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There are multiple applications of molecular tests in clinical oncology. Mutation analysis

is now routinely utilized for the diagnosis of hereditary cancer syndromes. Healthy

carriers of cancer-predisposing mutations benefit from tight medical surveillance and

various preventive interventions. Cancers caused by germ-line mutations often require

significant modification of the treatment strategy. Personalized selection of cancer drugs

based on the presence of actionable mutations has become an integral part of cancer

therapy. Molecular tests underlie the administration of EGFR, BRAF, ALK, ROS1, PARP

inhibitors as well as the use of some other cytotoxic and targeted drugs. Tumors almost

always shed their fragments (single cells or their clusters, DNA, RNA, proteins) into

various body fluids. So-called liquid biopsy, i.e., the analysis of circulating DNA or some

other tumor-derived molecules, holds a great promise for non-invasive monitoring of

cancer disease, analysis of drug-sensitizing mutations and early cancer detection. Some

tumor- or tissue-specific mutations and expression markers can be efficiently utilized

for the diagnosis of cancers of unknown primary origin (CUPs). Systematic cataloging

of tumor molecular portraits is likely to uncover a multitude of novel medically relevant

DNA- and RNA-based markers.

Keywords: carcinoma of unknown primary site, hereditary cancer syndromes, liquid biopsy, molecular

diagnostics, predictive markers, review

INTRODUCTION

Molecular diagnostics is a part of laboratory medicine, which relies on the detection of
individual biologic molecules. The potential of molecular genetic tools was initially recognized
by oncohematologists, given that specific chromosomal translocations may significantly aid the
diagnosis of various leukemias and lymphomas (Fey and Wainscoat, 1988). The emergence of
practical applications of molecular oncology is largely attributed to the development of user-
friendly methods of molecular analysis. The invention of PCR (polymerase chain reaction) led
to an enormous breakthrough in clinical DNA testing: PCR-based techniques require relatively
simple instrumentation and infrastructure, utilize only minute amounts of biological material and
are highly compatible with clinical routine. The development of immunohistochemistry (IHC), i.e.,
the method allowing the visualization of specific antigen within the tissue, dates back to the mid
XX century (Coons and Kaplan, 1950; Dixon and Vazquez, 1956). IHC was adapted for the clinical
determination of the level of expression of estrogen receptor (ER) more than thirty years ago; this
was a truly historical advance in personalized oncology, as it changed medical attitudes toward
the most common oncological disease, i.e. breast cancer (BC), by tailoring endocrine therapy to
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a laboratory test (Coombes et al., 1987). For the time being, some
conventional protein-targeted tests, e.g., IHC or determination
of tumor-specific serum markers (PSA, CA-125, etc.), are rarely
discussed in the framework of molecular diagnostics. The latter
term is usually applied to DNA- or RNA-based assays as well as
to some modern sophisticated proteomic technologies.

There are two avenues where molecular tests have become
a part of standard patient management (Figure 1). First,
identification of subjects with hereditary cancers is now a daily
practice in clinical oncology. Second, there is a number of
tests, which help to select the most effective treatment based on
molecular characteristics of tumor tissues or some other biologic
parameters of malignant disease. There are some additional
applications, which remain in the developmental stage. In
particular, some of modern molecule-oriented techniques
virtually do not have a sensitivity limit, therefore there are
intensive efforts to apply these tests for monitoring of residual
cancer disease and early tumor detection. In addition, DNA and
RNA assays may help to differentiate between tumors of distinct
histologic origin, which is suitable for diagnosis of cancers of
unknown primary site (CUPs). This review is focused on the
recent achievements inmolecular diagnostics of cancer; literature
search criteria utilized for the preparation of this articles are given
in Supplementary Material.

HEREDITARY CANCER SYNDROMES

Hereditary cancer syndromes compose a group of genetic
defects, which render highly significant elevation of cancer risk;
importantly, this risk is more or less organ-specific, which allows
to arrange meaningful diagnostic and preventive interventions
for germ-line mutation carriers. Hereditary cancers are by far
more common than “classical” genetic diseases: for example,
population frequency of breast or ovarian cancers associated with
BRCA1/2 gene defects approaches to 1:500 and even reaches 1:50
in some founder populations (Satagopan et al., 2001; Risch et al.,
2006; Foulkes et al., 2016), while the most known non-cancer
hereditary syndromes, e.g., cystic fibrosis or phenylketonuria, are
less frequent at least by an order of magnitude (Strausbaugh and
Davis, 2007; Berry et al., 2013). Hereditary cancers may have
peculiar clinical appearance, such as early onset, presence of
multiple neoplasms and preference toward particular histological
pattern.

The genetic diagnosis of hereditary cancer became possible
by the identification of germ-line mutations in corresponding
genes. The discovery of retinoblastoma gene was a pioneering
event in this field, as it provided a tool for the management of
families with this rare pediatric tumor of the eye (Horsthemke
et al., 1987; Bookstein et al., 1988). Malkin et al. (1990) later
described a genetic cause of another rare cancer predisposition
disease, so-called Li-Fraumeni syndrome: it turned out that this
severe multiorgan tumor syndrome is caused by then already
well-known suppressor gene p53. Soon afterwards, Nishisho
et al. (1991) and Kinzler et al. (1991) discovered the genetic
basis of familial adenomatous polyposis (FAP), i.e., germ-line
mutations in APC (adenomatous polyposis coli) gene. First genes

for hereditary non-polyposis colorectal cancer were identified
within the years 1993–1994 (Fishel et al., 1993; Bronner et al.,
1994). However, the long-awaited discovery of genes for breast-
ovarian cancer syndrome, BRCA1 and BRCA2 (Miki et al., 1994;
Wooster et al., 1994), received even more attention from the
media, probably due to high prevalence of this disease.

Germ-line mutations in BRCA1 and BRCA2 genes are
associated with∼60–90% probability of developing breast cancer
and 40–60% life-time risk of ovarian carcinoma (Antoniou et al.,
2003). BRCA1/2 mutations are responsible for 5–8% of breast
and 10–20% ovarian cancer morbidity. BRCA1/2 heterozygosity
also contributes to some instances of pancreatic, prostate and
gastric cancers, although these associations are described in a
less systematic way as compared to the neoplasms of female
reproductive tract (Moiseyenko et al., 2013; Cavanagh and
Rogers, 2015). Cancers arising in BRCA1/2 mutation carriers
are often of high grade and more chromosomally unstable than
their sporadic counterparts (Eerola et al., 2005; Alexandrov et al.,
2013). Medical surveillance for BRCA1/2 heterozygotes reduces
the risk of dying from breast cancer, however it is unlikely
to affect the ovarian cancer related mortality (van der Velde
et al., 2009; Møller et al., 2013). Given the limitations in early
diagnosis and treatment of BRCA1/2-driven breast and ovarian
carcinomas, prophylactic surgery is considered to be a standard
option for clinical management of BRCA1/2 mutation carriers
(Fatouros et al., 2008).

A number of novel BC-predisposing genes have been
identified in the past. PALB2 is among the most validated ones,
being characterized by noticeable contribution in BC incidence
and relatively high penetrance (Antoniou et al., 2014). There is
a couple of middle-penetrance genes (CHEK2, ATM, NBN, BLM,
etc.), which were shown to increase the risk of the disease, but to a
lesser extent than BRCA1 or BRCA2mutations (Bogdanova et al.,
2013).

Hereditary non-polyposis colorectal cancer (HNPCC)
syndrome (also known as Lynch syndrome) is caused by
germ-line mutations in MLH1, MSH2, MSH6, PMS2, and
EPCAM genes (Lynch et al., 2015). The distinct feature of
tumors associated with this syndrome is a so-called high-
level microsatellite instability (MSI-H), which is caused by
inactivation of DNA mismatch repair (MMR) genes. Besides
colorectal cancer, female carriers of genetic defects in the above
genes are at very high risk of developing endometrial cancer. In
addition, Lynch syndrome is associated with increased risk of
neoplasms of the stomach, ovary, bladder, etc. Cancers arising
in patients with HNPCC have somewhat better prognosis as
compared to sporadic malignancies, probably due to excessive
mutation burden, and consequently, high level of antigenicity.
This favorable disease course explains excellent results of
medical surveillance in healthy subjects belonging to hereditary
colorectal cancer families, with no tumor-related deaths observed
in compliant individuals (Järvinen et al., 2000).

The procedure of molecular diagnosis of hereditary cancer is
affected by many factors. There is a number of relatively simple
laboratory tests, which can be applied without major limitations
even to persons with minor suspicion for familial cancer
syndrome. For example, some countries and/or ethnic groups
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FIGURE 1 | Molecular diagnostics in oncology. There are several major avenues in cancer medicine, which utilize molecular-based assays. Testing for hereditary

cancer syndromes is now routinely used both for identification of persons at-risk and for personalization of systemic treatment. There is a number of predictive tests

involving either the analysis of individual drug targets or identification of specific tumor phenotypes, which aid the choice of anticancer drugs. Monitoring of malignant

disease can be achieved through molecularly-driven detection of residual tumor fragments; it is anticipated that liquid biopsy will serve as an instrument for early

cancer diagnosis and screening in the future. Recent developments in the mutation testing and RNA analysis offer novel tools for diagnosis of cancers of unknown

primary site.

(Ashkenazi Jews, Icelanders, Eastern Slavs) are characterized by
a pronounced founder effect for BRCA1/2 mutations, where
the majority of BRCA1/2 gene lesions can be explained by the
persistence of just a few alleles (Abbott, 2000; Ferla et al., 2007;
Kurian, 2010; Foulkes et al., 2016). Therefore, it is advisable
to use these cheap PCR tests virtually for every patient with
breast or ovarian cancer, or even for population screening
in the respective ethnic communities. In contrast to BRCA1,
recurrent pathogenic variants in APC gene are caused not by
a founder effect, but by the existence of the mutation hotspots
in the codons 1309 and 1062 (Yanus et al., 2018). In some
instances, the phenotypic appearance of the tumor may guide
subsequent diagnostic procedures. For example, microsatellite
instability testing, which can be achieved either by IHC or
by PCR, is a reliable selection test for the patients carrying
germ-line mutations in HNPCC-related genes (Lynch et al.,
2015; Buza et al., 2016; Gelsomino et al., 2016). Triple-negative
breast carcinomas are candidates for BRCA1 gene testing (Engel
et al., 2018). Furthermore, comprehensive analysis for BRCA1/2
germ-line mutations is recommended to all patients with high-
grade serous ovarian cancer (Neff et al., 2017). The diagnosis of
medullary thyroid carcinoma calls for investigation of germ-line
status of RET oncogene (Figlioli et al., 2013).

Comprehensive diagnosis of hereditary cancer syndromes
presents a challenge even in the postgenomic era. Most of known

familial cancer types are represented by phenocopies, i.e., several
distinct genes may cause similar or overlapping phenotypic
manifestation. For example, the analysis of mutations related
to breast cancer risk would include BRCA1, BRCA2, PALB2,
TP53, CHEK2, ATM, NBS/NBN, BLM, PTEN, MRE11, BRIP1,
BARD1, RAD50, RAD51C, RAD51D, RECQL, FANCC, FANCM
and perhaps some other genes (Sokolenko et al., 2012; Thompson
et al., 2012; Kiiski et al., 2014; Kurian et al., 2014; Cybulski et al.,
2015; Easton et al., 2015). Similarly, genetic testing for HNPCC
requires the analysis of MLH1, MSH2, MSH6, PMS2, and
EPCAM coding sequences, while the panel for diagnosis of colon
polyposis would involve APC, MUTYH, NTHL1, POLE, POLD1,
SMAD4, BMPR1A, STK11, andMSH3 (Weren et al., 2015; Adam
et al., 2016; Bellido et al., 2016; Kanth et al., 2017). Valid
conclusions on the lack of causative mutation cannot be made
solely on the basis of Sanger sequencing; it is often somehow
overlooked, that many germ-line mutations are represented
by large gene rearrangements (LGRs), which require distinct
diagnostic platforms, e.g., multiplex ligation-dependent probe
amplification (MLPA) or droplet digital PCR (ddPCR) (Ewald
et al., 2009; Sluiter and van Rensburg, 2011; Preobrazhenskaya
et al., 2017). The invention of next-generation sequencing (NGS)
dramatically facilitated the access to multigene analysis. There
is a number of NGS panels, which provide information on
mutation status of dozens of cancer-causing genes. They are
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characterized by excellent technical performance, demonstrating
virtually null rate of false results (Lincoln et al., 2015). However,
most of available diagnostic panels mix together genes with well-
established medical significance and gene-candidates with poorly
proven disease-predisposing role (Easton et al., 2015; Sokolenko
and Imyanitov, 2017). Therefore, significant clinical genetic
expertise needs to be involved in interpreting high-throughput
DNA tests.

There are major limitations in the diagnostics of hereditary
tumor syndromes. In contrast to non-cancer genetic diseases,
where significant knowledge is accumulated with regard to
pathogenic role of aminoacid substitutions, the spectrum of
tumor-predisposing alleles is almost entirely represented by
protein-truncating variants (Sokolenko et al., 2015). It is beyond
any reasonable doubt that many missense mutations, which are
currently classified as “variants of unknown significance,” are
actually disease-predisposing. For the time being, there is no
efficient pipeline, which would allow to classify rare aminoacid
substitutions for benign and disease-predisposing mutations.

Most of diseases known in medical genetics are autosomal-
recessive, i.e., the affected subjects carry biallelic abnormalities
in a certain gene, while their parents are asymptomatic
heterozygous mutation carriers. In contrast, virtually all known
cancer syndromes have a dominant mechanism of inheritance,
i.e., most of the affected subjects have heterozygous genotype
for the involved genes. This difference cannot be attributed
to biologic reasons, but instead is explained by the mode of
discovery of the above diseases. Classical genetic maladies are
exceptionally rare disorders, which are characterized by authentic
disease presentation and usually discovered by observing a few
cases of the same orphan disease in the same family and/or
neighborhood. In contrast, hereditary cancers are not at all
phenotypically authentic but masked by the excess of sporadic
phenocopies. As a result, the most known cancer syndromes
were discovered by the analysis of extensive multi-generation
pedigrees with an outstandingly high occurrence of particular
cancer type. Rapidly increasing accessibility of comprehensive
genomic analysis is very likely to reveal many examples of
recessive inheritance of cancer predisposition. Biallelic tumor-
predisposing mutations are probably responsible for a significant
share of early-onset and multiple cancers, especially in those
subjects, who do not report a family history of the disease or
exposure to environmental hazards (Kuligina et al., 2013).

It is important to realize that most of (cancer) genetic
studies were carried out in North America and Western Europe,
therefore they reflect the mutation burden in subjects of
European descent. It is very likely that people of other ethnicities
and races inherited totally another pattern of pathogenic
mutations from their founders. This is well exemplified by the
molecular epidemiology of BRCA1 and BRCA2mutations, which
show significant global variations with regard to contribution
in regional cancer incidence as well as to mutation spectrum
(Kurian, 2010). Only a minor part of the heritability of cancer
risk has been dissected so far, and forthcoming whole exome
sequencing studies are expected to significantly increase the
number of known hereditary cancer genes. The existence of
medically relevant interethnic genetic variations needs to be

considered while planning these activities (Sokolenko et al.,
2015).

The most known hereditary cancer syndromes are listed in
Table 1.

MOLECULAR MARKERS FOR THE
CHOICE OF CANCER THERAPY

First examples of the use of predictive markers in oncology
were related to breast cancer research (Engelsman, 1974; Jensen,
1975). The analysis of expression of estrogen receptor in breast
cancer tissues demonstrated that only ER-positive BC benefit
from ovariectomy or other types of estrogen ablation. First ER
expression assays required sophisticated biochemical analysis of
fresh tumor tissue and therefore were available only in advanced
medical centers (McGuire, 1973; Heuson et al., 1977). The
invention of ER IHC analysis made this test accessible worldwide
(Coombes et al., 1987). Nowadays, determination of the status of
estrogen and progesterone receptors is a mandatory part of BC
diagnosis, which guides the use of endocrine therapy. There is a
continuous adjustment of IHC-based hormone receptor assays to
the clinical requirements of BC management (Fujii et al., 2017).

The discovery of HER2 amplification and overexpression in
breast cancer eventually led to the development of several HER2-
targeted therapies, with trastuzumab being the first-in-class drug.
From the very beginning, the administration of trastuzumab
was tailored to women, whose tumors showed clear evidence
for HER2 gene activation. The analysis of HER2 status is now
routinely utilized in the management of breast and stomach
cancer (Sauter et al., 2009; Bartley et al., 2017). In addition,
there are some other examples of HER2-driven malignancies,
which demonstrate a pronounced benefit from HER2 inhibition
(Sartore-Bianchi et al., 2016).

Epidermal growth factor receptor (EGFR) inhibitors entered
clinical trials in the beginning of the last decade. It was assumed
that virtually all types of epithelial malignancies are characterized
by some involvement of EGFR activation, therefore EGFR-
directed therapies were expected to be efficient in a wide
spectrum of cancers (Nicholson et al., 2001; Baselga, 2002).
First trials on a small-molecule EGFR tyrosine kinase inhibitor
(TKI), gefitinib, involved heavily pretreated patients with the
lack of available standard treatment options. Impressively, 4
out of 16 lung cancer (LC) patients included in the phase I
study demonstrated the response to the drug (Ranson et al.,
2002). These observations were confirmed in subsequent phase
II studies, where some proportion of LC patients experienced
dramatic tumor reduction upon gefitinib therapy (Fukuoka et al.,
2003). It remained unknown, why this drug rendered clear and
immediate benefit to some small subset of LC patients while being
overtly ineffective in the majority of LC cases. In the year 2004,
three research groups independently reported the results of EGFR
gene sequencing in tumors obtained from EGFR TKI responders
and non-responders. It turned out that cancers from virtually
all responders carried by then unknown intragenic mutation
in EGFR gene, while non-responders were characterized by the
wild-type EGFR sequence (Lynch et al., 2004; Paez et al., 2004;
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TABLE 1 | Hereditary cancer syndromes: selected examples.

Syndrome Gene Tumors Comments References

Hereditary breast-ovarian cancer

(HBOC)

BRCA1, BRCA2,

PALB2

Breast, ovarian, pancreatic, prostate,

gastric cancer

Tumors are deficient for

double-strand break DNA

repair by homologous

recombination

Miki et al., 1994; Moiseyenko

et al., 2013; Antoniou et al.,

2014; Cavanagh and Rogers,

2015

Hereditary breast cancer: novel

and/or moderately penetrant

genes

CHEK2, ATM, BARD1,

BLM, BRIP1,

NBS/NBN, MRE11,

RAD50, RAD51C,

RAD51D, FANCC,

FANCM

Breast cancer Sokolenko et al., 2012;

Thompson et al., 2012;

Bogdanova et al., 2013; Kiiski

et al., 2014; Cybulski et al.,

2015; Easton et al., 2015

Lynch syndrome, or hereditary

nonpolyposis colorectal cancer

(HNPCC)

MLH1, MSH2, MSH6,

PMS2, EPCAM

Colon, endometrial, breast, urothelial,

small intestine, gastric cancer

High-level microsatellite

instability in tumors

Lynch et al., 2015

Hereditary colorectal cancer POLE, POLD1 Polyposis, colorectal cancer Very high mutation burden

in tumors

Bellido et al., 2016

Familial adenomatous polyposis

(FAP)

APC Multiple (>100) colonic adenomas,

desmoid tumors, colorectal cancer

Fishel et al., 1993

MUTYH-associated polyposis

(MAP)

MUTYH Moderate number of colonic adenomas,

colorectal cancer

Autosomal-recessive

inheritance

Kanth et al., 2017

NTHL1-associated polyposis

(NAP)

NTHL1 Polyposis, colorectal cancer Autosomal-recessive

inheritance

Weren et al., 2015

Juvenile polyposis SMAD4, BMPR1A Colorectal polyps, colorectal cancer, other

gastrointestinal cancers

Kanth et al., 2017

Peutz-Jeghers syndrome STK11 Hamartomatous polyps, gastrointestinal

cancers

Kanth et al., 2017

Hereditary diffuse gastric cancer CDH1 Gastric cancer Oliveira et al., 2009

Li-Fraumeni syndrome TP53 Soft tissue sarcomas, breast cancer, brain

tumors, adrenal gland cancer

Ruijs et al., 2010

Multiple endocrine neoplasia

type 1

MEN1 Parathyroid, pituitary gland,

gastroenteropancreatic tumors

Norton et al., 2015

Multiple endocrine neoplasia

type 2

RET Medullary thyroid carcinoma,

pheochromocytoma

Gain-of-function germ-line

mutations

Norton et al., 2015

Von Hippel-Lindau disease VHL Clear cell renal cell carcinoma,

hemangioblastomas of the brain, other

tumors

Latif et al., 1993; Friedrich, 1999

Cowden syndrome PTEN Multiple hamartomas, breast cancer,

thyroid cancer

Kanth et al., 2017

Familial retinoblastoma RB1 Retinoblastoma Lohmann, 1999

Familial melanoma CDKN2A, CDK4, TERT,

POT1

Melanoma FitzGerald et al., 1996; Horn

et al., 2013; Robles-Espinoza

et al., 2014

Comprehensive cataloging of hereditary cancer syndromes is beyond the scope of this review. Some of the described tumor diseases have a relatively high prevalence, e.g., hereditary

breast-ovarian cancer syndrome or Lynch syndrome. Other examples represent orphan diseases; however, some of them, e.g., familial retinoblastoma or Li-Fraumeni syndrome, are

widely known in medical and research community because their identification resulted in significant breakthrough in basic understanding of cancer pathogenesis. This table does not

include severe multiorgan maladies, in which cancer serves only as part of clinical manifestation, i.e., some primary immune deficiencies, DNA repair abnormalities etc. The list of cancer

syndromes is constantly expanding due to discovery of novel causative genes (Sokolenko et al., 2015). The catalog of cancer syndromes can be found in the OMIM database (https://

www.ncbi.nlm.nih.gov/omim/).

Pao et al., 2004). This discovery opened an era of mutation-
specific drugs, and EGFR mutation testing is now a standard
diagnostic procedure in LC management.

The predictive role of ALK translocations was also revealed
due to a chance. Crizotinib was initially invented as a MET
inhibitor, and its activity against ALK kinase was not considered
to be clinically important at the time of drug development
(Christensen et al., 2007; Shaw and Solomon, 2011). Early
crizotinib clinical trials coincided with the discovery of ALK

translocations in lung cancer (Soda et al., 2007; Kwak et al., 2009).
The analysis of drug responders revealed that the presence of
ALK fusions was the major prerequisite for the drug efficacy.
Subsequent studies demonstrated that a similar kinase, ROS1,
is also recurrently rearranged in LC, and ROS1-driven tumors
represent another category of crizotinib-responsive cancers
(Shaw et al., 2014). ALK and ROS1 rearrangements are now
routinely tested in lung adenocarcinomas. In addition, ALK
and ROS1 fusions are highly characteristic for inflammatory
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myofibroblastic tumors (IMT) (Yamamoto et al., 2016). The
efficacy of crizotinib in ALK-rearranged IMT has already been
confirmed in a recent clinical trial (Schöffski et al., 2018).

In contrast to EGFR and ALK, BRAF mutations were
identified through intentional mutation screening of protein
kinases (Davies et al., 2002). The inhibitors of mutated BRAF,
vemurafenib, and dabrafenib, made a breakthrough in the
treatment of BRAF-driven melanomas, especially when given
in combination with MEK inhibitors (Ugurel et al., 2017). In
addition, therapeutic inhibition of RAF/MEK signaling module
is a treatment of choice for lung tumors carrying BRAF V600E
mutation (Leonetti et al., 2018). There is a number of other tumor
entities, which demonstrate modest or high occurrence of BRAF
mutations (Hyman et al., 2015).

Clinical trials on colorectal cancer (CRC) involving anti-
EGFR antibodies, cetuximab and panitumumab, convincingly
demonstrated that these drugs do not render benefit in tumors
carryingKRAS orNRASmutation. RAS proteins are themembers
of EGFR pathway, being located downstream to the receptor.
There are two categories of colorectal carcinomas. More than
a half of CRCs carry mutation in either KRAS or NRAS
gene, therefore the persistent activation of EGFR pathway is
independent from the status of the receptor. However, EGFR
activation is often a driving event in those CRCs, which are wild-
type for KRAS, NRAS, or BRAF genes (Siddiqui and Piperdi,
2010; Waring et al., 2016; van Brummelen et al., 2017). KRAS
and NRAS testing is now a mandatory procedure for all CRC
patients considered for cetuximab and panitumumab treatment,
as these drugs have virtually null efficacy in patients with
mutation but provide reasonable benefit in the wild-type cases.
It is of notice that the absence of mutations in RAS/RAF genes
does not guarantee the response to anti-EGFR antibodies, as a
significant portion of tumors without mutations in the above
genes remain insensitive to EGFR-directed therapy (Custodio
and Feliu, 2013).

Cancers arising in carriers of BRCA1/2 germ-line mutation
demonstrate an elegant therapeutic window (Iyevleva and
Imyanitov, 2016). BRCA1 and BRCA2 genes are involved in the
double-strand break DNA repair by homologous recombination.
BRCA1/2 heterozygosity is tolerated by the cells due to the
activity of the remaining BRCA1/2 allele. The pathogenesis of
BRCA1/2-driven cancers usually involves somatic inactivation of
the wild-type copy of the involved gene; therefore, malignant
cells are characterized by tumor-selective deficiency of DNA
repair. This makes tumor cells vulnerable to some cytotoxic drugs
(platinum compounds, mitomycin C, etc.) as well as inhibitors of
poly (ADP-ribose) polymerase (PARPi). In accordance with this
mechanism, somatic loss of the normal BRCA1/2 allele correlates
with drug sensitivity of tumors arising in BRCA1/2 mutation
carriers (Maxwell et al., 2017). Furthermore, the development of
resistance to cisplatin or PARPi involves restoration of BRCA1/2
function, achieved either by the second mutation in the affected
copy of the gene or selection of pre-existing BRCA1-proficient
tumor cells (Lord and Ashworth, 2013; Sokolenko et al., 2017).

High-level microsatellite instability is a phenotypic feature
of cancers, which develop due to deficiency of DNA mismatch
repair. MSI-H is manifested by multiple changes in the length of

short repetitive DNA sequences, so-called microsatellites. Both
hereditary and sporadic MMR-deficient tumors are characterized
by dramatic increase in the number of coding mutations;
therefore, they carry a high amount of neoantigens. Accordingly,
MSI-H neoplasms are distinguished by a particularly good
response to immune checkpoint inhibitors (Le et al., 2017).
The discovery of this association led to the first precedent,
where the drug approval was not bound to any particular
tumor type, but instead relied solely on a molecular marker:
indeed, an anti-PD1 therapeutic antibody, pembrolizumab, is
now recommended as a standard treatment for the tumors with
deficient mismatch repair (Prasad et al., 2018). While MSI-
H phenotype was known since the beginning of the 1990s,
the identification of hypermutated tumors driven by mutations
in DNA polymerases POLE and POLD1 is a relatively recent
discovery (Briggs and Tomlinson, 2013; Palles et al., 2013).
Similarly to MMR-deficient malignancies, these carcinomas
are also characterized by a relatively favorable prognosis and
responsiveness to the modulators of immune response (Mehnert
et al., 2016; Santin et al., 2016; Nebot-Bral et al., 2017). Tumors
with MSI-H or mutations in POLE or POLD1 genes, which carry
an extraordinarily excessive number of somatic genetic events,
compose only a small proportion of human neoplasms. The
increase of mutation burden in smoking- or ultraviolet-induced
cancers is not as high; however, it is still clinically significant to
predict good response to immune therapy. While the analysis of
MSI-H status or inactivation of POLE or POLD1 genes relies on
relatively straightforward laboratory tests, the determination of
tumor mutation burden in, e.g., lung cancers or melanomas, is
more complicated: it is based on the whole exome sequencing,
deals with continuous variable and does not have yet established
thresholds for clinical decisions (Rizvi et al., 2015; Van Allen
et al., 2015). Mutations in SERPINB3 and SERPINB4 genes were
shown to correlate with overall mutation load in melanoma and
therefore may potentially serve as suitable predictive markers
(Riaz et al., 2016). Genomic instability caused by BRCA1/2 gene
inactivation may also result in tumor responsiveness to immune
therapy (Nolan et al., 2017).

For the time being, the number of established predictive
markers approaches several dozens or even hundreds, depending
on criteria used for this definition. Very most of these markers
are highly organ-specific: for example, EGFR mutations occur
mainly in lung adenocarcinomas, while their incidence in other
cancer types is limited to anecdotal reports (Lee et al., 2005;
Iyevleva et al., 2009). Consequently, single-gene tests are usually
applied only to those malignancies, where the probability of
detecting corresponding targetable alteration is at least 2–5%; for
example, EGFR testing is a standard diagnostic procedure for
non-small cell lung cancer, but is actually never used for other
tumor entities. This approach, although being practical, is likely
to miss a significant number of potentially druggable neoplasms.
To overcome this problem, some advanced cancer centers began
to routinely utilize multigene platforms, which are based on
the next generation sequencing analysis and include almost all
known genetic loci relevant for the choice of cancer drugs. This
approach helps to find promising drug-gene matches in ∼1 out
of 10 cancer patients (Pauli et al., 2017; Zehir et al., 2017).
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The main issue in this tissue-agnostic approach is whether
a particular mutation-specific drug would work in any cellular
context, or instead, would remain effective only in those tumors,
where the presence of specific targets is combined with the
favorable architecture of relevant signaling pathways. Both
possibilities were confirmed by clinical experience. For example,
inhibitors of mutated BRAF, which were initially evaluated for
the treatment of melanoma, demonstrated clinically significant
efficacy in some hematological malignancies, pediatric tumors,
clear cell sarcomas, but turned out to be virtually useless when
applied as single-agents to gastrointestinal cancers (Hyman et al.,
2015; Protsenko et al., 2015; Dietrich et al., 2016). The latter
limitation is caused by the feedback activation of EGFR pathway
and can be overcome by concurrent administration of EGFR
inhibitors (Prahallad et al., 2012; Yaeger et al., 2015; Silkin
et al., 2016). There is a number of clinical trials, which match
patients to the drugs according to the presence of potentially
targetable genetic lesions (Le Tourneau et al., 2015; Wheler
et al., 2016; Massard et al., 2017). By their nature, these trials
involve very diverse populations of heavily pretreated patients
and utilize a multitude of markers with varying level of predictive
significance. Le Tourneau et al. (2015) presented the results
of the SHIVA trial and concluded that the wide-scale tissue-
agnostic use of targeted agents outside their validated clinical
indications has limited chances to deliver significant benefit
to the patients, even if the latter present with potentially
relevant cancer markers. Wheler et al. (2016) utilized NGS-based
comprehensive genomic profiling for a spectrum of cancer types
and also observed border-line if any benefit from genetically
tailored drugs. More encouraging results were obtained in the
MOSCATO 01 trial (Massard et al., 2017). It enrolled 1,035
patients, of whom 948 were successfully biopsied. The molecular
profiles were obtained for 843 patients, with 411 tumors carrying
potentially actionable molecular alterations. 199 patients were
treated by molecularly tailored therapies. Importantly, in 63/193
(33%) evaluable patients the progression-free survival (PFS) on
genetically matched therapy evidently exceeded the PFS obtained
on the prior line of systemic treatment. This trial convincingly
demonstrated, that some patients may indeed benefit from
marker-based therapy administration in the tissue-agnostic
setting, although the overall proportion of these instances is
relatively small (∼7% the MOSCATO 01 trial). Still, tissue-
agnostic trials produce much more interpretable results if they
focus on a single drug and a well-defined molecular target
(Hyman et al., 2015; Gambacorti-Passerini et al., 2018). Overall,
the development of tissue-agnostic marker-based indications for
targeted drugs is getting more and more common (Garber,
2018).

There is a number of biological approaches, which aim at
direct determination of the spectrum of tumor drug sensitivity.
The establishing of the tumor cell lines is not a practical
approach at the moment: only a minor part of naturally
occurring tumors can be converted to viable cell cultures, and
the properties of the obtained cell clones do not necessarily
reflect the biological features of the original tumors (Kreahling
and Altiok, 2015; Izumchenko et al., 2017; Pauli et al., 2017).
Transplantation of the tumors to immune-deficient mice could

be advantageous in terms of the success rate and mimicking
the native physiological conditions for cancer growth. Patient-
derived xenografts (PDXs) are being increasingly utilized in
drug trials as well as in patient management undertaken in
advanced cancer centers (Evans et al., 2017; Pauli et al., 2017;
Yao et al., 2017). Clinical studies demonstrate that mouse
PDXs mirror therapeutic responses observed in patients with a
remarkable level of accuracy (Izumchenko et al., 2017). While
murine experiments are expensive and time-consuming, there
are efforts to establish short-term PDXs in zebrafish models (Fior
et al., 2017). Lack of proper immune context and absence of
human tissue environment are considered as critical limitations
of PDX-based assays (Cassidy et al., 2015). Further, although
PDXs are characterized by relatively good preservation of
original tumor molecular portraits (Izumchenko et al., 2017),
the successful engraftment of neoplasms in mice nevertheless
involves some additional genetic events (Ben-David et al., 2017).
Animal experiments demonstrate that topical intratumoral
microinjection of cancer drugs followed by microscopic analysis
of drug-exposed tumor areas may be a promising predictive test
(Jonas et al., 2015; Klinghoffer et al., 2015).

It is essential to recognize that all current predictive
tests ignore the issue of intratumoral heterogeneity. Multiple
evidences suggest that tumors consist of distinct populations
of transformed cells, which are characterized by substantial
subclonal genetic diversity and epigenetic plasticity. Even if the
treatment is apparently effective and results in the shrinkage of
the gross tumor mass, it is unlikely to eliminate all cancer cells
and may even promote the expansion of drug-resistant clones
(Amirouchene-Angelozzi et al., 2017;McGranahan and Swanton,
2017; Sokolenko et al., 2017) These properties of malignant
tumors explain, why metastatic disease remains largely incurable
even for well-druggable cancer types.

The development of cancer drugs and corresponding
predictive markers currently focuses mainly on tumor molecular
portraits. A thorough consideration of other relevant factors
may provide some unexpected opportunities. For example,
cancers arising in visceral organs were long considered to be
sterile, similarly to normal tissues. Recent data indicate that
some tumors may be colonized by specific microorganisms,
and these bacteria may participate in drug metabolism and
contribute to the treatment response (Bullman et al., 2017; Geller
et al., 2017). For example, pancreatic carcinomas often contain
viable Gammaproteobacteria, which are capable to metabolize
gemcitabine into an inactive compound (Geller et al., 2017).
There are convincing evidences demonstrating that composition
of gut microbiome influences the interaction between tumor
and systemic therapy. For example, the intestinal microbe
Akkermansia muciniphila was shown to mediate the efficacy
of immune checkpoint modulators (Routy et al., 2018). The
outcome of immune therapy may also critically depend on the
patient age and HLA genotype (Champiat et al., 2017; Chowell
et al., 2018). Surgical intervention may trigger the growth of
dormant cancer cells by inducing the systemic inflammatory
response and therefore significantly affect the probability of
cancer relapse (Krall et al., 2018).

Examples of predictive markers are given in Table 2.
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TABLE 2 | Predictive molecular tests: selected examples.

Drugs Markers References

Tamoxifen and aromatase inhibitors Estrogen receptor expression Fujii et al., 2017

HER2-directed therapies HER2 amplification and overexpression Sartore-Bianchi et al., 2016

ALK/ROS1 inhibitors ALK and ROS1 rearrangements Soda et al., 2007; Kwak et al., 2009; Shaw et al., 2014

EGFR-directed therapies (sensitivity) EGFR mutations Lynch et al., 2004; Paez et al., 2004; Pao et al., 2004

EGFR-directed therapies (resistance) KRAS/NRAS/BRAF mutations Siddiqui and Piperdi, 2010; Waring et al., 2016; van Brummelen et al., 2017

PARP inhibitors BRCA1/2 mutations, BRCAness Iyevleva and Imyanitov, 2016; Lord and Ashworth, 2016

Platinum compounds, mitomycin C BRCA1/2 mutations, BRCAness Iyevleva and Imyanitov, 2016; Lord and Ashworth, 2016

PD1-directed therapies High PD-L1 expression Kumar et al., 2017

Immune checkpoint inhibitors Tumor mutation burden Rizvi et al., 2015

BRAF inhibitors BRAF mutations Ugurel et al., 2017; Cheng et al., 2018

mTOR inhibitors TSC1/2 mutations, MTOR mutations Kwiatkowski et al., 2016

MET inhibitors MET exon 14 skipping Pilotto et al., 2017

LIQUID BIOPSY

Tumors almost always shed some amount of their fragments into
peritumoral space. These fragments may be represented by single
malignant cells or their clusters as well as by various proteins,

nucleic acids, small molecules, etc. Consequently, these entities
can be collected in various body fluids (serum, saliva, urine, etc.)
and serve as tumor markers.

Serum protein markers are the most established tools for

cancer diagnosis (Duffy, 2013). For example, PSA (prostate-
specific antigen), CA-125 (cancer antigen 125) and CEA
(carcinoembryonic antigen) are widely used for the diagnosis
and management of prostate, ovarian and gastrointestinal

cancers, respectively. Measurement of serum antigens allows to
discriminate between various types of malignancies at the first
suspicion for cancer disease and thus guide imaging analysis,
endoscopic examination and other diagnostic procedures.
Monitoring of the level of tumor-specific protein markers
in patients with the established diagnosis of cancer permits
the disease monitoring, e.g., evaluation of the efficacy of the
treatment or detection of tumor relapse. PSA is used in
some countries for prostate cancer screening. Protein markers,
being the only type of liquid biopsy widely incorporated in
routine clinical practice, have significant limitations in terms
of sensitivity and specificity. It is expected that the revolution
in molecular genetic research will dramatically improve the
performance of fluid-based assays.

Indeed, DNA markers may have significant advantages as
compared to proteins. Several methods of genetic analysis,
particularly PCR and NGS, are potentially capable to detect a
single molecule of tumor-specific DNA even in the presence
of an excess of normal nucleic acids. Furthermore, while the
majority of known protein markers are not truly tumor-specific
but rather tissue-specific, DNA tests usually rely on cancer-
driving mutations and therefore are less prone to false-positive
results. Modern methods of liquid biopsy are not limited to the
analysis of tumor-free DNA. For example, some experimental
approaches utilize the detection of circulating microRNAs owing
to their relatively good stability in body fluids. In addition,

a number of investigational diagnostic procedures rely on the
isolation and analysis of circulating tumor cells (Antonarakis
et al., 2014; Dasgupta et al., 2017; Siravegna et al., 2017; Bidard
et al., 2018).

While discussing the perspectives for the liquid biopsy, it
is critically important to recognize that its actual relevance
may significantly depend on particular clinical context. For
example, virtually all current diagnostic standards for cancer
patients require mandatory biopsy of the tumor lump followed
by morphological validation of the presence of malignant
disease. Therefore, if one considers cancer patients at the
initial stage of their treatment, virtually all of them have
primary tumor tissue available for detailed investigation. For
the time being, all methods of liquid biopsy are based on the
analysis of residual amounts of tumor fragments in body fluids.
Therefore, it is hard to expect, that this indirect and potentially
error-prone examination of single tumor cells or circulating
tumor-specific molecules will indeed replace the direct tissue
analysis in the near future. It is also essential to acknowledge,
that the majority of actionable mutations demonstrate limited
intratumoral heterogeneity; therefore, the analysis of a single
tumor lump is usually sufficient for the choice of treatment and
liquid biopsy is unlikely to have a high added value for the initial
selection of optimal drugs (Jamal-Hanjani et al., 2017; Merker
et al., 2018).

The situation becomes entirely different when the liquid
biopsy is utilized during the treatment course. First of all, tumor
response to the treatment cannot be always reliably assessed by
the visualization of tumor lumps, especially given the fact that not
all tumors are manifested by measurable tumor lesions. Marker
response is an exceptionally valuable end-point for the evaluation
of treatment efficacy. As already mentioned above, PSA and CA-
125 are routine tools utilized in the management of prostate
and ovarian cancer patients, respectively (Kobayashi et al., 2012;
Hayes and Barry, 2014). While informative serum markers are
available for the minority of human tumors, the use of blood-
based mutation tests for the immediate assessment of treatment
efficacy can potentially be applied to every cancer patient, as all
malignant neoplasms contain a spectrum of somatic mutations.
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The utility of circulating tumor DNA for the control of surgical
tumor eradication as well as the response to systemic treatment
has already been exemplified in a number of studies (Tie et al.,
2016; Abbosh et al., 2017; Garlan et al., 2017; Jamal-Hanjani et al.,
2017; Goldberg et al., 2018; Lee et al., 2018). A similar approach
can be applied for the early detection of tumor relapse.

The situation is getting more demanding while considering
patients, whose tumors progressed after treatment. The
phenotype of drug-resistant tumors may significantly evolve
over time, and the choice of the right treatment strongly depends
on the spectrum of newly acquired targets. For example, a novel
lung cancer drug, osimertinib, has been intentionally developed
to target non-small cell lung cancers, which progress after TKI
therapy via acquisition of T790M mutation in EGFR gene (Lamb
and Scott, 2017). The analysis of treatment-resistant tumors
may require repetitive biopsies, which is not feasible if one
considers a direct analysis of visceral, bone, or brain metastases.
Furthermore, while intratumoral heterogeneity with regard
to actionable mutations in treatment-naïve tumors is limited,
the evolution of tumor-resistant lumps under the pressure
of systemic treatment may utilize a multitude of alternative
pathways even within the same patient (Suda et al., 2010;
Pietrantonio et al., 2017). Liquid biopsy is expected to provide
a more integral portrait of molecular events underlying tumor
progression as compared to a single tissue-take (Gremel et al.,
2016; Oxnard et al., 2016; Goodall et al., 2017).

There are hundreds of studies demonstrating the potential
utility of the analysis of extracellular RNA for diagnosis of cancer
disease (Xi et al., 2017; Zaporozhchenko et al., 2018). RNA is
significantly less stable than DNA, due to its high vulnerability
to RNA-ases as well to some other physical or chemical
alterations. Nevertheless, RNA is relatively well preserved in
various body fluids, as it is secreted as a part of microvesicles
or lipoprotein complexes and therefore somehow protected from
external hazards. Although the detection of extracellular RNA
and the interpretation of obtained data is less straightforward
as compared to mutation-based tests, there are some potential
advantages of RNA testing. Some highly expressed extracellular
RNA species are significantly more abundant than cell-free
DNA, thus decreasing the requirements for the sensitivity of
corresponding molecular tests. While DNA is released to the
body fluids mainly due to cell death, the secretion of RNA is a
physiological process; this is particularly relevant to some cancer
types, e.g., adenocarcinomas of the lung, which are characterized
by relatively low abundance of tumor-derived plasma DNA
(Abbosh et al., 2017). There are some approaches, which allow to
enrich the preparations of RNA by tissue-specific molecules, for
example, by antibody-driven selection of particular category of
exosomes. Some RNA species are present in increased amounts
in body fluids, which are in close contact with the affected
organ. For example, urine PCA3 RNA test is approved for
the management of prostate cancer patients (Auprich et al.,
2011). The development of other RNA-based assays is currently
underway (Xi et al., 2017; Zaporozhchenko et al., 2018).

There is a hope that combined use of an array of DNA-
and protein-based markers will result in a breakthrough in early
cancer diagnosis and screening. The potential promise of these

complex platforms has already been demonstrated in the study
of early-stage cancers (Cohen et al., 2018). Nevertheless, many
modern varieties of liquid biopsy still require proper clinical
validation (Merker et al., 2018).

THE DIAGNOSIS OF CANCERS OF
UNKNOWN PRIMARY SITE

Approximately 3–5% cancer patients with newly diagnosed
metastatic disease have unknown organ or tissue origin for
these metastases. In many instances, the inability to assign
the right diagnosis is attributed purely to limitations in tumor
visualization techniques. However, even autopsy fails to identify
primary tumor in 15–45% patients with CUP (Pavlidis and
Fizazi, 2009; Massard et al., 2011; Greco et al., 2012). This
is compatible with the recent findings demonstrating that the
spread of malignant cells may occur before the formation
of the primary tumor lump (Harper et al., 2016; Hosseini
et al., 2016). Furthermore, there are occasional examples of
spontaneous regression of neoplastic lesions in the primary
tumor site occurring simultaneously with the progression of
distant metastases (Kamposioras et al., 2011). Despite all these
limitations, correct determination of the organ/tissue origin for
patients with CUP may result in appropriate treatment choice
and improved outcome at least in a subset of cases (Hainsworth
et al., 2013; Hainsworth and Greco, 2014; Varadhachary and
Raber, 2014; Economopoulou et al., 2015).

The diagnostic approach to patients with CUP largely relies
on common clinical sense. In particular, anatomic location
of metastases, gender of the patients, knowledge on his/her
smoking habitsmay significantly contribute to the diagnosis. IHC
testing, which utilizes a spectrum of tissue-specific markers, is
a gold standard for CUP clinical analysis. IHC has significant
limitations. In particular, many expression-based markers are
not sufficiently specific for a given tumor type. Some proteins
are expressed at low levels and therefore cannot be detected
by conventional antibody-based methods. The spectrum of
diagnostic antibodies is restricted to the ones marketed by
biotech companies. Finally, interpretation of IHC results is a
subject of interlaboratory variations (Pavlidis and Fizazi, 2009;
Massard et al., 2011; Economopoulou et al., 2015; Suspitsin et al.,
2018).

DNA- and RNA-based tests may have some advantages as
compared to IHC assays. In particular, some mutations are
highly characteristic for cancers of a certain type. For example,
presence of TKI-sensitizing somatic EGFR mutation in tumor
tissue strongly favors the diagnosis of lung cancer; detection
of BRCA1/2 germ-line mutation in a female patient with
adenocarcinoma of unknown primary site calls to consider breast
or ovarian cancers as the most probable tumor variety. RNA
expression markers could outperform some IHC tests, given
that PCR-driven detection of RNA (cDNA) molecules does not
have a sensitivity limit and can be applied to any expressed
gene. In contrast to antibody production, the development of
personalized PCR diagnostic tests does not require industrial
facilities and can be done in any molecular genetic laboratory.

Frontiers in Molecular Biosciences | www.frontiersin.org 9 August 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Sokolenko and Imyanitov Molecular Tests in Oncology

Finally, PCR assays can be performed and interpreted in a semi-
automated manner. Many studies demonstrate the utility of
DNA/RNA analysis for determination of CUP origin (Talantov
et al., 2006; Greco et al., 2010; Suspitsin et al., 2018). It is likely
that NGS will provide more opportunities for CUP diagnosis in
the near future (Varghese et al., 2017).

MANAGEMENT OF LARGE AMOUNTS OF
BIOMEDICAL DATA

Large-scale studies aimed at unbiased description of the
entire spectrum of biological molecules in a given tissue or
individual are often referred to as “omics” technologies. They
include genomics (points mutations, copy number variations,
single nucleotide polymorphisms), epigenomics (genome-wide
analysis of DNA modifications, e.g., cytosine methylation),
transcriptomics (spectrum and variants of expressed RNAs),
proteomics (pattern of expressed proteins and their isoforms),
metabolomics (analysis of various metabolites), etc. Sometimes
these approaches result in the discovery of a single medically
relevant marker, e.g., identification of causative gene or drug
target (Jones et al., 2009; Iyer et al., 2012). However, the
development of sophisticated molecular profiles is a more
common output of the “omics” studies.

Many omics-derived classifiers provide an approach for semi-
automated discrimination between different conditions, such as
healthy status vs. malignant disease, high-risk vs. low-risk cancer,
drug sensitivity vs. resistance, etc. Almost all high-throughput
studies deal with datasets, in which the number of considered
features significantly exceeds the number of analyzed cases.
For example, while the expression microarrays are designed to
simultaneously assess over twenty thousand genes, the number
of included patients with different disease characteristics is
usually limited to at best several hundreds of observations. In
any event, this amount of data cannot be curated manually in a
meaningful way, therefore the development of viable hypothesis
and data interpretation are largely outsourced to computer
intellect. There are many publicly available databases, including
TCGA (https://cancergenome.nih.gov/), ICGC (http://icgc.
org/), cBioPortal (http://www.cbioportal.org/), GEO (https://
www.ncbi.nlm.nih.gov/geo/), COSMIC (https://cancer.sanger.
ac.uk/cosmic), ExoCarta (http://www.exocarta.org/), MIRUMIR
(http://www.chemoprofiling.org/cgi-bin/GEO/MIRUMIR/web_
run_MIRUMIR.V1.pl), etc., which may serve as a data source

for the development of new diagnostic tools. In addition, there
are some research initiatives aimed at integration of high-
throughput technologies with clinical trials (Pauli et al., 2017).
Development of the artificial intelligence capable to adequately
manage the flow of “big data” is an important challenge for
translational research (Jagga and Gupta, 2015).

CONCLUSIONS AND PERSPECTIVES

We are currently witnessing a revolution in medical research,
which is attributed to the invention and rapidly increasing uptake
of the next generation sequencing. NGS allows comprehensive
description of germ-line DNA, analysis of somatic mutations and
RNA profiles in naturally occurring tumors, systematic analysis
of microbiomes, etc. There is an ongoing accumulation of data,
which results in the identification of novel hereditary syndromes,
molecular targets for cancer therapy, tumor-specific diagnostic
markers, etc. We have to realize that the clinical integration
of relatively simple and straightforward assays, like BRCA1/2
analysis or EGFR mutation testing, took several years each, with
many issues remaining unresolved even for the time being. It
is difficult to foresee, how practical medicine will manage an
overwhelming flow of novel candidate markers, given that they
are represented by a multitude of rare and diverse molecular
events and therefore cannot be clinically validated on the
individual basis. These advances may need to be considered while
discussing the standards of clinical research, data dissemination
and interaction between clinical and laboratory specialists.
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