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DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type

of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal

arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of

which carry a low risk of mutation, so that which repair process is utilized is critical to the

stability of genetic material of cells. A key component of repair outcome is the degree

of DNA resection directed to either side of the break site. This in turn determines the

subsequent forms of repair in which DNA homology plays a part. Here we will focus on

chromatin and chromatin-bound complexes which constitute the “mountains” that block

resection, with a particular focus on how the breast and ovarian cancer predisposition

protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.
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INTRODUCTION

DNA DSBs occur as a result of exogenous agents such as irradiation and chemotherapy, but also
as a result of cellular processes, such as replication and transcription. A single-ended DSB may
be formed when replication forks encounter single-stranded DNA (ssDNA) breaks. In contrast,
some cell types generate DSBs as part of specialist processes such as immunoglobulin gene
rearrangements and recombination in meiosis. Experimentally, DSBs are also induced by rare-
cutting restriction enzymes, such as the I-Sce1 endonuclease, and sequence-guided nucleases, such
as clusters of regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated
protein 9 (CRISPR-Cas9).

DSBs in mammalian cells can be repaired by several means (Figure 1). Non-homologous end
joining (NHEJ) involves the re-ligation of both ends of the break, and may or may not involve
nucleic processing of the ends and polymerases to fill gaps prior to ligation to restore the backbone.
NHEJ is rapid, predominates throughout the cell cycle, and undertakes the majority (∼80%) of
DSBs repair (Mao et al., 2008; Beucher et al., 2009). When no end-processing occurs and the
two correct ends are ligated this is error-free, but if the ends are processed or incorrect ends are
ligated, material is lost or translocations occur. Alternative non-homologous end joining (aNHEJ),
or microhomology-mediated end joining (MMEJ) is used when one of the core-components of
NHEJ are absent (such as Ku70/80 or Ligase IV), aNHEJ uses short patches of microhomology
(<25 nucleotides) so that minimal resection of either end is required (Seol et al., 2018). Homology-
directed repair (HDR) requires a template to copy from and all HDR pathways share the same initial
step of resection around the DNA DSB to create long 3′ ssDNA overhangs coated by the ssDNA
binding protein replication protein A (RPA). When resection exposes direct repeats either side of
the break, i.e., homologous sequences, repair can occur following direct annealing of the repeat
sequences, in a process catalyzed by the DNA Repair Protein RAD52 Homolog (RAD52). This
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FIGURE 1 | A diagram to show how resection influences repair pathway choice. Approximately 80% of DSBs are repaired by classical NHEJ which does not require

resection. aNHEJ or MMEJ requires minimal resection to expose regions of microhomology. Long range resection is required for the major HDR pathways gene

conversion (GC) and single-strand annealing (SSA). Key proteins in each pathway are given in red.

process of single-strand annealing (SSA) is error prone due
to deletion of the intervening sequence between the direct
repeats (reviewed in Bhargava et al., 2016). In the form of HDR
often referred to as “homologous recombination,” herein called
gene conversion (GC), the ssDNA participates in a homology
search followed by DNA strand invasion. The critical step
is the formation of the ssDNA-RAD51 [DNA Repair Protein
RAD51 Homolog (RecA Homolog, E. Coli)] nucleofilament in
which RPA loaded onto ssDNA exposed by resection either
side of the DSB, is exchanged for RAD51. This ssDNA-
RAD51 nucleofilament invades the homologous sister chromatid,
displacing one strand of DNA and forming a synapse with the
homologous sequence on the other strand in a DNA-loop (D-
loop). The invading strand then acts as a primer for polymerases
to extend along the template. Depending on how the structure
is resolved determines whether the chromatids gain material
from the partner or not: if the D-loop is dissolved they do
not; but if the two crossed-over structures (Holliday junctions)
are cleaved, cross-over products are formed in half of cases.
GC is often referred to as “error free” as it uses the sister
chromatid as the template and no genetic material is lost.
Heterologous recombination, i.e., the use of near-homologous
sequences is suppressed by Regulator of telomere elongation
helicase 1 (RTEL1) and Bloom Syndrome RecQ-like helicase
(BLM) (Leon-Ortiz et al., 2018).

The process of digesting one strand on the duplex on either
side of the DSB, resection, is initiated by the endonuclease
activity of Meiotic recombination 11 homolog A (MRE11)—
a DSB repair nuclease, found in a complex with Nijmegen
breakage syndrome 1/Nibrin (NBS1) and the DSB repair protein
RAD50 Homolog (RAD50) [termed MRN (MRE11-RAD50-
NBS1) complex] together with the carboxy-terminal binding

protein interacting protein (CtIP) (Sartori et al., 2007; Stracker
and Petrini, 2011; Anand et al., 2016; Daley et al., 2017).
CtIP forms a tetramer and appears to have a preference for
binding blocked DNA ends (Wilkinson et al., 2019), which
may provide some explanation for the preferential use of HDR
in tackling lesions resulting from Poly-ADP-Ribose-Polymerase
(PARP) inhibition or topoisomerase-poisons, which produce
DNA-protein adducts. The endonuclease cut of MRE11 occurs
around 20–40 nucleotides from the blocked end (Anand et al.,
2016, 2019). Intriguingly MRN-CtIP is found constitutively in
an inactive form in complex with the resection repressor Cell
cycle and apoptosis regulator 2 (CCAR2). The CtIP-CCAR2
interaction is disrupted locally on damaged chromatin and also
by phosphorylation of CtIP (Lopez-Saavedra et al., 2016). Indeed
the CtIP-MRN complex is subject to several post-translational
modifications. Phosphorylation by cyclin dependent kinases
in S/G2 promotes CtIP-MRN association and MRE11 activity
(Huertas and Jackson, 2009; Buis et al., 2012; Orthwein et al.,
2015; Anand et al., 2016), thereby limiting resection to when the
sister chromatid template is present. After MRE11 endonuclease
activity forms a DNA nick, the 3′-5′ exonuclease activity of
MRE11 degrades back to the break site (Shibata et al., 2014;
Cejka, 2015). This short-range resection is also promoted by
another recently described nuclease, Exonuclease 3′-5′ domain
containing 2 (EXD2) (Broderick et al., 2016; Nieminuszczy
et al., 2016). CtIP is critical for resection and its depletion is
sufficient to switch some HDR-committed breaks to repair by
NHEJ (Shibata et al., 2011, 2014) indicating that, at least in
some cases, lesions that might have undergone HDR can be
re-directed to NHEJ. Long-range resection is performed 5′-3′

by two redundant pathways: the dominant pathway through
Exonuclease-1 (Exo1); and a backup pathway of BLM and DNA
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replication helicase/nuclease 2 (DNA2) (Gravel et al., 2008;
Mimitou and Symington, 2008; Zhu et al., 2008; Nimonkar et al.,
2011; Tomimatsu et al., 2012; Myler et al., 2016). Exo1 generates
extensive 3′ ssDNA (Cejka, 2015; Myler et al., 2016), while the
RecQ-helicase BLM (and to a lesser degree theWerner Syndrome
RecQ Like Helicase) unwinds dsDNA, and the nuclease DNA2 is
a ssDNA flap endonuclease without specificity to one end or the
other (Kim et al., 2006). The ssDNA produced is bound by RPA
which protects the 3′ end from DNA2 attack, since DNA2 can
only displace RPA from the 5′-end to enable degradation (Niu
et al., 2010; Nimonkar et al., 2011; Zhou et al., 2015).

In cells DNA breaks rarely occur on naked DNA, but on
nucleic acid wrapped in chromatin and chromatin and chromatin
signaling has emerged as a key aspect controlling the vital step of
DNA resection that in turn determines the downstream repair
strategy employed.

CHROMATIN BARRIERS TO RESECTION

DNA is wound round an octamer of histones that make up
the nucleosome. The basic nucleosome consists of two copies
of each of the core histones Histone 2A (H2A), Histone 2B
(H2B), Histone 3 (H3), and Histone 4 (H4). The linker histone,
Histone 1 (H1), binds at the DNA entry and exit point, stabilizes
nucleosomes, and can thereby promote higher-order chromatin
architecture. There are multiple variants for each histone
providing a complex array of variations in nucleosome structure
that occurs at the level of histone composition. In addition, all
histones have long flexible N-terminal tails that extend away from
the nucleosome body and which are highly modified by post-
translational modifications (reviewed in Armeev et al., 2018).
Chromatin context is crucial for DNA repair outcome and the
first challenge the cellular machinery meets is to deal with the
underlying chromatin structure. Nucleosomes can block the
progression of Exo1 in vitro (Adkins et al., 2013) and in yeast
the heterogeneity of resection lengths has been at least partly
attributed to the disruption of Exo1-resection by the position of
nucleosomes (Mimitou et al., 2017).

It is perhaps surprising then that in mammalian cells
immediately following DNA damage chromatin undergoes a
rapid, but transient compaction in the environment local to
the DSB. This has been visualized recently using Fluorescence
lifetime imaging microscopy (FLIM)- Förster resonance energy
transfer (FRET) techniques with fluorescently labeled H2B to
assess nuclear-wide chromatin compaction and compaction
around laser-induced DSBs. Local chromatin compaction around
the break site is observed within 10min of damage (Lou
et al., 2019). This initial repressive state may prevent unwanted
movement of the DSB keeping a relationship between DNA
ends, act to strip the chromatin of irrelevant factors and
prime the modification landscape ready for new alterations. It
is clear that it is required for local transcriptional silencing
(reviewed in Gursoy-Yuzugullu et al., 2016). A number of
mechanisms drive this transient compaction including PARP-
dependent recruitment of heterochromatin protein 1 (HP1),
KRAB-associated protein-1 (KAP1), macroH2A variants, and

methyltransferases (reviewed in Price and D’Andrea, 2013;
Oberdoerffer, 2015). This initial repressive state must necessarily
be overcome in order to permit repair. In FLIM-FRET analysis
the kinase ataxia-telangiectasia mutated (ATM) and E3 ligase
RING finger-8 (RNF8) regulate chromatin de-compaction and
compact chromatin at later time points is found beyond the
boundary of the repair locus (Lou et al., 2019).

Tri-methylated-lysine 9 Modified H3 domains (H3K9me3)
generated adjacent to the break, bind and activate the lysine(K)
acetyltransferase 5 (KAT5 also known as TIP60) (Sun et al.,
2009; Ayrapetov et al., 2014). In turn, KAT5 acetylates and
activates the master regulator of the DNA damage response,
ATM (Sun et al., 2009) and also modifies the H4 tail. Acetylation
of the H4 tail blocks the interaction of the tail with the acidic
groove on adjacent nucleosome patches, facilitating a more open
chromatin structure (reviewed in Price and D’Andrea, 2013).
Once activated ATM disrupts the small ubiquitin like modifier
(SUMO)-mediated interaction of KAP1 with Chromodomain
helicase DNA binding protein 3 (CHD3), a member of the
histone deacetylase complex referred to as the Nucleosome
Remodeling Deacetylase (NuRD) complex (Goodarzi et al.,
2011). KAP1 depletion can relieve chromatin compaction and
allow subsequent repair (Ziv et al., 2006), and similarly the
ATM-mediated CHD3 dissociation from chromatin, promotes
chromatin relaxation and allows DNA repair. In addition, both
the SUMO targeting E3 ubiquitin (ub) ligase RING Finger
4 (RNF4) and Valosin-containing protein/AAA+-type ATPase
p97 (VCP/p97) interact with pS824-KAP1-SUMO. VCP/p97
can extract ubiquitinated proteins from membranes or cellular
structures, or segregate them from binding proteins and RNF4-
VCP/p97 promotes removal and degradation of SUMOylated
KAP1 (Kuo et al., 2014), providing a further mechanism for
chromatin de-compaction.

The canonical modification catalyzed by the RING Finger
20/RING Finger 40 dimer (RNF20-RNF40), H2B-K120ub, is
associated with transcription in open chromatin (Nickel and
Davie, 1989; Zhu et al., 2005). This modification is also induced
by RNF20-RNF40 following DNA damage (Moyal et al., 2011;
Nakamura et al., 2011), where the H2B-K120ub mark is required
for recruitment of subsequent DNA repair factors, such as
BRCA1 and RAD51 (Moyal et al., 2011; Nakamura et al., 2011).
The requirement is likely to be an indirect effect of H2B-K120ub
in promoting chromatin relaxation. Indeed, relaxation relieves
the requirement for RNF20 in HDR (Nakamura et al., 2011).
H2B-K120ub supports increased access to DNA by promoting
both local and higher order chromatin de-compaction (Fierz
et al., 2011; Debelouchina et al., 2017).

A further means to relieve histone-repression of resection is
in the recruitment of chromatin remodelers to break sites. The
INO80 chromatin remodeler complex promotes incorporation
of the histone variant H2AZ, which in turn promotes an open
chromatin structure, in part through facilitating H4 acetylation
(Xu et al., 2012). Similarly the yeast “remodels the structure
of chromatin,” RSC, complex contributes to MRX and Ku
recruitment to damage sites (reviewed in Chambers and Downs,
2012). In humans the SWI/SNF-related, matrix associated, actin-
dependent regulator of chromatin, subfamily A, member 4
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(SMARCA4 also known as BRG1), which is the ATPase subunit
of the SWI/SNF-B polybromo-associated BRG1-associated factor
(PBAF) chromatin remodeling complex, is required for RPA-
RAD51 exchange (Qi et al., 2015), while the component, AT-Rich
Interaction Domain 2 (ARID2), promotes RAD51 recruitment
through direct protein interaction (de Castro et al., 2017). The
SWI/SNF-related, matrix associated, actin-dependent regulator
of chromatin, subfamily A, member 5 (SMARCA5 also called
SNF2H) which is the catalytic subunit of ISWI chromatin
remodeling complexes recruits to DNA damage sites through
PARP1 and Sirtuin 6 (SIRT6) activity and through the structural
Nuclear mitotic apparatus protein (NuMA) (Smeenk et al., 2013;
Toiber et al., 2013; Vidi et al., 2014). The co-factor of SMARCA5,
Remodeling and spacing factor-1 (RSF-1), similarly recruits to
sites of damage, and does so in an ATM-dependent fashion
(Min et al., 2014). In turn SMARCA5-dependent remodeling,
for example of heterochromatin, requires H2B-ubiquitination
by RNF20/RNF40 (Klement et al., 2014). Intriguingly, at least
some of these remodelers share an interaction domain for
binding nucleosomes in order to induce nucleosome sliding.
For example INO80 and SMARCA5 require the acidic patch of
H2A/B (Gamarra et al., 2018) that is also an interaction face
for the unacetylated H4 tail, and for other signaling and repair
factors, suggesting a mutually exclusive and perhaps sequential
hierarchy of remodeling events directing repair responses.

The differences between repair in open, active euchromatin

compared to closed, repressive heterochromatin have been

reviewed elsewhere (Murray et al., 2012; Watts, 2016). For

many years the view that a more open chromatin environment
of euchromatin is conducive to HDR and that breaks within
transcribed genes are repaired more frequently by HDR has
persisted (Aymard et al., 2014; Lemaitre et al., 2014). Indeed
a recent study using CRISPR-Cas9 to target specific loci
found that open-chromatin may recruit insufficient p53 binding
protein 1 (53BP1) (van den Berg et al., 2019), required to
promote NHEJ and restrict HDR. Additionally, a more nuanced
view has recently arisen in which repair choice is actively
directed in different chromatin environments. For example,
the chromatin-binding protein Lens epithelium-derived growth
factor (LEDGF) binds preferentially to epigenetic methyl-lysine
histone markers characteristic of active transcription and also
interacts with CtIP in a damage dependent way, thereby
improving resection within active genomic regions (Daugaard
et al., 2012). In addition, specialist remodelers, such as the Snf2-
like remodeler Helicase, lymphoid specific (HELLS), appear to
enable HDR at some heterochromatic regions (Kollarovic et al.,
2019) and heterochromatin-resident proteins such as HP1 and
Sentrin/SUMO-Specific Protease SENP7 (SENP7) nevertheless
facilitate HDR (Garvin et al., 2013; Lee et al., 2013). A
recent study using CRISPR-Cas9 to quantify HDR- and NHEJ-
derived gene editing events at single-target sequences subjected
to distinct chromatin conformations found that NHEJ and
not HDR was more sensitive to chromatin state. Reduction
of Cas9 activity in G1 was a far greater determinant of
the relationship between NHEJ and HDR than chromatin
conformation (Janssen et al., 2019).

Chromatin Signaling as a Barrier to
Resection
When both strands of DNA are broken nearby, sheering the
chromosome, a dramatic signaling cascade occurs to initiate
repair. This cascade, often referred to as the DNA damage
response (DDR), is reviewed extensively elsewhere (Jackson
and Bartek, 2009; Altmeyer and Lukas, 2013; Setiaputra and
Durocher, 2019) while signaling leading to 53BP1-Shieldin
recruitment to damage sites is described briefly here. DSBs
are detected by two protein complexes, the Ku70/80 dimer
and the MRN-complex. MRN (MRE11-RAD50-NBS1) tethers
to the two ends and recruits the serine/threonine kinase ATM
through interaction with NBS1. Phosphorylation of the histone
variant H2AX at serine-139, recruits the Mediator of DNA
damage checkpoint 1 (MDC1), which in turn recruits more ATM,
amplifying the signal either side of the dsDNA break. The E3
ub ligase RNF8 is recruited to damage sites by interaction with
ATM-phosphorylated-MDC1. Once at DSBs, RNF8 modifies
the linker histone H1 with K63-ub chains (Thorslund et al.,
2015). Additionally L3MBTL Histone methyl-lysine binding
protein 2 (L3MBTL2) may be recruited by MDC1 and also
modified by RNF8 (Nowsheen et al., 2018). H1 modification
is assisted by the HECT, UBA, and WWE domain containing
E3 ub ligase 1 (HUWE1) (Mandemaker et al., 2017), and the
polycomb repressor complex 1 (PRC1) (Ismail et al., 2013).
RNF8 signaling promotes the recruitment of another E3 ub
ligase, RING finger 168 (RNF168), which binds K63-ub chains
(Doil et al., 2009; Stewart et al., 2009; Panier et al., 2012),
and also interacts with the nucleosome acidic patch where it
catalyzes mono-ubiquitination of H2A at K13/K15 to promote
recruitment of 53BP1 (Doil et al., 2009; Mattiroli et al., 2012;
Fradet-Turcotte et al., 2013). H2A N-terminal ubiquitination is
critical for 53BP1 accumulation, where the H2AK15-conjugated
ub acts to trap a portion of 53BP1 against the nucleosome
surface (Wilson et al., 2016). KAT5 acetylation of H4K16
reduces the secondmode of 53BP1 interaction with nucleosomes,
interaction of its Tudor domain with H4K20me2 (Tang et al.,
2013), while acetylation at H2AK15 blocks 53BP1 binding
as this modification is mutually exclusive with H2AK15ub
(Jacquet et al., 2016). Binding of Bromo-domain containing 2
(BRD2) to acetylated H4 protects the chromatin from histone
deacetylases (HDACs) 2Kb both sides of the break, and limits
the 53BP1 competitive inhibitor L3MBTL Histone methyl-lysine
binding protein 1 (L3MBTL1) from binding (Dhar et al., 2017;
Gursoy-Yuzugullu et al., 2017). RNF168 recognizes its own
H2AK13/K15ub mark and thereby auto-propagates this signal
along chromatin (Chen J. et al., 2012; Panier et al., 2012; Poulsen
et al., 2012).

53BP1 is heavily phosphorylated by ATM following damage
and the phosphorylated protein interacts with two apparently
independent effectors. PAX transcription activation domain
interacting protein-1-like (PTIP) which in turn interacts with
Artemis (Munoz et al., 2007; Wang et al., 2014) and RIF1
Replication timing regulatory factor 1 (RIF1) which interacts
with the Shieldin complex (Manke et al., 2003; Silverman et al.,
2004; Munoz et al., 2007; Wu et al., 2009; Chapman et al.,
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2013; Daley and Sung, 2013; Di Virgilio et al., 2013; Escribano-
Diaz et al., 2013; Feng et al., 2013; Zimmermann et al., 2013;
Wang et al., 2014; Boersma et al., 2015; Tomida et al., 2015,
2018; Xu et al., 2015; Bakr et al., 2016; Bluteau et al., 2016;
Dev et al., 2018; Ghezraoui et al., 2018; Gupta et al., 2018;
Mirman et al., 2018; Noordermeer et al., 2018; Zlotorynski,
2018). The identification of Shieldin has been an exciting advance
in understanding how chromatin signaling acts to inhibit
resection (reviewed in Setiaputra and Durocher, 2019). RIF1
bound to 53BP1 interacts with Shld3/RINN1-Rev7 and in turn
Shld2/RINN2-Shld1/RINN3 (Names: Shieldin Complex Subunit
3/RINN1-REV7-Interacting Novel NHEJ Regulator 1, REV7
Homolog/ Mitotic Arrest Deficient 2 Like 2; Shieldin Complex
Subunit 1/RINN3-REV7-Interacting Novel NHEJ Regulator 3;
Shieldin Complex Subunit 2/RINN2-REV7-Interacting Novel
NHEJ Regulator 2; and Shieldin Complex Subunit 1/RINN3-
REV7-Interacting Novel NHEJ Regulator 3, respectively). Shld2
carries 3 OB folds which interact with ssDNA and are required
for the promotion of 53BP1mediated NHEJ andHDR inhibition.
Surprisingly Shld2 can precipitate ssDNA of >50 nucleotides,
but not smaller than 30 nucleotides (Dev et al., 2018; Findlay
et al., 2018; Gao et al., 2018; Noordermeer et al., 2018),
which is slightly greater than the length of minimally resected
DNA. Shieldin in turn contacts a complex made up of CST
telomere replication complex component 1 (CTC1)-Subunit
of CST Complex (STN1)-Telomere Length Regulation Protein
TEN1 Homolog (TEN1), known as the CST complex, together
with DNA polymerase-alpha (Pol-α). CST-Pol-α is critical to
the integrity of telomeres, where it performs C-strand fill in
(reviewed in Stewart J. A. et al., 2018) and CST-pol-α appears
to perform a similar role at resected DNA ends, filling in the
short regions of resected DNA (Barazas et al., 2018;Mirman et al.,
2018) so that 53BP1 and its effectors may not only block resection
but also reverse it. This mechanism provides further options
for repair; since filling in the region that has been processed by
MRE11 potentially generates a “clean” end for NHEJ (Setiaputra
and Durocher, 2019; illustrated in Figure 2). Indeed 53BP1 is
required for the promotion of several forms of NHEJ, including
class-type switching, a subset of VDJ recombination and the
fusion of unprotected telomere ends (Manis et al., 2004; Ward
et al., 2004; Nakamura et al., 2006; Difilippantonio et al., 2008;
Dimitrova et al., 2008; Kibe et al., 2016). Dramatically, the impact
of the 53BP1-complex on suppressing resection is clearest in cells
lacking BRCA1 (Bothmer et al., 2010, 2011; Bouwman et al., 2010;
Bunting et al., 2010).

The embryonic lethality of Brca1 deficient mice is rescued
by concurrent loss of 53bp1 and coincides with improved DNA
resection, and improved measures of HDR-proficiency, such as
RAD51 foci in irradiated cells, PARP inhibitor resistance and
improved repair of integrated HDR-substrates together with a
reduction of radial chromosomes, often referred to as a hallmark
of toxic end joining (Cao et al., 2009; Bouwman et al., 2010;
Bunting et al., 2010, 2012; Li et al., 2016; Nacson et al., 2018).
These data demonstrate that BRCA1, of itself, is not needed for
the promotion of resection, since the need for the protein is
largely overcome by loss of 53BP1, but show BRCA1 is critical
to overcoming the resection block mediated by 53BP1. A similar,

though less potent, relationship is also clear between BRCA1 and
members of the 53BP1-Shieldin complex (Chapman et al., 2013;
Di Virgilio et al., 2013; Escribano-Diaz et al., 2013; Feng et al.,
2013; Zimmermann et al., 2013; Boersma et al., 2015; Tomida
et al., 2015, 2018; Xu et al., 2015; Dev et al., 2018; Findlay et al.,
2018; Ghezraoui et al., 2018; Gupta et al., 2018; Mirman et al.,
2018; Noordermeer et al., 2018; Zlotorynski, 2018).

Repair Structures
In G1-phase cells the 53BP1 protein is found as a dense focus
around the DSB, whereas in S-phase cells 53BP1 accumulations
are less dense and more dispersed from the focus center. At the
central focus core of damage sites in S-phase cells BRCA1, CtIP
and the ssDNA binding protein RPA are found (Chapman et al.,
2012; Kakarougkas et al., 2013). These S-phase structures are
large, with 53BP1 peak density mapping in an axis through a foci
center as far as 1µm across, presumably ∼0.5µm from the DSB
(Chapman et al., 2012; Kakarougkas et al., 2013). Loss of BRCA1
reduces the circumference of the 53BP1 localization, placing it
in the center of the foci, resembling a G1-phase focus (Chapman
et al., 2012; Kakarougkas et al., 2013). Thus BRCA1 plays a role in
the physical localization of 53BP1, contributing to its placement
away from the break core in S-phase cells.

Mapping of chromatin compaction reveals that substantial
local chromatin changes accompany the repair response. The
chromatin density is re-arranged so that the initial compaction
seen proximal to the break at 10min post damage is lost and
at 30–60min a ring of condensed chromatin forms further
away from the break site, with the greatest density occurring
beyond the regions bound by 53BP1. Chromatin peak density
mapping through focus centers reveal that compaction occurs
as much as 5µm apart, presumably ∼2.5µm from the DSB
(Lou et al., 2019; illustrated in Figure 3). These large chromatin
rearrangements are dependent on ATM and RNF8 (Lou et al.,
2019). One speculative explanation for the chromatin “wave”
beyond 53BP1 is that chromatin remodeling required to promote
long-range resection, forces chromatin bunching outside the
resected region (see below). Another possibility is that the
liquid-like properties of 53BP1 assemblies, which show fusion
and sensitivity to disruption of hydrophobic interactions by
detergents (Kilic et al., 2019), displace chromatin. These later
observations are particularly fascinating in view of reports that
liquid phase-separation mechanically excludes chromatin as it
grows (Shin et al., 2018). Understanding the role of remodeling
factors and the three dimensional chromatin structures of both
the damaged and template strands within the repair structures is
needed to address what these structures represent and the reason
for their large scale.

BRCA1 Regulation of Resection
BRCA1 exists as an obligate heterodimer with its N-terminal
binding partner BRCA1-associated RING domain protein 1
(BARD1) and in the absence of BARD1, BRCA1 is degraded
(Joukov et al., 2006). The BRCA1-BARD1 heterodimer has the
ability to act as an E3 ub ligase by improving the transfer of
ub from an interacting and loaded E2 ub conjugating enzyme
to target lysines (Brzovic et al., 2003). Several E2 conjugating
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FIGURE 2 | Following a DSB 53BP1 interacts with modified histones, (H2A-K15-ubiquitin blue circles, H4K20-dimethylation, green hexagons), the

53BP1-RIF1-Shieldin (Shld1-Shld2-Shld3-Rev7-CST) complex is recruited to sites of DNA damage where it also prevents retention of BRCA1-BARD1. Shld2 binds

directly to ssDNA stretches >50 nucleotides long via three OB-folds. Together the Shieldin complex recruits DNA Polα which in turn primes DNA synthesis to fill in

resected DNA ends. This prevents long range resection and repair by HDR pathways and supports repair by NHEJ.

FIGURE 3 | Chromatin compaction around a single DSB changes with time. Immediately following damage (within 10min) local compaction occurs which has been

linked to transcriptional repression, limiting movement of the break ends, and to strip and prime chromatin modifications for repair. At 30–60min post repair chromatin

density is at its greatest beyond the 53BP1 boundary that marks the break site. In S/G2, the 53BP1 boundary is repositioned by BRCA1-BARD1 to open up the

damage site for long range resection. In addition the 53BP1 damage complexes are thought to have liquid like phase properties which may be key to these large scale

(5µm diameter) effects on chromatin densities.

enzymes interact with the BRCA1-RING domain, and not
the BARD1-RING domain, to catalyze the generation of ub
conjugates (Christensen et al., 2007). Nevertheless, BARD1
brings more than protein stability to BRCA1, contributing a
charged residue that interacts with ub to facilitate its transfer
from the loaded E2 (Densham et al., 2016). Several targets

of the BRCA1-BARD1 E3 ligase activity have been identified
(reviewed in Wu et al., 2008) including several independent
reports of H2A modification (Mallery et al., 2002; Zhu et al.,
2011; Kalb et al., 2014a). Residues at the extreme C-terminus of
H2A at K125/K127/K129 have been mapped as those modified
(Kalb et al., 2014a). Modeling and mutagenesis approaches have
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suggested that BRCA1-BARD1 contacts the H2A/B nucleosome
acidic patch via an arginine anchor to promote ubiquitination of
H2A (Buchwald et al., 2006; McGinty et al., 2014).

Ubiquitin modification of H2A at K118/K119 is associated
with transcriptional repression (Blackledge et al., 2014; Kalb et al.,
2014b), and de-repression of satellite DNA has been reported
in human and mouse BRCA1-deficient cancers (Zhu et al.,
2011). Recently cancer-associated germline patient variants in the
BARD1-RING have been described which do not reduce BRCA1-
BARD1 ligase activity, but do specifically prevent ubiquitination
of H2A (Stewart M. D. et al., 2018). These mutations also
suppress transcriptional repression, resulting in activation of
estrogen metabolism genes in MCF10A breast cells (Stewart M.
D. et al., 2018). Whether the de-repression of transcription can
impact HDR directly is not clear, but there is potential for re-
expressed genes, such as those involved in estrogen metabolism
or satellite RNA to increase the demand for HDR (Santen et al.,
2015; Kishikawa et al., 2018) the latter through the generation of
RNA: DNA hybrids at repeat sequences and at replication forks
(Zhu et al., 2018; Padeken et al., 2019).

Cells lacking BRCA1 are sensitive to a broad range of
DNA damaging agents (reviewed in Costes and Lambert,
2012; Zimmermann and de Lange, 2013; Ceccaldi et al.,
2016). However in a human cell system complemented with
ligase defective BRCA1-BARD1, cells were sensitive to the
PARP inhibitor, Olaparib, and the Topoisomerase inhibitor,
camptothecin, but not sensitive to replication stressing agents,
hydroxyurea, or aphidicolin (Densham et al., 2016). BRCA1
E3 ligase defective chicken DT40 cells also are sensitive
to Topoisomerase inhibitors (Sato et al., 2012) and neither
these cells, nor similarly altered mouse cells, nor human
cells complemented with ligase defective BRCA1-BARD1, show
sensitivity to DNA interstrand cross-linking agents (Reid et al.,
2008; Sato et al., 2012; Densham et al., 2016) (although
the engineered mouse cells do exhibit increased chromosome
aberrations after cross-linking agent treatment Reid et al., 2008).
BRCA1 loss, or loss of the ligase function, is associated with
reduced long-range resection (Shibata et al., 2011, 2014; Alagoz
et al., 2015; Densham et al., 2016; Drost et al., 2016). Intriguingly
E3 ligase proficiency also correlates with the ability to position
53BP1 away from the break site in S-phase cells (Densham et al.,
2016). Thus a subset of BRCA1-mediated responses relate to
resection and to 53BP1 positioning.

Amongst the remodelers critical to DNA repair in yeast is
the SNF2 family ATPase SWI/SNF-related, matrix-associated
actin-dependent regulator of chromatin, subfamily A, containing
DEAD/H Box-1 (SMARCAD1) homolog, Fun30. Fun30
promotes long range resection at camptothecin-induced lesions
by facilitating the activity of Exonuclease 1 (Exo1) (Chen X.
et al., 2012; Costelloe et al., 2012; Eapen et al., 2012). Significantly
this remodeler is less important for resection in the absence
of histone-bound Rad9, the 53BP1 ortholog, which like 53BP1
acts to block 5′ strand processing (Chen X. et al., 2012; Adkins
et al., 2013). SMARCAD1 has two N-terminal ub-binding CUE
domains (coupling of ub to ER degradation) (Kang et al., 2003;
Shih et al., 2003) and these link BRCA1-BARD1 ligase function
and H2A modification to 53BP1 positioning and resection

(Densham et al., 2016). Moreover SMARCAD1 ATPase activity
and the integrity of its ub binding domains are required for
HDR repair and for the positioning of 53BP1 away from the
BRCA1 core (Densham et al., 2016). These observations point to
ub driven SMARCAD1 remodeling, rather than 53BP1:BRCA1
competition at chromatin, as critical to 53BP1 positioning.
CUE domain interactions with ub are typically weak, with
reported dissociation constants ranging from 20 to 160µM
(Kang et al., 2003; Prag et al., 2003; Shih et al., 2003) and while
SMARCAD1 CUE domains and BRCA1-BARD1 are required
for full SMARCAD1 recruitment to damage sites (Densham
et al., 2016) an ATM consensus site at SMARCAD1-T906 is also
required (Chakraborty et al., 2018). In addition, a recent peptide
array screen has shown that SMARCAD1 binds to histone 3
modifications, including citrullinated Histone 3. Citrullination
occurs when an arginine is deaminated and converted to the
amino acid citrulline. SMARCAD1 binds modified Histone
3: H3R26Cit> H3K27ac>H3R17Cit>H3R26me2 (Xiao et al.,
2017). Intriguingly H2A-K127/K129ub and H3R26Cit/K27ac are
proximal on the nucleosome surface presenting the possibility
that SMARCAD1 interaction with histone is through combined
post-translational modification interactions. In yeast the CDK-
mediated phosphorylation of Fun30 promotes interaction with
Dpb11 [homolog of DNA Topoisomerase II Binding Protein 1
(TOPBP1)] and Mec1-Ddc2 [orthologs of ataxia telangiectasia
and Rad3-related protein (ATR) and ATR-interacting protein
(ATRIP)] resulting in improved Fun30 recruitment to damaged
chromatin in S-phase. In human cells TOPBP1 similarly
interacts through phosphorylated SMARCAD1 (Bantele et al.,
2017). Further, purified Fun30 binds nucleosomes wrapped in
ssDNA preferentially over dsDNA-wrapped nucleosomes and
ssDNA-nucleosomes are effective at activating Fun30 (Adkins
et al., 2017), providing a potential means for short-range
resection to activate the remodeler. Taken as a whole, recent
evidence suggest a model in which several components of
SMARCAD1 recruitment prime it to locating and activating,
not only at DNA break sites, but at minimally resected DNA
(illustrated in Figure 4).

Intriguingly, independently of ubiquitination, SMARCAD1
constitutively interacts with KAP1 directly through its first CUE
domain (Rowbotham et al., 2011; Ding et al., 2018; Lim et al.,
2019). SMARCAD1 co-purifies with several other remodeling
factors (Rowbotham et al., 2011) associated with gene silencing
and heterochromatin formation, some of which have also been
implicated in 53BP1 repositioning (Alagoz et al., 2015).

How SMARCAD1/Fun30 in turn promotes remodeling of
53BP1/Rad9 is less clear. Fun30 can promote nucleosome sliding
or eviction of H2A-H2B from nucleosomes (Awad et al., 2010).
Sliding might be expected to contribute to the compaction wave
of condensed chromatin observed outside of 53BP1 domains
(Lou et al., 2019) but this is not mutually exclusive with the
model of 53BP1 phase separation and chromatin exclusion
(Shin et al., 2018; Kilic et al., 2019). The related remodeler
SMARCA5/SNF2h shifts DNA discontinuously with movement
on the entry side preceding its exit (Sabantsev et al., 2019).
A recent Cryo-electron microscopy model of a SMARCA5
dimer on nucleosomes suggests the disordered H2A-H2B
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FIGURE 4 | Multiple mechanisms contribute to SMARCAD1 recruitment to DNA damage sites. BRCA1-BARD1 modification of H2A-K125/127/129ub is recognized

by SMARCAD1 CUE domains. Phosphorylation events by ATM (SMARCAD1-T906) facilitate recruitment and CDKs (SMARCAD1-T71) promote TOPBP1 interaction.

SMARCAD1 preferentially binds and is activated by ssDNA-nucleosomes. Finally, SMARCAD1 has been proposed to directly bind H3K27Ac and H3R26cit although

the role of these interactions in the DDR has yet to be characterized.

acidic patch inhibits the second SMARCA5 protomer, while
disorder near the bound SMARCA5 dyad stimulates directional
DNA translocation (Armache et al., 2019). Thus, we might
speculate that order induced by protein-protein interaction at
the nucleosome acidic patch, for example by the bound 53BP1-
ubiquitylation-dependent recruitment motif, could influence
remodeling directionality or proficiency.

In the context of the DNA damage response the BRCA1-
BARD1 E3 ub ligase contributes the third ub modification of
H2A. Indeed H2A modification in a nucleosomal context is
remarkably site specific both for the E3 ligases responsible and for
the readers of these marks (reviewed in Uckelmann and Sixma,
2017). H2A has long tails at both N- and C-termini which can
be modified by conjugation of ub at three major sites: K13/K15
by RNF168 (Mattiroli et al., 2012), K118/K119 by the PRC1
(Nickel and Davie, 1989), and K125/K127/K129 by BRCA1-
BARD1 (Kalb et al., 2014a). The majority of H2A ubiquitination
in the cell is at the K119 site (Nickel and Davie, 1989) which
is ubiquitinated by proteins that form part of the PRC1 and
the mark is associated with transcriptional gene repression and
heterochromatin (Wang et al., 2004). Many de-ubiquitinating
enzymes (DUBs) have been implicated in the removal of ub from
H2A (reviewed in Vissers et al., 2008; Uckelmann and Sixma,
2017) but none had previously been reported to be specific for
the BRCA1-H2Aub mark.

In vitro work from the group of Prof. Titia Sixma identified
the highly conserved Ubiquitin Specific Peptidase 48 (USP48)
(human has 77% identify with Xenopus, 95% with mouse
Usp48) as a DUB specific for nucleosomal-H2A substrates
and, more specifically, for nucleosomal-H2A modified
at the BRCA1 K125/K127/K129 sites (Uckelmann et al.,
2018). Additionally, like Ubiquitin Specific Peptidase 14
(USP14), the proteasome-associated DUB, USP48 requires

a second “auxiliary” ub (i.e., not the substrate ubiquitin) to
achieve full catalytic potential. This “auxiliary” ub can be at
either the H2A-K125/K127/K129ub or H2A-K118/K119ub
sites but it only increases activity toward ub removal
from the three BRCA1 targeted sites, i.e., USP48 does not
cleave H2A-K118/K119ub when H2A-K125/K127/K129ub
is present (Uckelmann et al., 2018).

Modulating the levels of USP48 dramatically influences DNA
resection lengths. Over-expression of USP48 results in restricted
resection whereas low USP48 levels result in placement of 53BP1
further from the damage site and result in the extension of
BRCA1 and SMARCAD1 dependent resection. The removal or
depletion of 53BP1 results in extended resection lengths to the
degree that SSA is favored over GC, leading to the suggestion
that 53BP1 acts as to limit the extent of resection (Ochs et al.,
2016). Intriguingly cells depleted of USP48 develop a dependence
on SSA DNA repair even though they have normal levels of
53BP1 (Uckelmann et al., 2018). These findings suggest cells may
fine-tune 53BP1 placement and HDR mechanisms through the
opposing activities of the BRCA1-BARD1 ligase and USP48 DUB
(illustrated in Figure 5). Additionally cells lacking the Fanconi
anemia compatibility component A (FANCA), show improved
survival to interstrand cross linking agents when they lack
USP48 (Velimezi et al., 2018). These cells have enhanced BRCA1
dependent clearance of DNA damage that appears unrelated to
resection proficiency (Velimezi et al., 2018). We speculate that
BRCA1-BARD1 ligase function, amplified by loss of USP48, may
provide a back-up role for the Fanconi anemia core complex.

The degree to which the BRCA1-BARD1-USP48 relationship
is significant in regulating resection-driven repair pathway choice
will be dependent on how the pathway is modulated in different
environments. The identity of the “auxiliary” ub site on H2A
is not clear and the ligase responsible for the modification
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FIGURE 5 | A new BRCA1-circuit that controls DNA repair pathway choice. In S-phase BRCA1-BARD1 is retained at DNA double strand break sites where it

mono-ubiquitinates the extreme C-terminus of H2A at K125/127/129 (1). This ubiquitination modification is recognized by the chromatin remodeler SMARCAD1 (2)

which remodels nucleosomes to promote 53BP1 repositioning at the break site (53BP1 binds modified H2A-K15-ubiquitin blue circles, H4K20-dimethylation, green

hexagons). This allows recruitment of long-range resection enzymes, such as DNA2, BLM or EXO1, required for homology-directed repair. The deubiquitinating

enzyme USP48 specifically removes the BRCA1-mediated H2A-Ub modification (3) to prevent over-resection and limit use of the mutagenic single-strand annealing

repair pathway.

not known. Similarly it is unclear if SMARCAD1: chromatin
interaction favors ub-modification at any of one of the three
lysines of H2A-K125/K127/K129 over another. It is possible that
the dependency of USP48 for an auxiliary ub has the potential
to regulate the degree of resection in particular chromatin
environments; for example, in regions of heterochromatin
marked by PRC1 mediated modification at H2A-K118/K119.

Given the potential for mutagenic DNA repair conferred by
hyper-resection many regulatory mechanisms are to be expected.
For example, incorporation of H2AZ at sites of damage has been
proposed to limit resection and define chromatin boundaries
(Xu et al., 2012). Interestingly, H2AZ, like H2AX, has shorter
C-terminal tails than H2A and lacks the C-terminal lysines
K125/K127/K129 present on H2A. H2AZ may thus be refractory
to BRCA1 modification and SMARCAD1 remodeling.

In addition, positioning of 53BP1 by BRCA1 ligase activity
is not the only means by which the block on resection is

resisted. BRCA1 can counteract RIF1 recruitment in S-phase

under conditions where no impact on 53BP1 is obvious

(Chapman et al., 2013; Escribano-Diaz et al., 2013; Feng
et al., 2013; Zimmermann et al., 2013). BRCA1 contributes
to the recruitment of the protein phosphatase 4C (PP4C) to
dephosphorylate 53BP1 and release RIF1 (Feng et al., 2015;
Isono et al., 2017). BRCA1 is also reported to contribute to the
recruitment of a further E3 ub ligase Ub-like with PHD and
RING finger domains 1 (UHRF1), which mediates K63-linked
polyubiquitination of RIF1, and results in its dissociation from
53BP1, thereby facilitating resection (Zhang et al., 2016). Further
in S-phase cells RIF1 is gradually competed out from 53BP1 by
the protein Suppressor of Cancer cell Invasion (SCAI), which
binds 53BP1 to allow BRCA1-mediated repair (Isobe et al., 2017).

In addition ATM and CDK2 control the chromatin remodeling
activity of the SWI2-SNF2 remodeler, Cockayne syndrome group
B (CSB), which interacts with RIF1 and remodels chromatin by
evicting histones, which limits RIF1-REV7 but promotes BRCA1
accumulation (Batenburg et al., 2017).

CONCLUDING REMARKS

The response to DNA breaks drives both dramatic and subtle
local chromatin changes. That resection is sensitive to chromatin
state has been utilized by cells to regulate resection lengths in
and of itself and chromatin has been used as a substrate to
build inhibitory blocks, ormountains, upon. BRCA1-BARD1 and
TOPBP1 are part of a signaling milieu that places and initiates
the chromatin remodeling activity of SMARCAD1 at the right
place to reposition 53BP1, while several mechanisms counter the
interaction of 53BP1 with RIF1. The degree of resection is the net
result of nuclease-digestion vs. Shieldin-CST-Pol-α fill in, where
the positioning of the fill-inmachinery further from the break site
appears to give nucleases the upper-hand. Unrestrained BRCA1-
mediated remodeling can lead to hyper-resection and bias HDR
mechanisms from accurate GC to mutagenic SSA.

We understand comparatively little about the relative physical
positioning of many of the factors critical to the regulation of
resection including the 53BP1-binding proteins responsible for
the block on resection, those that promote resection, and only
recently has relationship of chromatin with these factors begun
to emerge. The explosion in the number of components capable
of promoting and, in particular, restricting resection, illustrates
the premium that the cell places on tuning appropriate resection
lengths. Given the critical role it plays in repair pathway choice,
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how these factors are regulated will be key to understanding how
chromatin context and HDR repair are interwoven.
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