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Dementia-related diseases like Alzheimer’s Disease (AD) have a tremendous social and

economic cost. A deeper understanding of its underlying pathophysiologies may provide

an opportunity for earlier detection and therapeutic intervention. Previous approaches

for characterizing AD were targeted at single aspects of the disease. Yet, due to the

complex nature of AD, the success of these approaches was limited. However, in recent

years, advancements in integrative disease modeling, built on a wide range of AD

biomarkers, have taken a global view on the disease, facilitating more comprehensive

analysis and interpretation. Integrative AD models can be sorted in two primary types,

namely hypothetical models and data-driven models. The latter group split into two

subgroups: (i) Models that use traditional statistical methods such as linear models, (ii)

Models that take advantage of more advanced artificial intelligence approaches such as

machine learning. While many integrative AD models have been published over the last

decade, their impact on clinical practice is limited. There exist major challenges in the

course of integrative AD modeling, namely data missingness and censoring, imprecise

human-involved priori knowledge, model reproducibility, dataset interoperability, dataset

integration, and model interpretability. In this review, we highlight recent advancements

and future possibilities of integrative modeling in the field of AD research, showcase and

discuss the limitations and challenges involved, and finally, propose avenues to address

several of these challenges.
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INTRODUCTION

Alzheimer’s Disease (AD) manifests in a collection of symptoms including the deterioration of
cognition, memory, and behavior which often leads to interference with activities of daily living.
In 2017, AD ranked among the top five causes of death worldwide, with 2.44 million (4.5%) deaths
from AD1,2. Worldwide, there are currently around 50 million people living with AD, and every
3 s a person develops this condition. It is estimated that only a quarter of those living with AD are
diagnosed, and more than 17 million healthcare workers annually invest 18 billion hours of care, at
a cost of more than one trillion US dollars to tackle AD-associated problems3,4. Extrapolating these
statistics to the coming decades suggests the immense socioeconomic impact of AD on all involved

1https://ourworldindata.org/causes-of-death
2https://www.thestreet.com/world/leading-causes-of-death-world-14869811
3https://www.alz.co.uk/research/statistics
4https://ourworldindata.org/causes-of-death
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parties: patients, caregivers, healthcare systems, and indirectly,
the economy. Thus, strategies to reduce the global emotional
and financial burden of AD are of great importance. To develop
such strategies, a deeper understanding of the pathophysiology
underlying AD is necessary and may lead to opportunities for
earlier detection and therapeutic interventions.

In general, AD progression is categorized into three clinical
disease stages: (i) During the pre-symptomatic phase, individuals
may have already developed pathological changes that underlie
AD, but remain cognitively normal, (ii) in the prodromal phase,
often referred to as mild cognitive impairment (MCI), the
first cognitive symptoms, commonly episodic memory deficits,
appear. These symptoms can be acute, but they do not yet meet
the criteria for dementia, (iii) in the dementia stage, impairments
are severe enough to interfere with daily life (Jack et al., 2010).

Understanding of the etiology of AD is complicated due to the
existence of dysregulations at different biological scales, ranging
from genetic mutations to structural and functional alterations
of the brain (Aisen et al., 2017). For this reason, significant efforts
have been made in recent years to discover candidate markers for
disease-related pathological changes throughout all modalities,
including neuro-imaging, cerebrospinal fluid (CSF) samples
and a broad variety of -omics data. Studies have successfully
identified multiple biomarkers for neurodegeneration and AD
(Blennow and Zetterberg, 2018). However, effectively translating
extensive biomarker screenings into clinical application remains
a challenging task, because individual biomarkers can only
provide a highly incomplete view on such a multifactorial
disease (Younesi and Hofmann-Apitius, 2013). For instance,
whilemultiple associations between genetic variants andADhave
been established (Jansen et al., 2019; Kunkle et al., 2019), none of
these associations fully describe disease pathogenesis. As a result,
one of the major challenges in AD research is translating diverse
biomarker signals available into multimodal, multiscale models
of disease pathogenesis.

In recent years, a new translational research paradigm
called “integrative disease modeling” has emerged, to address
this challenge (Younesi and Hofmann-Apitius, 2013). It aims
at modeling heterogeneous measurements across different
biological scales, in order to provide a holistic picture of
biomarker intercorrelations in the disease of study. To this
end, advanced high-throughput technologies and neuroimaging
procedures are being used to collect data from multiple
modalities. These diverse data need to be integrated, that is,
combined in a way that preserves the structure and meaning
in the data, using computational algorithms. Only then
can they provide a solid basis for further analysis such as
reasoning, simulation, and visualization. In order to contribute
to understanding of the complex pathophysiology of the disease,
the results should be actionable and thus must be interpretable.
Integrative disease modeling, by collecting, integrating,
analyzing, and ultimately interpreting the measurements,
facilitates the understanding of the pathophysiology of complex
diseases like AD (Hampel et al., 2017).

Existing integrative models in the context of AD can be
placed in two primary categories, namely hypothetical models
and data-driven models (Table 1). Hypothetical models are

TABLE 1 | Organization of and references for data-driven integrative AD models.

Data-driven integrative AD models References

Traditional Caroli and Frisoni, 2010; Jack

et al., 2011, 2012

Machine

learning

Generative Fonteijn et al., 2012; Chen et al.,

2016; Khanna et al., 2018;

Oxtoby et al., 2018; Basu et al.,

2019; De Jong et al., 2019;

Gootjes-Dreesbach et al., 2019;

Martinez-Murcia et al., 2019

Discriminative
Supervised Hinrichs et al., 2010; Magnin

et al., 2010; Rao et al., 2011;

Zhang et al., 2011; Da et al.,

2013; Li et al., 2013

Unsupervised Nettiksimmons et al., 2014;

Gamberger et al., 2017; Toschi

et al., 2019

We subdivide data-driven integrative AD models which into two subgroups. While the first

group uses simple statistical approaches (e.g., simple linear models), the second group

uses more advanced techniques (e.g., machine learning). The advanced machine learning

models include generative and discriminative models, the latter of which can be classified

as either supervised or unsupervised models.

non-numerical and rely on reasoning over findings of previously
published studies (Jack et al., 2010), rather than large amounts of
data. By including this prior knowledge, these models try to detail
the temporal changes of AD biomarkers relative to each other as
well as to clinical disease stages and trial endpoints.

By contrast, data-driven integrative models take advantage
of developments in computational approaches and big data.
For the sake of this review, we will distinguish between two
subcategories of data-driven models. The first covers traditional
statistical methods of generally lower complexity, such as linear
models. Often, these models are used to estimate biomarker
trajectories by regressing measured data against a prespecified
dependent variable, such as a clinical readout or the disease
stage (Bateman et al., 2012). The second subtype exploits more
advanced artificial intelligence approaches such as machine
learning. Within this subtype, models can be characterized as
discriminative or generative. Discriminative models are designed
to discriminate between groups (e.g., cases and controls)
and can be further described as supervised or unsupervised,
depending on whether they rely on labeled (Hinrichs et al.,
2011; Da et al., 2013) or unlabeled (Toschi et al., 2019)
data. Generative models contribute to disease understanding by
automatically learning the inherent distribution of a dataset and
its feature interdependencies (Oxtoby et al., 2018). An exemplary
application is the extraction of disease progression signatures as
demonstrated by the ensemble of Bayesian networks developed
by Khanna et al. (2018).

Integrative AD modeling faces many challenges. Hypothetical
models, by their nature, are time-intensive to construct and
require specialist knowledge. Their primary role in AD research
is to provide ideas for future experiments. Likewise in data-
driven modeling, several challenges at each step of the
process (i.e., collection, integration, analysis, and interpretation)
must be addressed. Data missingness and data censoring are
significant bottlenecks in data collection as well as analysis and
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interpretation. Meanwhile, the heterogeneity and complexity of
biological data are major impediments to data integration, which
forms the basis for all data-driven approaches. Furthermore, data
mapping, data labels, and biased data are additional barriers
to robust data analysis and interpretation. Finally, insufficient
numbers of subjects restrict the statistical power of data-driven
integrative AD models. These fundamental challenges explain
why, at this point in time, although many integrative AD models
have been published over the last decade, their impact on clinical
practice is limited.

In this review, we highlight recent advancements and future
possibilities of integrative modeling, discuss the limitations and
challenges involved, and finally, propose avenues to address
several of these challenges, in the context of AD research.

INTEGRATIVE AD MODELS

As already mentioned, integrative AD models can be
characterized as either hypothetical or data-driven, each of
which has strengths and weaknesses. In the following, we
compare different models of each type and discuss their
benefits and limitations. Finally, we elaborate on how associated
limitations and challenges could be handled.

Hypothetical Models
In hypothetical modeling, a model is generated about an object
of study, direct knowledge of which is difficult to obtain.
These models provide hypotheses about the object (Gladun,
1997). In integrative AD modeling, researchers develop so-called
cascade models, in which the measurements of a set of
biomarkers are normalized and their trajectories are plotted on
a common time scale, aligned to disease stages (Jack et al.,
2010, 2013). These models are typically developed by reviewing
the available knowledge and reasoning over observations from
previously published studies. They are not directly informed by
measured data.

One of the first hypothetical integrative AD models was
developed by Jack et al. (2013) [revised from a previous
model (Jack et al., 2010)]. This model hypothesized the
temporal changes of the five most studied biomarkers of
AD pathology in relation to estimated years from expected
symptom onset and in relation to other biomarkers. These
biomarkers are CSF amyloid-beta protein (CSF Aβ1−42) and
tau protein (CSF tau) levels, amyloid-beta PET imaging (PET
Aβ), Fluorodeoxyglucose-PET imaging, and structural MRI
readouts. In this cascade model, the authors presumed that
biomarker trajectories should exhibit a sigmoid-shaped curve.
This imposition is a direct result of the limited sensitivity of
measurements at time extremes, which the authors addressed
by taking the floor of the measurements at early timepoints,
and the ceiling of the measurements at late timepoints. The
authors hypothesized that the two amyloid-beta (Aβ) biomarkers
(i.e., CSF Aβ1−42 and PET Aβ imaging) gradually approach an
abnormal state while the subject remains in a cognitively normal
state. After a lag period, the length of which varies from patient to
patient, and in later disease stages, CSF tau, Fluorodeoxyglucose-
PET, and structural MRI biomarkers follow the same pattern

and begin the transition to an abnormal state. Similarly, Frisoni
et al. (2010) established a theoretical progression of cognitive and
biological markers (primarily imaging features) based not only
on the clinical disease stages, but also patient age at AD diagnosis
and time since diagnosis. Although both models captured earliest
detectable changes in amyloid markers, Frisoni et al. (2010)
additionally theorized that these changes plateau by the MCI
stage, when the individuals are no longer cognitively normal.
Furthermore, they suggested that F-fluorodeoxyglucose PET is
abnormal by the MCI stage and continues to change well into
the dementia stage. Structural changes appear later, following
a temporal pattern mirroring tau pathology deposition, which
slightly differs from the Jack et al. models (Jack et al., 2010,
2013).

While hypothetical models cannot be directly applied, they
can be used to suggest directions for future experiments that
themselves would address diagnosis, prediction, or decision
making tasks (Gladun, 1997). However, there are a number of
challenges relating to the construction of hypothetical models. In
the following, we discuss these challenges and propose ways to
address some of them.

Challenges of Hypothetical Models
The exclusive reliance of hypothetical models on literature
presents several challenges. First, relevant literature must be
identified. Second, the scientific knowledge contained in the
literature must be extracted in a meaningful form. Finally, the
knowledge has to be modeled.

In order to build a hypothetical model, a researcher must
identify a set of relevant publications, called a literature corpus,
which accurately reflects AD knowledge. This corpus should
be representative of the relevant aspects of AD, contain the
most up-to-date publications, and not be biased toward subfields
or trends. However, the number of new AD publications has
increased each year since 2005, and there were nearly 15,000
such publications in 2017 alone (Dong et al., 2019). With
such publication rates, it is challenging for researchers to
manually create high quality corpora (Rodriguez-Esteban, 2015),
Moreover, manual generation of these corpora is susceptible to
bias, because researchers may tend to draw more heavily from
authors or subfields with which they are more familiar (Atkins
et al., 1992). The size of a corpus will also be limited by the
time and resources available to the researchers. However, text
mining has been used effectively to automatically classify relevant
literature, based on titles and abstracts (e.g., see Simon et al.,
2018), and to prioritize texts (Singh et al., 2015). Publications
identified by this classification can be directly taken as the corpus
or used as a more manageable set of publications from which
the domain experts can appropriately select. Hypothetical models
are susceptible to biases present in the literature (Boutron and
Ravaud, 2018), but a well-designed, computationally selected
corpus can mitigate the effects of those biases.

Once the corpus has been identified, the challenge of
knowledge extraction remains. The goal here is to recover the
knowledge contained in the publications in a meaningful way.
Conducting this task manually is a time-consuming process that
requires a high degree of domain knowledge. Here, text mining
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poses the opportunity to extract knowledge in a computable
form (Gyori et al., 2017; Lamurias and Couto, 2019). Moreover,
it significantly reduces the amount of time required to read
publications, which enables significantly larger corpora to be used
in the building of hypothetical models.

Finally, in order to build hypothetical models, the information
gleaned from the literature corpus must be organized in a
coherent way. The entities and the relationships between them
should all be represented. Mind maps provide a non-automated
way of generating a knowledge model, driven by domain-
expert knowledge (Kudelic et al., 2011). However, if automated
information extraction strategies were used on the literature
corpus, then knowledge graphs are well-suited for storing the
extracted knowledge (Gyori et al., 2017). A major advantage
of this strategy is that the knowledge graph is computable,
meaning downstream machine learning tasks can be carried
out for knowledge discovery. Furthermore, knowledge graphs
support hypothesis generation by enabling researchers to assess
whether their hypotheses are compatible with existing knowledge
(Humayun et al., 2019).

Automated methods of corpus identification, knowledge
extraction, and knowledge modeling provide a means of
mitigating the challenges of hypothetical modeling. They reduce
the time burden, mitigate the risk of bias in manual methods, and
generate computable knowledge representations. This can yield
more reliable hypothetical AD models.

Hypothetical models are non-numerical and rely exclusively
on qualitative information, gleaned from a review of previous
findings. This limits their usability solely to eliciting hypotheses
for future experiments. They are neither predictive nor can they
be used for analysis of any kind of data. They are meant to
represent a kind of “typical” AD progression, without reflecting
individual deviations from that. Given the broad biological
heterogeneity observed among AD subjects, and the increasing
relevance of personalized medicine (Reitz, 2016), there is a need
for models that are capable of achieving this.

Data-driven models built on data collected in longitudinal
cohort studies can serve to support or challenge hypotheses
generated by hypothetical models (Petrella et al., 2019). Data-
driven models are appropriate for a wide range of tasks that lie
beyond the scope of what hypothetical models are designed for.
For example, using data models can capture individual subject
particularities that hypothetical models cannot (see e.g., Young
et al., 2015). In the following, we discuss data-driven models and
their challenges in depth.

Data-Driven Models
In contrast to hypothetical models, data-driven integrative
models are directly derived from datasets comprising readouts
of multiple biomarkers. Such models can be applied to a broad
variety of tasks ranging from predictive modeling e.g., predicting
patient diagnosis (Ding et al., 2018) or age at disease onset
(Chuang et al., 2016; Peng et al., 2016) to discovering patterns
in the data that shed light on biomarker interdependencies and
disease underlying mechanisms. Since these models use extensive
data, they are not limited by preconceived notions in the way that
hypothetical integrative models are.

Data-driven AD models can be classified into two
primary subtypes based on the statistical approaches and
algorithms applied (Table 1). The first subtype use traditional
statistical methods such as linear modeling, and the second
employs artificial intelligence and more specifically machine
learning approaches.

Traditional Statistical Models
In AD modeling, traditional statistical approaches, such as linear
mixed-effects models, are often used to estimate biomarker
trajectories (Caroli and Frisoni, 2010; Jack et al., 2011, 2012). In
these models, measured data, are regressed against a prespecified
variable, such as disease stage, to detail the temporal changes
of AD biomarkers during the course of disease. Essentially,
these models provide empirical testing of hypothetical multiple
biomarker trajectory plots.

Jack et al. (2012) used linear mixed-effects models to
investigate the shape of five important AD biomarker trajectories
(i.e., Aβ42, tau, amyloid, fluorodeoxyglucose PET, and structural
MRI) as a function of a cognitive test score, the Mini-Mental
State Exam (MMSE). This model parameterization enabled them
to assess within-subject rates of biomarker changes with respect
to changes of the MMSE score. They found that lower baseline
MMSE scores are correlated with worse baseline biomarker
values and that higher rates of biomarker change were associated
with worsening MMSE score. This model constructed the
biomarker trajectories without making any assumptions about
the shapes of the trajectories. This contrasts with the authors’
earlier hypothetical biomarker cascade model, which imposed a
sigmoid trajectory curve.

While the shapes of the trajectories in this data-driven model
agree with the assumptions made in the hypothetical exemplar,
the model has several limitations, pertaining to model design
choices and deficiencies in the data. The authors chose to use the
MMSE score as the independent variable. This choice was made
because the MMSE score provides a linear measure of disease
progression that was available across all datasets. However, this
introduces challenges in the estimation of trajectories in early
disease stages, because MMSE scores in cognitively normal
patients are relatively stable over time (Tombaugh, 2005),
yielding only a narrow range of values. Moreover, especially when
studying early disease stages, the model additionally suffers from
possible absence of information on future disease developments
of a subject. This absence of data on future disease outcome
is related to data censoring, which will be addressed in more
detail later.

In their data-driven model (Jack et al., 2011), Jack et al.
aimed to unravel the temporal order of biomarker trajectories
becoming abnormal, rather than only describing the shape
of their trajectories. They used the prevalence of biomarker
abnormalities at different disease stages to empirically assess
the temporal ordering of their trajectories. They employed
generalized estimating equations, a generalized linear model for
longitudinal data that can deal with correlated observations, to
evaluate and compare the proportion of abnormal observations
per biomarker. The proper choice of a cut-off defining when
biomarker measures are considered to be abnormal is a point
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of debate and making this choice requires critical judgement.
To differentiate between normal and abnormal biomarkers, Jack
et al. (2011) determined a cut-off by looking at an independent
post-mortem cohort. However, since, by construction, results
were highly sensitive to the selected cut-off for each biomarker,
the temporal resolution of the model is limited.

While the proportion of patients with abnormal biomarker
values might seem an unnatural choice for comparing
biomarkers, alternative strategies also have drawbacks. Caroli
and Frisoni (2010) computed Z-scores based on values of
each biomarker and fitted them against Alzheimer’s Disease
Assessment Scale-Cognitive Subscale (ADAS-cog) scores,
comparing linear and sigmoidal fits. Their investigation showed
that a sigmoid curve fit the observed data significantly better
than a linear one for most of the biomarkers, and thereby might
be able to characterize the time course of those biomarkers.
These results were consistent with the hypothetical model
proposed by Jack et al. (2010) and Jack et al. (2013). However,
the biomarker trajectories cannot be directly compared with the
data-driven model developed by Jack et al. (2011), since different
scales were employed in both studies. While standardization of
values by converting them into Z-scores resolves this problem,
it introduces a new one: by definition, the arithmetic mean of
each biomarker will be 0. This makes it impossible to reasonably
compare biomarker distributions based on their means using
standard statistical procedures like, for example, t-tests (Jack
et al., 2011; Moeller, 2015).

The arbitrariness of defining a cut-off for abnormality
of a biomarker will always pose a limitation on statistical
approaches relying on biomarkers. While such cut-offs simplify
the interpretation of the biomarker, there is no universally correct
cut-off for a given biomarker. Rather, appropriate cut-offs heavily
depend on the population, and even the individual, on which
a biomarker will be used. Covariates such as an individual’s
age, genetic risk factors, and family history of AD must be
considered. For these reasons, there is no single optimal cut-
off for any given biomarker (Bartlett et al., 2012; Anne and
Fagan, 2014). To address this, a less rigid technique has been
developed, that designates an intermediate range using two cut-
offs, one permissive and the other conservative (Klunk et al.,
2012; Jack et al., 2016a,b; Bzdok, 2017). The permissive point
can be used for earliest detectable evidence of AD pathologic
changes and the conservative one for high diagnostic certainty.
Moreover, different statistical approaches, like Youden’s index
and the receiver operating characteristic (ROC) curve, can be
applied to help determine an appropriate cut-off.

Linear traditional models are ill-equipped to handle the
increasingly high-dimensional data being collected in AD
studies. Thanks to recent technological advancements, the
granularity of AD datasets with respect to information resolution,
feature size, and complexity of meta-information have increased.
For example, improved neuro-imaging techniques generate
datasets with higher resolution than previously available. This
information distributed over voxels, a 3D imaging unit, is hard
to capture using linear models (Bzdok, 2017). Therefore, more
advanced data-driven models have been developed based on
machine learning. These models are generally more flexible and

compatible with the complex datasets encountered in biology
research (Bzdok, 2017).

Machine Learning Models
Machine learning models can be characterized as generative
or discriminative. As previously mentioned, discriminative
models are designed to differentiate between groups, while
generative models provide better disease understanding
by learning inherent properties from datasets, such as
feature interdependencies.

Generative models
Generative modeling relies on the use of statistics and probability
to extract patterns from data and learn the underlying
distribution. In the following, three types of generative
integrative AD models are reviewed: event-based models,
Bayesian network learning, and autoencoders.

Event-based models. Event-based models estimate the most
probable sequence of events based on the assessment of a
probability density function for a particular event order. Fonteijn
et al. (2012), Chen et al. (2016), and Oxtoby et al. (2018), used this
method to learn the sequence of AD events based on imaging and
non-imaging measurements from a clinical study. The authors
first fitted simple mixture models (e.g., gaussian mixture models)
to individual biomarkers in order to calculate the likelihood of
the normality or abnormality status per biomarker. Given these
likelihoods, by multiplication of the probabilities, the likelihoods
for each possible order of events was calculated. The order
with the highest probability was then selected using a greedy
Markov Chain Monte Carlo algorithm to describe the temporal
correlation of the biomarker trajectories over the course of
AD progression.

The models developed by Fonteijn et al. (2012) and
Chen et al. (2016) simplified the sequence of biomarker
abnormalities over the course of the disease progression by
relying on the assumption that all subjects follow a single
event sequence. However, AD is highly heterogeneous and
includes distinct subgroups (Ferreira et al., 2018). To account
for this, Young et al. (2015) established their event-based
models with two extensions: a Mallows model and a Dirichlet
process mixture of generalized Mallows models. The first
extension allows subjects to deviate from the main event
sequence, and the latter clusters subjects according to different
event sequences.

In principle, the event sequence proposed in the hypothetical
model is similar to that observed using traditional and event-
based models. Changes in CSF measures are the earliest events,
followed by regional brain atrophies and finally succeeded by
diminished cognitive scores. However, the event sequence in
the hypothetical and traditional models is constructed based on
predefined clinical assessments and often imprecise or subjective
cut-offs. By contrast, in generative models, the sequence of
events, as well as the clustering of biomarkers into normal and
abnormal classes, is directly extracted from the data (e.g., the
onset of a new symptom, like memory performance decline).
Thus, event-based models explain the changes without a priori
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biases. Moreover, generative models are able to characterize
uncertainty in the event ordering arising from heterogeneity in
the population and thus, can address individual deviations from
the generic model.

Bayesian network learning. Extensive research efforts have
been made to uncover the relationships between individual
biomarkers and AD. Yet the number of studies that investigated
the interplay between multiple biomarkers themselves is
comparably limited. Khanna et al. (2018) and Ding et al. (2018)
built Bayesian network models covering different biological
scales and time points to uncover the interplay amongst sets
of biomarkers. Ding et al. (2018) considered the ApoE allele,
PET and MRI imaging data, scores from psychological and
functional tests, and the medical history of patients with respect
to neurological diseases. Using a variety of feature selection
metrics, they determined the most relevant features with respect
to the clinical dementia rating and modeled these heterogeneous
measurements using a Bayesian network to determine their
probabilistic interdependencies. However, these models only
capture conditional probabilities between predictor variables
and clinical outcomes. They are unable to provide a causal
mechanistic understanding of an observed phenomenon. Such
hypothesized pathophysiological mechanisms are important
for making reliable predictions and having confidence in
the practical application of data-driven models. To this end,
Khanna et al. (2018) employed a combination of data-driven
probabilistic and knowledge-driven mechanistic approaches.
They modeled clinical variables, genetic variants, pathways,
and neuro-imaging readouts using Bayesian network learning
to estimate dependencies between disease relevant features.
Together with a cause-and-effect knowledge model derived
from scientific literature, they partially reconstructed biological
mechanisms that could play a role in the conversion of
normal/MCI into AD pathology.

Autoencoders. The last type of generative model discussed in
this review is autoencoders. In essence, an autoencoder is a
neural network that aims to encode the input data into a
lower dimensional representation and from that decode it again,
reconstructing the original input. It has successfully been applied
for different tasks on AD cohorts (Basu et al., 2019; Martinez-
Murcia et al., 2019). The two main applications of this approach
in the field consist of classifying patients based on AD diagnosis
(Basu et al., 2019) and clustering of patient trajectories into
subgroups (De Jong et al., 2019). These strategies are especially
interesting for patient classification and stratification tasks in
datasets where information is sparse. However, another novel and
promising task for autoencoders is the generation of synthetic
data from real patient level data (Gootjes-Dreesbach et al., 2019).
This, in turn, could be used to circumvent legal and ethical
constraints that restrict data sharing.

Discriminative models
Discriminative models are a class of models generally used for
classification. Discriminative models that rely on labeled data

are called supervised models, while unsupervised models use
unlabeled data.

Supervised discriminative models. Diverse supervised
discriminative methods such as support vector machines
(SVM; Magnin et al., 2010), and multiple-kernel SVM (MKL;
Hinrichs et al., 2010; Zhang et al., 2011) have been used to classify
AD patients, MCI subjects, and controls. However, studies that
used multiple-kernel SVM reported superior classification
performance, because the use of multiple kernels facilitates
the integration of multimodal biomarker data (Zhang et al.,
2011). Additionally, MKL are well-suited for dealing with very
high dimensional data (Young et al., 2013). MKL also enable
individual weighting of biomarker modalities. This offers more
flexibility for kernel combination and thus, a better integration
of the data. For example Hinrichs et al. (2010), applied MKL
in combination with MRI and PET imaging to differentiate
between AD subjects and controls. Their method showed high
classification performance, achieving 92.4% accuracy. Similarly,
Zhang et al. (2018) combined MRI, PET, and CSF biomarkers
to discriminate between healthy controls and AD/MCI. After
integrating all biomarker data using a MKL, they deployed a
linear SVM for the actual classification task, which resulted in
93.2% accuracy for classifying AD and healthy controls and
76.4% for discriminating between MCI and healthy controls.
Both studies applied a similar method for classification, yet the
latter one achieved a slightly higher accuracy. Comparing the
approaches applied in Zhang et al. (2018) and Hinrichs et al.
(2010) it becomes clear that the major reason for the difference
in performance is the feature selection process. Depending on
the available sample size, other methods might prove more
promising (Liu et al., 2012). Moreover, Zhang et al. (2018)
benefits from employing three biomarker modalities, namely,
CSF measurements and two imaging modalities, compared to
Hinrichs et al. (2010) who only use the two imaging modalities.

While the above kernel-based pattern recognition approaches
yield categorical class decisions, Young et al. (2013) used
gaussian process classification, which is a probabilistic
classification algorithm. This study integrated imaging, CSF,
neuropsychological, and genetic biomarkers to classify MCI
subjects who remained stable and MCI patients who converted
to AD within 3 years. In contrast to MKL, the probabilistic
classification afforded by the gaussian process approach provides
the opportunity to position the subjects according to disease
stage, to stratify patients, and to model the sequence order of
biomarker abnormality.

Another type of discriminative model is disease risk models.
This type of supervised model can be used to predict the time
to AD diagnosis for normal/MCI patients. Multiple approaches
have been used to develop risk models for AD (Da et al.,
2013; Li et al., 2013). Li et al. (2013) used a combination of
cox regression analyses and time-dependent ROC approaches to
evaluate prognostic utility and performance stability of candidate
biomarkers. The authors deduced that both baseline volumetric
MRI and cognitive measures can predict progression from MCI
to AD. However, in participants’ follow-up visits, only cognitive
measurements remained predictive. Da et al. (2013) employed
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the cox proportional hazards models to compare the magnitudes
of the relative association between predictors (patterns of brain
atrophy, cognitive assessments, genetics, and CSF biomarkers)
and time to conversion from MCI to AD. They concluded that
brain atrophy and cognitive assessments in combination offer the
highest predictive power of conversion fromMCI to AD.

Although the results in both studies were similar, the time-
dependent ROC curve used by Li et al. (2013) enabled them
to predict disease risk as a function of time. Thus, this method
provides clear benefit for a progressive disease such as AD,
in which both the disease status and biomarker measurements
change over time (Kamarudin et al., 2017).

The data labeling which enables supervised discriminative
models to determine decision boundaries for distinguishing
classes of interest can also introduce errors. Inaccurate labels
will negatively affect the performance of the classifier. Such
mislabeling is not uncommon in AD, due to the absence of
a clear diagnostic biomarker (Fischer et al., 2017). Instead,
diagnosis is currently made based on symptoms (Schott and
Petersen, 2015) Furthermore, integrative data analysis is further
complicated by the fact that the diagnostic criteria for MCI have
changed over the years, and MCI is not consistently defined
across clinical studies. While one study relies on assessing only
a single cognitive domain for MCI diagnosis, such as speech
or memory, others base their diagnoses on performance on
cognitive tests for multiple domains. Apart from that, there
are multiple pathologies for MCI; AD is just one of them.
Thus, unified clear disease definitions are crucial, since the MCI
classification accuracy can influence outcomes of research and
clinical practice (Jak et al., 2010).

Unsupervised Discriminative Models. Unsupervised
discriminative models use a variety of clustering techniques
on unlabeled data, avoiding the challenges of data label
accuracy. These techniques use properties of each data point
to iteratively form groups, called clusters. This ultimately leads
to a discrimination of the data into several clusters of highly
similar data points. Given the observed biological heterogeneity
among normal control subjects, Nettiksimmons et al. (2014)
hypothesized that different subgroups may also be found among
the MCI subjects. Using agglomerative hierarchical clustering,
they sorted subjects based on MRI volumes, CSF measurements,
and cognitive tests. Next, the resulting clusters were explored
with regard to longitudinal atrophy, conversion time, and
cognitive trajectories. Four clusters with unique biomarker
patterns resulted: (i) a cluster biologically similar to normal
controls. MCI patients from that cluster rarely converted to AD,
(ii) one cluster with early AD pathology characteristics, (iii)
another cluster of subjects with hardly any tau abnormality,
but a high proportion of AD converters, and (iv) and finally
one cluster with pre-AD symptoms wherein almost all subjects
converted to AD. Based on these findings, they hypothesized
that clusters ii and iv reflected the amyloid cascade pattern
(Ricciarelli and Fedele, 2017) since both clusters presented lower
CSF Aβ levels and elevated tau proteins. However, the tau level
in cluster iv was higher, and more severe atrophy as well as
cognitive impairment were detected. The authors concluded that

more tau accumulation may lead to more cognitive decline. One
of the intrinsic limitations of their clustering approach is that
the number of clusters must be predefined. The maximum gap
statistic is one approach to determine this number (Tibshirani
et al., 2001). However, specifying the number of clusters
beforehand will always bias the clustering to some extent, and
choosing a reasonable number is no trivial task given the broad
variety of subtypes found among AD subjects.

Toschi et al. (2019) used Density-Based Spatial Clustering of
Applications with Noise (DBSCAN; Thanh et al., 2013), which
does not require pre-specifying the number of clusters. They
integrated five validated CSF biomarkers in order to cluster a
cohort where symptomatic patients presented diagnoses ranging
from self-perceived cognitive decline (Zhang et al., 2011) to MCI
to AD. In contrast to the previous study, Toschi et al. (2019)
adjusted all biomarker values for age, sex and their interactions
to exclude them as confounders (Pourhoseingholi et al., 2012).
Moreover, Toschi et al. (2019) used t-Distributed Stochastic
Neighbor Embedding (t-SNE) to reduce the dimensionality of
biomarkers space, since defining the distance between the data
points in a high dimensional space of biomarkers is notoriously
difficult (Domingos, 2012). Finally, they applied DBSCANon this
lower dimensional representation. DBSCAN defines a high data
density region based on two parameters: (i) the radius of the
neighborhood, and (ii) the minimum number of points within
the radius. These values are determined by a nearest neighbor
method, in which the distance of each point to their nearest n
points is calculated. Afterwards, results are sorted, plotted and
the value with most pronounced change is selected as the optimal
value. Using DBSCAN, Toschi et al. (2019) characterized five
biological clusters which were not significantly bound to the
original distinct clinically phenotyped diagnostic groups. They
explained that the clusters included all phenotypic groups and
were not homogeneous enough to be considered as a specific
AD pathophysiology. Moreover, contrary to general belief that
Aβ1−42 is linearly associated with the progression of AD and
cognitive decline (Sperling et al., 2011a; Samtani et al., 2013),
their findings suggest that Aβ1−42 is less likely to contribute to
phenotypic discrimination.

The dimensionality reduction technique, t-SNE, used by
Toschi et al. (2019) enabled them to better separate the data and
hence, to enhance cluster identification, in comparison to directly
running a clustering algorithm on a high dimensional data as
Nettiksimmons et al. (2014). However, their main limitation is
that clustering results are highly sensitive to two parameters
necessary for DBSCAN. Moreover, they did not include other
biomarkers, such as imaging and genetics biomarkers, which
could enhance their clustering, as previously reported by Young
et al. (2013, 2018).

Unsupervised clustering algorithms are ideal for identifying
subgroups and non-linear associations between individuals based
on a multidimensional profile, regardless of the individual
labels, in contrast to supervised algorithms. This allows the
grouping of individuals based on shared pathophysiological
drivers and triggers and, possibly, similar longitudinal disease
trajectories. This is an advantage in the AD field due to the
prevalence of unreliable labels stemming from misdiagnosis
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and to the biological heterogeneity of AD subjects. On the
other hand, most unsupervised clustering algorithms perform
better with a larger sample size than is often obtainable in
AD studies (Oxtoby and Alexander, 2017). Therefore, the smaller
size inherent to AD cohorts may lead to clustering instability.

To this point, we have reviewed a broad variety of data-driven
integrative AD models and elaborated on their associated
limitations and challenges. In the following, we enumerate
more general challenges researchers encounter in the course
of data-driven integrative AD modeling and suggest how these
could be addressed.

Challenges of Data-Driven Modeling
Although there exists a wide range of data-driven integrative
modeling approaches, not all of them are well-suited for every
analytic task and each has its own strengths and weaknesses. Still,
there are some challenges which affect all data-driven approaches
to some degree: data collection, reproducibility of findings, and
interpretability of models and results.

Data Collection
Collecting patient level data, the basis for all data-driven
modeling, is a time-consuming and costly process. Additionally,
it is a source of major challenges and limitations of these
models. In particular, data “censoring” and “missingness,” can
impede modeling, bias models, or even make certain modeling
techniques unfeasible.

Data censoring describes the condition in which a particular
event (here AD diagnosis) is not observed for certain study
participants during the study runtime. This censoring can occur
in two ways: if AD diagnosis occurred before the start of
the study; or if the patient drops out of the study, or the
study ends without occurrence of the AD diagnosis event.
A significant number of patients enrolled in clinical studies
have already received a diagnosis before the beginning of the
study, indicating that they are in a progressed stage of the
disease (Ellis et al., 2009). It is therefore not possible to obtain
indications of early disease onset in such patients. The second
form of censoring arises from two sources. First, all observational
cohort studies experience participant dropout for a variety of
reasons, including the participation burden on caregivers or
medical problems (Coley et al., 2008). Second, subjects that
remain healthy throughout study runtime could still develop
the disease after the study ended, meaning they were in a
prodromal disease stage. It is thus impossible to know if or
when the patient would eventually receive an AD diagnosis.
This form of censoring is common in longitudinal AD studies,
because AD is a slow-progressing disease, while the studies are
typically quite short (Lawrence et al., 2017), due to limited
funding (Prabhakaran and Bakshi, 2018).

Disease onset is a critical point for clinical intervention
(Sperling et al., 2011b), so it is subject to extensive research
efforts. It is here, however, where data censoring impedes data
analysis the most. Data censoring can result in over- or under-
sampling of early and advanced disease stages. This, in turn,
leads to models biased toward specific disease stages (Ning et al.,
2010). Various methods, such as complete data analysis (Xiang

et al., 2013), imputation (Fisher et al., 2019), or analysis based on
dichotomized data (Donohue et al., 2011), have been established
to address censored data. Yet all of these methods may introduce
error and impose complexities and biases on other integrative
modeling steps, such as model interpretation, and thus need to
be used with care (Prinja et al., 2010).

The complete absence of a value for variables in the
observation of interest likewise poses a significant challenge to
data-driven modeling. This missing data in AD cohort studies
occurs for several reasons, including unwillingness of patients
to undergo invasive tests like lumbar punctures, and the high
cost of measuring a particular variable, such as imaging scans
(Engelborghs et al., 2017). The implications of such a scenario
include a loss of statistical power of the study and may bias the
conclusions that can be drawn (Hughes et al., 2019). Over the
past decades, novel statistical methods (Molenberghs et al., 2014)
and software (Quartagno and Carpenter, 2016;Moreno-Betancur
et al., 2017) have been developed for analyzing data with missing
values. However, analysis restricted to individuals with complete
data is generally preferred, if feasible.

Despite the challenges in collecting complete and uncensored
data, the value of data in strengthening disease understanding is
clear. Several large-scale AD patient datasets have been collected
for use in a variety of studies (Lawrence et al., 2017) including, for
example, Alzheimer’s Disease Neuroimaging Initiative (ADNI;
Mueller et al., 2005), Australian Imaging Biomarkers and
Lifestyle Study of Aging (AIBL; Ellis et al., 2009), the Dominantly
Inherited Alzheimer Network (DIAN; Moulder et al., 2013), and
European Prevention of Alzheimer’s Dementia (EPAD; Vermunt
et al., 2018). However, these classical observational studies are
subject to bias, resulting from the inclusion and exclusion criteria
used to select participants (Miksad and Abernethy, 2018).

The use of electronic medical records (EMRs) has been
proposed as a potential solution to reduce the bias of classical
clinical trials. They provide an alternative view on patient
measurements (Fröhlich et al., 2018), so, a collection of EMRs
can provide amore representative view on patientmeasurements.
However, EMRs are largely phenotypic: molecular phenomena
such as genomic variants are not reflected in the data. Moreover,
extracting information from EMRs requires natural language
preprocessing, which itself currently remains a difficult and
error-prone process.

Reproducibility
The ability to reproduce the findings of a study using different
subjects is an important part of scientific research. This is
particularly the case in integrative AD modeling, since the
tendency of AD datasets is not to fully reflect the diversity of
AD patients. Inclusion-exclusion criteria in clinical studies can
lead to significant under-representation of some populations. For
example, the landscape of data-driven AD models is currently
dominated by only a few cohorts which are made up largely
of White Caucasians, and, to a lesser extent, are constrained
by geographic location (Lawrence et al., 2017). Since most
observational cohorts are not representative of the general AD
population (Ferreira et al., 2017), it is important to validate the
resulting models with an independent cohort study. While this
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external validation is a necessary step to corroborate findings, it
is complicated by data interoperability and sample size.

Interoperability
The ability to map the data coming from one study to
data from another study is known as data interoperability5.
Each of the major AD clinical studies was established with a
specific sample and feature characterization. Since they might
not be directly interoperable, extensive curation is needed
before the external validation of a model can be carried out.
Otherwise, the training cohort and the validation cohort would
be based on different populations, and would contain different
measurements. Thus, before validation, researchers must map
and assess the “comparability” of both features and subjects.

Feature mapping requires specifying relationships between
data elements from different data models and standardizing the
terms used to represent the features in the two datasets. This
is due to the fact that controlled vocabularies are not used to
annotate the datasets. Thus, even if the same biomarker has been
collected in two studies, it is usually referred to by different terms,
impeding a direct comparison of the datasets. For example,
the hippocampus is one of the earliest sites of AD pathology,
and hippocampal volume is measured in ADNI and EPAD.
However, ADNI identifies this biomarker as “Hippocampus,”
while EPAD refers to it as “lhvr” (right hemisphere) and “lhvl”
(left hemisphere).

Moreover, the subject populations in each study must be
comparable. For instance, if the biological sex distributions in
twoAD studies differ significantly, then the cognitive impairment
scores of the cohorts cannot be directly compared, because
female AD patients have been shown to have greater cognitive
impairment than men in comparable stages of the disease
(Laws et al., 2016).

There are several strategies to overcome the lack of
interoperability between datasets at both feature and subject level.
At the feature level, interoperability can be attained by annotating
datasets according to a standard controlled vocabulary. Several
such vocabularies (e.g., NIFT Iyappan et al., 2017 and PTS
Iyappan et al., 2016) have been established, but significant
improvements in interoperability will only comewith widespread
adoption (Neu et al., 2012). The most prominent example might
be the AD specific standard developed by the Clinical Data
Interchange Standards Consortium (CDISC; Neville et al., 2017).
At the subject level, mapping between training and validation
cohorts can be accomplished by identifying, in the validation
cohort, a subset of subjects that is statistically comparable to
the training cohort. Finally, in order to assess the comparability
of subjects from different studies, techniques such as statistical
matching can be used (Austin, 2011).

Sample size
The relatively small sample sizes of AD clinical studies also
contributes to the challenge of reproducibility in AD integrative
modeling. Many AD studies contain fewer than a thousand
patients, and the longitudinal follow-up is limited. In addition,

5https://library.ahima.org/doc?oid=65895#.Xdl-iZPYrOQ

typically not all of the subjects were screened for the complete
biomarker set, leading to sparse subsets of patients for whom
the study contains complete data. As a result, models generated
from these studies have a high margin of error and low statistical
power, meaning they struggle to detect small effects.

The integration of different datasets into a larger dataset
can overcome some of the challenges related to small sample
sizes (Gomez-Cabrero et al., 2014). Integrated datasets provide
more comprehensive data, and the resulting models have
greater statistical power. However, current approaches for data
integration were developed for the analysis of single-data-type
datasets, and only subsequently adapted to handle datasets
with multiple data types. For this reason, data integration
methodologies can be ill-suited to manage the computational
challenges arising from the variety of different data sizes, formats,
and dimensionalities present in AD datasets, as well as their
noisiness, complexity, and the level of agreement between
datasets (Gomez-Cabrero et al., 2014; Gligorijević et al., 2015).
Furthermore, even data acquired by analogous technologies
are not necessarily integrable. For example, neuroimaging data
acquired from similar scanners and similar modalities may still
be stored in different formats and have differentmetadata content
(Goble and Stevens, 2008).

Several strategies could be applied to address the
interoperability challenges arising from data integration.
The first strategy is to normalize and standardize data across
all platforms (O’Bryant et al., 2015). However, scientific
independency and freedom for innovation, as well as uniqueness
of databases, must be respected. The second strategy is to
collect a standardized set of biomarkers across different studies.
Finally, the ideal solution would be performing a systematic
longitudinal clinical and -omics follow-up of each individual
in a large and rigorously characterized cohort since this would
provide a statistically sufficient number of measurements in
the context of subjects and variables. The Deep and Frequent
Phenotyping study from Lawson et al. (2017) showed that such
a cohort, in theory, is feasible. Yet, including a sufficient number
of participants in such an ambitious study is costly.

Interpretability
In order for an AD model to have clinical impact, its findings
must be interpretable. There are several barriers to AD model
interpretability. Machine learning models often act as “black
boxes”; it may be impossible to uncover the reasons for the
predictions made by the model (Rudin, 2019). Indeed, as the
number of features and the complexity of the computational
processes used in models increases, this interpretability problem
will worsen. Moreover, data-driven models are not causal and
typically capture non-linear correlations between predictor and
explanatory variables. While prior understanding of cause–effect
relationships and detailed mechanisms might prove helpful to
well-performing models, it is not necessarily required. Lack of
mechanistic explanations for model prediction complicates the
interpretation of data-driven findings and reduces acceptance by
physicians (Fröhlich et al., 2018). Thus, the translation of data-
driven models into a biomedical knowledge context is a major
challenge in integrative AD modeling.
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Combining available mechanistic knowledge with machine
learning-based sub-models, so-called hybrid modeling
could bridge the gap between experimental biological and
computational research by improving interpretability (Fröhlich
et al., 2018). For example, Bayesian networks which built
on causal knowledge graphs constitute such a hybrid model
(Arora et al., 2019). They shed light on interdependencies
across features, which can be on different scales (e.g., clinical,
genetic, and molecular), and allow for predicting the outcome of
purely hypothetical clinical interventions. Similarly, other recent
deep learning methodologies use knowledge-derived biological
networks to define the layers of neural networks in order to
improve interpretability (Fortelny and Bock, 2019).

CONCLUSION

In the era of extensive biomarker profiling, big data, and artificial
intelligence, integrative AD modeling comes with high promises.
By integrating multi-scale, multimodal, and longitudinal patient
data, such modeling approaches aim to provide a holistic picture
of disease pathophysiology and progression. However, as we
have discussed in this review, while integrative models have
generated significant insights, and thus proved to be valuable
in research, existing models do not yet fully describe critical
aspects of AD.

The construction of hypothetical models simultaneously
benefits and suffers from the vast amount of published
knowledge. Prioritization of articles and computational text
mining of literature corpora are reasonable approaches to
identify a greater quantity of relevant knowledge while designing
hypothetical models. In the field of data-driven integrative
AD modeling, we highlighted several major ongoing challenges
throughout the whole modeling process of data collection,
integration of disparate data sources, data analysis, and
model interpretation. Data missingness and data censoring are
major bottlenecks in data collection as well as analysis and
interpretation. Heterogeneity and complexity in biological data
are major impediments to data integration, which is central to
data-driven integrative modeling and validation. Data mapping,

imprecise diagnostic stages, and biased data are barriers that
hamper data analysis and interpretation. Furthermore, there is

an insufficient number of subjects in studies, which restricts the
statistical power of data-driven integrative AD models. Because
of these challenges, to the best of our knowledge, at this point in
time, there are no integrative AD models which have been used
in clinical practice.

While in theory, certain existing integrative models are
capable of predicting AD diagnosis and progression, they are
not used in clinical practice. We see a number of steps
that could bring us closer to the goal of precision medicine
and that could enable patient diagnosis through integrative
disease models in a clinical context. First, we, the AD research
community, need to establish valid, informative biomarkers and
clear criteria for AD diagnosis. This would result in reliable
predictors that could be included in modeling approaches,
as well as fewer diagnostic errors, which in turn reduce the
effect of mislabeled data. Second, a global data schema that
could support the normalization and standardization of data
across measurements would ultimately facilitate improved data
integration. If future cohort studies would adhere to such a
schema, data integration would be straightforward and the
cumulative time saved for researchers working with it would
be enormous. Finally, innovative modeling approaches, such
as causal inference techniques and hybrid modeling, which
go beyond current state-of-the-art data-driven models by
linking prior knowledge with data-driven models, need to be
developed and made more robust. Overall, novel computational
modeling approaches that surmount the current integrative
AD modeling challenges may hold the potential to play
an increasing role in the planning of medical interventions
and practice.
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