutational

covariance and VM is the mutational variance

Abbreviations of the parameters used in Table 2 follow the parameter name in parentheses in bold type.

1Mz=µGαz , where µG is the per-genome mutation rate and αz

is the average effect of a mutation on trait z, and is calculated
as Mz = zMA−z0

tz0
, where zMA and z0 represent the MA and

ancestral (G0) trait means and t is the number of generations
of MA. However, the 1M was not normally distributed among
the 29 metabolites, so for downstream analyses we transformed
1M as 1M∗ =log2

(

MA
G0

)

, where MA and G0 represent the
trait values of the MA lines and the G0 ancestor, respectively;
1M=21M∗-1.

Mutational Variance (VM)
The mutational variance is the increase in the genetic variance
due to the cumulative effects of all mutations accrued over
one generation. VM =µGα2

z and is calculated as VM =
VL = VL,MA−VL,G0

2t , where VL,MA is the variance among MA

lines, VL,G0 is the among-line variance in the G0 ancestor,
and t is the number of generations of MA (Lynch and
Walsh, 1998, p. 330). In this study, we must assume that
VL,G0 = 0.

Comparisons of variation among traits or groups require that
the variance be measured on a common scale. VM is commonly
scaled either relative to the trait mean, in which case VM is the
squared coefficient of variation and is often designated IM , or
relative to the residual variance, VE; VM/VE is the mutational
heritability, h2M . IM and h2M have different statistical properties
and evolutionary interpretations (Houle et al., 1996), so we
report both. For each metabolite, IM and IE are standardized
relative to the mean of the MA lines. Both h2M and IM were
natural-log transformed to meet assumptions of normality prior
to downstream analyses.
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Mutational Correlation, rM
Pairwise mutational correlations were calculated from the
among-line components of (co)variance, which were estimated
by REML as implemented in the MIXED procedure of SAS
v. 9.4, following Fry (2004). Statistical significance of individual
correlations was assessed by Z-test, with a global 5% significance
criterion of approximately P < 0.000167.

FIGURE 2 | Schematic depiction of the k-cores of a graph. The k-core of a

graph is the largest subgraph that contains nodes of degree at least k. The

colored balls represent nodes in a network and the black lines represent

connecting edges. Each dark red ball in the white area has core number k = 3;

note that each node with k = 3 is connected to at least three other nodes. The

depicted graph is undirected. After Batagelj and Zaversnik (2011).

Analysis of the Relationship Between
Mutational Parameters and Network
Centrality
The six network parameters are all positively correlated, as
are the four mutational parameters (Table 2). To assess the
overall correlation structure between mutational and network
parameters, we employed a hierarchical canonical correlation
analysis (CCA), as implemented in the CANCORR procedure
of SAS v. 9.4, with the network parameters as the “X” variables
and the mutational parameters as the “Y” variables. We initially
included all four mutational parameters, resulting in four
pairs of canonical variates and four canonical correlations. We
then repeated the analysis for each mutational parameter Yi

individually with the full set of six network parameters, resulting
in one pair of canonical variates and one canonical correlation for
each of the four mutational parameters. Finally, we calculated the
pairwise correlation between all mutational parameters and all
network parameters. For all analyses except the first, significance
was assessed using the False Discovery Rate (FDR) (Benjamini
and Hochberg, 1995).

Analysis of the Relationship Between
Mutational Correlation (rM) and Network
Architecture
Correlation Between Mutational Correlation (rM) and

Shortest Path Length
Statistical assessment of the correlation between mutational
correlation (rM) and shortest path length presents a problem
of non-independence, for two reasons. First, all correlations
including the same variable (metabolite) are non-independent;
each of the n elements of an n x n correlation matrix contributes
to n(n-1)/2 correlations. Second, even though the mutational
correlation between metabolites i and j is the same as the
mutational correlation between j and i, the shortest path lengths
need not be the same, and moreover, the path from i to j

TABLE 2 | Correlations between network parameters (Row/Column 1–5), between mutational parameters (Row/Column 6–9), between network and mutational

parameters, and between residual variance (IE , Row/Column 10) and network and mutational parameters.

BTW CLO DEG IN◦ OUT◦ CORE 1M |1M| h2
M

IM IE

BTW 0.43 0.49 0.52 0.39 0.48 −0.16 −0.14 0.03 −0.06 −0.10

CLO 0.52 0.51 0.45 0.52 0.14 0.21 0.21 0.27 0.06

DEG 0.90 0.93 0.79 0.09 0.06 0. 25 0.15 0.16

IN◦ 0.67 0.82 0.22 0.23 0.30 0.21 0.25

OUT◦ 0.64 −0.04 −0.08 0.17 0.09 0.05

CORE 0.33 0.28 0.53* 0.30 0.28

1M 0.84 0.62 0.71 0.81

|1M| 0.53 0.69 0.84

h2M 0.72 0.43

IM 0.82

IE

Abbreviations of network parameters are: BTW, betweenness centrality; CLO, closeness centrality; DEG, degree centrality; IN, in-degree, OUT, out-degree; CORE, core number.

Abbreviations of mutational parameters are: 1M, per-generation change in the trait mean; |1M|, absolute value of 1M; h2M, mutational heritability; IM, squared mutational CV; IE , squared

residual CV. Network and mutational parameters are defined in Table 1. See text and Supplementary Table 1 for details of mutational parameters.* FDR < 0.1.
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may exist whereas the path from j to i may not (depicted
in Supplementary Figure 1). To account for non-independence
of the data, we devised a parametric bootstrap procedure.
Three metabolites (L-tryptophan, L-lysine, and Pantothenate) lie
outside of the great strong component of the network (Ma and
Zeng, 2003a) and are omitted from the analysis. Each off-diagonal
element of the 24 × 24 mutational correlation matrix (rij =rji)
was associated with a random shortest path length sampled with
probability equal to its frequency in the empirical distribution
of shortest path lengths between all metabolites included in
the analysis. Next, we calculated the Spearman’s correlation ρ

between rM and the shortest path length. The procedure was
repeated 10,000 times to generate an empirical distribution of
ρ, to which the observed ρ can be compared. This comparison
was done for the raw mutational correlation, rM , the absolute
value, |rM|, and between rM and the shortest path length in the
undirected network (i.e., the shorter of the two paths between
metabolites i and j).

RESULTS AND DISCUSSION

Representation of the Metabolic Network
The metabolic network of C. elegans was estimated using
method of Ma and Zeng (2003b) from two independent but
largely congruent databases (Ma and Zeng, 2003b; Yilmaz and
Walhout, 2016). Details of the network construction are given
in section Metabolic Network of the Materials and Methods;
data are presented in Supplementary Dataset 1. For the set
of metabolites included (see section Materials and Methods),
networks constructed from theMZ and YWdatabases give nearly
identical results. In the few cases in which there is a discrepancy
(∼1%; Supplementary Table 2), we use the MZ network, for
reasons we explain in the section Materials and Methods. The
resulting network is a directed graph including 646 metabolites,
with 1203 reactions connecting nearly all metabolites (Figure 3).

Network Centrality and Sensitivity to
Mutation
Canonical correlation analysis did not identify
significant correlation between mutational parameters
and network parameters, either collectively (Figure 4;
Supplementary Table 3) or individually. Further, of the 24
pairwise correlations between mutational parameters and
network parameters (Table 2, Supplementary Figure 2), only
the correlation between mutational heritability (h2M) and
core number approaches statistical significance (r = 0.53,
FDR < 0.1).

On the face of it, it appears there is no association between
network centrality and any measure of mutational sensitivity. If
so, there are various possible explanations. For example, it may
be that mutational target and mutational robustness effectively
cancel each other out. More worryingly, it may be that the
representation of the C. elegans metabolic network used here
misrepresents the network as it actually exists in vivo. For
example, the topology of the dynamic metabolic network of the
bacterium E. coli varies depending on the environmental context
(Koschützki et al., 2010), and it seems intuitive that the greater

FIGURE 3 | Graphical depiction of the metabolic network including all 29

metabolites. Pink nodes represent included metabolites with core number = 1,

red nodes represent included metabolites with core number = 2. Gray nodes

represent metabolites with which the included 29 metabolites directly interact.

Metabolite identification numbers are: 1, L-Serine; 2, Glycine; 3, Nicotinate; 4,

Succinate; 5, Uracil; 6, Fumarate; 7, L-Methionine; 8, L-Alanine. 9,

L-Aspartate; 10, L-3-Amino-isobutanoate; 11, trans-4-Hydroxy-L-proline; 12,

(S) – Malate; 13, 5-Oxoproline; 14, L-Glutamate; 15, L-Phenylalanine; ′6,
L-Asparagine; 17, D-Ribose; 18, Putrescine; 19, Citrate; 20, Adenine; 21,

L-Lysine; 22, L-Tyrosine; 23, Pantothenate; 24, Xanthine; 25, Hexadecanoic

acid; 26, Urate; 27, L-Tryptophan; 28, Adenosine; 29, Alpha; alpha-Trehalose.

spatiotemporal complexity inherent to a multicellular organism
would exacerbate that problem. Or, most straightforwardly, it
may be that there simply is no functional relationship between
the centrality of a metabolite in a network and its sensitivity to
mutation.

However, several trends apparent in the results suggest
the conservative interpretation may miss meaningful signal
emerging from noisy data. First, the point estimates of the
canonical correlations are not small (>0.45 in all five cases;
e.g., the first canonical correlation in the full analysis is
0.69; Supplementary Table 3); it may simply be that the
sampling variance associated with the relatively small number
of mutations, MA lines and (especially) metabolites overwhelms
the signal of a weak but consistently positive association. Second,
of the 24 pairwise correlations among mutational and network
parameters (Table 2), only five are negative, significantly fewer
than expected at random if the variables are uncorrelated
(cumulative binomial probability = 0.0033). Third, the point
estimates of the pairwise correlations are not random with
respect to either network or mutational parameters. For all
four mutational parameters, the correlation is greatest with core
number (exact binomial probability = (1/6)4 ≈ 0.00077). Core
number is a discrete interval variable, whereas the othermeasures
of network centrality are continuous variables. Quantifying
centrality in terms of core number is analogous to categorizing
a set of size measurements into “small” and “large”: power is
increased, at the cost of losing the ability to discriminate between
subtler differences.

Fourth, for five out of six network parameters, the
correlation is greatest with h2M (cumulative binomial probability
=(6)(1/4)5(3/4)+(1/6)6 ≈0.0046). VM is the numerator of both
h2M and IM ; the difference is the denominator, with h2M scaling
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FIGURE 4 | Plot of first canonical variate pair; the network variate is plotted on the X-axis, the mutation variate is plotted on the Y-axis. Each data point represents a

metabolite; the numbers are the metabolite identifiers given in the legend to Figure 3. Metabolites with core number = 1 are in pink, metabolites with core

number = 2 are in red.

VM by the residual variance, VE, and IM scaling VM by the
square of the trait mean. If VE was more strongly associated
with network topology than was VM, h2M would presumably
be more strongly correlated with network parameters than
would IM , analogous to the well-documented VE-driven negative
association between the narrow-sense heritability of a trait
and the correlation of the trait with fitness (Houle, 1992).
However, IM and IE are nearly identically (un)correlated with
network parameters (Table 2), so that scenario cannot explain
the correlation. Coincidence seems as likely an explanation
as any.

The Relationship Between Mutational
Correlation (rM) and Shortest Path Length
In an MA experiment, the cumulative effects of mutations
on a pair of traits i and j may covary for two, nonexclusive
reasons (Estes et al., 2005). More interestingly, individual
mutations may have consistently pleiotropic effects, such that
mutations that affect trait i also affect trait j in a consistent
way. Less interestingly, but unavoidably, individual MA lines
will have accumulated different numbers of mutations, and
if mutations have consistently directional effects, as would be
expected for traits correlated with fitness, lines with more
mutations will have more extreme trait values than lines
with fewer mutations, even in the absence of consistent
pleiotropy. Estes et al. (2005) simulated the sampling process
in C. elegans MA lines with mutational properties derived from
empirical estimates from a variety of traits and concluded that
sampling is not likely to lead to large absolute mutational

correlations in the absence of consistent pleiotropy (|rM| ≤
0.25).

Ideally, we would like to estimate the full mutational
(co)variance matrix, M, from the joint estimate of the among-
line (co)variance matrix. However, with 25 traits, there are
(25 × 26)/2 = 325 covariances, and with only 43MA
lines, there is insufficient information to jointly estimate the
restricted maximum likelihood of the full M matrix. To
proceed, we calculated mutational correlations from pairwise
REML estimates of the among-line (co)variances, i.e., rM =

COVL(X,Y)√
VARL(X)VARL(Y)

(Clark et al., 1995; Mezey and Houle, 2005).

Pairwise estimates of rM are shown in Supplementary Table 4.
To assess the extent to which the pairwise correlations are
sensitive to the underlying covariance structure, we devised a
heuristic bootstrap analysis. For a random subset of 12 of the
300 pairs of traits, we randomly sampled six of the remaining
23 traits without replacement and estimated rM between the two
focal traits from the joint REML among-line (co)variance matrix.
For each of the 12 pairs of focal traits, we repeated the analysis
100 times.

There is a technical caveat to the preceding bootstrap analysis.
Resampling statistics are predicated on the assumption that the
variables are exchangeable (Shaw, 1992), which metabolites are
not. For that reason, we do not present confidence intervals on
the resampled correlations, only the distributions. However, we
believe that the analysis provides a meaningful heuristic by which
the sensitivity of the pairwise correlations to the underlying
covariance structure can be assessed.

Distributions of resampled correlations are shown in
Supplementary Figure 3. In every case the point estimate of rM
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falls on the mode of the distribution of resampled correlations,
and in 11 of the 12 cases, the median of the resampled
distribution is very close to the point estimate of rM . However, in
six of the 12 cases, some fraction of the resampled distribution
falls outside two standard errors of the point estimate. The most
important point that the resampling analysis reveals is this: given
that 29 metabolites encompass only a small fraction of the total
metabolome of C. elegans, even had we been able to estimate the
joint likelihood of the full 29x30/2M-matrix, the true covariance
relationships among those 29 metabolites could conceivably be
quite different from those estimated from the data.

The simplest property that describes the relationship between
two nodes in a network is the length of the shortest path between
them (= number of edges). In a directed network, such as a
metabolic network, the shortest path from element i to element
j is not necessarily the same as the shortest path from j to i.
For each pair of metabolites i and j, we calculated the shortest
path length from i to j and from j to i, without repeated
walks (Supplementary Table 5). We then calculated Spearman’s
correlation ρ between the mutational correlation rM and the
shortest path length.

There is a weak, but significant, negative correlation between
rM and the shortest path length between the two metabolites
(ρ =−0.128, two-tailed P< 0.03; Figure 5A), whereas |rM| is not
significantly correlated with shortest path length (ρ = −0.0058,
two-tailed P > 0.45; Figure 5B). The correlation between rM
and the shortest path in the undirected network is similar to
the correlation between rM and the shortest path in the directed
network (ρ =−0.105, two-tailed P > 0.10; Figure 5C).

An intuitive possible cause of the weak negative association
between shortest path length and mutational correlation would
be if a mutation that perturbs a metabolic pathway toward the
beginning of the pathway has effects that propagate downstream
in the same pathway, but the effect of the perturbation attenuates.
The attenuation could be due either to random noise or
to the effects of other inputs into the pathway downstream
from the perturbation (or both). The net effect would be
a characteristic pathway length past which the mutational
effects on two metabolites are uncorrelated, leading to an
overall negative correlation between rM and path length. The
finding that the correlations between rM and the shortest
path length in the directed and undirected network are very
similar reinforces that conclusion. The negative correlation
between rM and shortest path length is reminiscent of a finding
from Arabidopsis, in which sets of metabolites significantly
altered by single random gene knockouts are closer in the
global metabolic network than expected by chance (Kim et al.,
2015).

CONCLUSIONS AND FUTURE
DIRECTIONS

The proximate goal of this study was to find out if there are
topological properties of the C. elegansmetabolic network (node
centrality, shortest path length) that are correlated with a set of
statistical descriptions of the cumulative effects of spontaneous

mutations (1M, VM, rM). Ultimately, we hope that a deeper
understanding of those mathematical relationships will shed light
on the mechanistic biology of the organism. Bearing in mind the
statistical fragility of the results, we conclude:

Network Centrality May Be Associated
With Mutational Sensitivity (VM); It Is Not
Associated With Mutational Robustness
(1/VM)
If in fact the apparently non-random features of the data
represent a hint of signal emerging from the noise, the most
plausible explanation is that metabolites that are central in the
network present a larger mutational target than do metabolites
that peripherally located. Somewhat analogously, Landry et al.
(2007) investigated the mutational properties of transcription in
a set of yeast MA lines and found that h2M is positively correlated
with both the number of genes with which a given gene interacts
(“trans-mutational target”) and the number of transcription
factor binding sites in a gene’s promoter (“cis-mutational target”).
Those authors did not formally quantify the network properties
of the set of transcripts, although is seems likely that mutational
target size as they defined it is positively correlated with centrality
in the transcriptional network. It is important to note, however,
although 1/VM is a meaningful measure of mutational robustness
(Stearns and Kawecki, 1994), it does not necessarily follow that
highly-connected metabolites are therefore more robust to the
effects of individual mutations (Houle, 1998; Ho and Zhang,
2016).

Pleiotropic Effects of Mutations Affecting
the Metabolome Are Predominantly Local
Pleiotropic effects of mutations affecting the metabolome are
predominantly local, as evidenced by the significant negative
correlation between the mutational correlation, rM , and the
shortest path length between a pair of metabolites. That result is
not surprising in hindsight, but the weakness of the correlation
suggests that there are other important factors that underlie
pleiotropy beyond network proximity.

Future Directions
To advance understanding of the mutability of the C. elegans
metabolic network, three things are needed. First, it will
be important to cover a larger fraction of the metabolic
network. Untargeted mass spectrometry of cultures of C. elegans
reveals many thousands of features (Art Edison, personal
communication); 29 metabolites are only the tip of a large
iceberg. For example, our intuition leads us to believe that the
mutability of a metabolite will depend more on its in-degree
(mathematically, the number of edges leading into a node in
a directed graph; biochemically, the number of reactions in
which the metabolite is a product) than its out-degree. For all
four mutational parameters, the point-estimate of the pairwise
correlation with in-degree is greater than that with out-degree
(Table 2), although that result is not statistically significant
(exact binomial probability = 0.0625). We used an ad hoc data
cloning strategy (Lele et al., 2007) to assess the relationship
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FIGURE 5 | Parametric bootstrap distributions of random correlations ρ between (A) rM and the shortest path length in the directed network, (B) |rM | and the shortest

path length in the directed network, (C) rM and shortest path length in the undirected network (i.e., the shorter of the two path lengths between metabolites i and j in

the directed network). Orange lines show the observed values of ρ, black lines show the 95% confidence interval of the distribution of the correlation between the

mutational correlation and a random shortest path length drawn from the observed distribution of shortest path lengths. See section Materials and Methods for details.

between metabolite sample size and statistical power to detect a
significant correlation between network features and mutational
heritability; the method is explained and results are presented in
Supplementary Figure 4.

Second, to more precisely partition mutational (co)variance
into within- and among-line components, more MA lines
are needed. We estimate that each MA line carries about 70
unique mutations (see section Materials and Methods), thus
the mutational (co)variance is the result of about 3000 total
mutations, distributed among 43MA lines. The MA lines were
a preexisting resource, and the sample size was predetermined.
Mutational heritability of these metabolite traits is typical

of many types of traits (h
2
M≈ 0.001/generation), and it is

encouraging that we were able to detect significant mutational
variance for 25/29 metabolites (Supplementary Table 1).
However, only 14% (42/300) of pairwise mutational correlations
are significantly different from zero at the experiment-wide
5% significance level, roughly corresponding to |rM|>0.5
(Supplementary Table 4); 18 of the 42 significant mutational
correlations are not significantly different from |rM| = 1. The
issue of statistical power to detect genetic correlations is of course
not unique to metabolomic traits (Phillips, 1998). Moreover,
it remains uncertain how sensitive estimates of mutational
correlations are to the underlying covariance structure of
the metabolome. It also remains to be seen if the mutability
of specific features of metabolic networks are genotype or
species-specific, and the extent to which mutability depends on
environmental context.

Third, it will be important to quantify metabolites (static
concentrations and fluxes) with more precision. The metabolite
data analyzed in this study were collected from large cultures
(n > 10,000 individuals) of approximately stage-synchronized
worms, and were normalized relative to an external quantitation
standard (Davies et al., 2016). Metabolic phenotypes are
inherently properties of individual organisms; an ideal
experiment would characterize the metabolomes of single
individuals, assayed at the identical stage of development. Single-
wormmetabolomics is on the near horizon (M.Witting, personal
communication). Minimizing the number of individuals in a
sample is important for two reasons; (1) the smaller the
sample, the easier it is to be certain the individuals are at
the same developmental stage, and (2) knowing the exact
number of individuals in a sample makes normalization
relative to an external standard more interpretable. Ideally,
data would be normalized relative to both an external standard
and an internal standard (e.g., total protein; Clark et al.,
1995).

This study provides an initial assessment of the relationship
between mutation and metabolic network architecture. To begin
to uncover the relationship between metabolic architecture and
natural selection, the next step is to repeat these analyses
with respect to the standing genetic variation (VG). There is
some reason to think that more centrally-positioned metabolites
will be more evolutionarily constrained (i.e., under stronger
purifying selection) than peripheral metabolites (Vitkup et al.,
2006), in which case the ratio of the mutational variance to the
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standing genetic variance (VM/VG) will increase with increasing
centrality.

Finally, although most mutations are deleterious, not all
are, and the network properties of beneficial mutations remain
unexplored. One potentially fruitful avenue of research would
be to do a study analogous to this one in a set of lines initiated
from a mutationally-degraded progenitor that have been allowed
to recover fitness at large population size (“recovery lines”; Estes
and Lynch, 2003; Estes et al., 2011).
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