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To ward off against the catastrophic consequences of persistent DNA double-strand
breaks (DSBs), eukaryotic cells have developed a set of complex signaling networks
that detect these DNA lesions, orchestrate cell cycle checkpoints and ultimately lead to
their repair. Collectively, these signaling networks comprise the DNA damage response
(DDR). The current knowledge of the molecular determinants and mechanistic details of
the DDR owes greatly to the continuous development of ground-breaking experimental
tools that couple the controlled induction of DSBs at distinct genomic positions with
assays and reporters to investigate DNA repair pathways, their impact on other DNA-
templated processes and the specific contribution of the chromatin environment. In
this review, we present these tools, discuss their pros and cons and illustrate their
contribution to our current understanding of the DDR.

Keywords: DNA repair, homologous recombination (HR), non-homologous DNA end joining, chromatin, DNA
damage

DNA DOUBLE-STRAND BREAK DETECTION, SIGNALING AND
REPAIR

DNA double-strand breaks (DSBs) are the most cytotoxic DNA lesions. Their detection, signaling,
and repair require a comprehensive cellular response collectively known as the DNA damage
response (DDR). The DDR requires the activation of the ATM kinase, a member of the
phosphoinositide 3-kinase (PI3K)-related protein kinase family (Blackford and Jackson, 2017),
which is rapidly recruited to chromatin in response to DSBs through the interaction with the
MRE11-RAD50-NBS1 (MRN) complex (van den Bosch et al., 2003). This recruitment triggers the
phosphorylation of a large number of substrates to initiate a signaling cascade that activates cell
cycle checkpoints and promotes the recruitment of repair factors to the damage site. One of the
substrates of ATM kinase activity is the serine 139 of the carboxyl terminus of the histone variant
H2AX, which in its phosphorylated version is referred to as γH2AX (Burma et al., 2001). Once
established, γH2AX promotes the recruitment of additional ATM molecules and the sequential
accumulation of other DDR proteins, creating a positive feedback loop that fuels further spreading
of γH2AX (van Attikum and Gasser, 2009; Polo and Jackson, 2011; Shi and Oberdoerffer, 2012).

DNA double-strand breaks repair can be achieved by different means that are commonly
grouped in two broad categories depending on the use or not of a homologous DNA sequence
as a template. Repair by non-homologous end joining (NHEJ) involves direct resealing of the two
broken ends independently of sequence homology. Although being active throughout the cell cycle,
NHEJ is relatively more important during G1 (Chang et al., 2017). A scheme showing the most
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important steps of NHEJ is shown in Figure 1; Chang et al., 2017).
NHEJ represents the simplest and fastest mechanism to heal a
DSB, thus it is the most predominant DSB repair pathway within
the majority of mammalian cells, even though it may occasionally
lead to loss of genetic information (Chang et al., 2017).

In contrast to NHEJ, homologous recombination (HR)
requires a homologous DNA sequence to serve as a template for
DNA-synthesis-dependent repair and involves extensive DNA-
end processing (Huertas, 2010). As expected, HR is extremely
accurate, as it leads to precise repair of the damaged locus
using DNA sequences homologous to the broken ends. HR
predominantly uses the sister chromatid as a template for
DSB repair, rather than the homologous chromosome (Johnson,
2000). This tight regulation is ensured thanks to both a
strong inhibition of HR during G1 when a sister chromatid
is absent (Hustedt and Durocher, 2016), but also thanks to
the nature of the newly replicated chromatin, which favors
HR (Saredi et al., 2016; Pellegrino et al., 2017; Nakamura
et al., 2019). The key first step in HR, determinant for
DSB pathway choice, is 5′ to 3′ resection: the processing of
the 5′ DNA strand at the DSB by multiple nucleases and
accessory proteins, resulting in 3′ single-stranded DNA (ssDNA)
(Huertas, 2010; Symington, 2014). The 3′ ssDNA stretches
created during resection are used for template search and
recombination (Figure 1).

As described above, both HR and NHEJ safeguard genome
integrity and proceed through a cascade of events whereby
DNA damage sensors, transducers, and effectors detect and
rejoin the broken DNA ends (Harper and Elledge, 2007). All
these events take place within the chromatin environment,
which is the actual substrate for the repair machinery. While
the past 50 years have seen a mounting understanding
of the DDR pathways, the contribution of the chromatin
environment and nuclear organization to genome stability,
particularly how it is organized upon the interplay between
the DDR and the other cellular processes, has only begun
to emerge over the past decade. Chromatin is modified in
cis to the DSB and this break-induced chromatin landscape
contributes to recruiting DNA repair factors, thanks to
interactions between histone modifications and their readers
(e.g., 53BP1 interacts with nucleosomes bearing H2AK15ub and
H4K20me2). In addition, during DSB repair, the destabilization
of nucleosomes further enhances accessibility and regulate the
mobility of the broken DNA ends (Clouaire and Legube, 2019).
Moreover, the original chromatin landscape of the damaged
locus also contributes to the decision between DSB repair
pathways (Clouaire and Legube, 2015; Fortuny and Polo, 2018;
Bartke and Groth, 2019).

Most of our ever-growing knowledge of the DDR and, in
particular, the DSB repair mechanisms has been possible due
to a set of techniques that have allowed us to create DSBs in
a programed manner. In this review we are coming back on
those methodologies that have recently fostered our capacity
to accurately study the full complexity of repair mechanisms,
allowing us to consider the genomic position of the DSB and the
contribution of chromatin, as well as their crosstalk with other
DNA-templated processes.

INDUCING DSBS AT RANDOM
LOCATIONS

Historically, the study of the DDR relied mostly on the
artificial induction of DSBs by either chemical or physical agents
stochastically throughout the genome. The genomic location of
these DSBs is not homogenous in the cell population and is poorly
controlled. Importantly, the number of breaks can be modulated
by adjusting either the dose or the duration of the treatments.
Moreover, the stochastic induction of DSBs is usually very fast,
requiring seconds or a few minutes, facilitating downstream
kinetic studies.

Ionizing Radiation-Induced Breaks
The exposure of cells to a source of ionizing radiation (IR)
causes the appearance of a plethora of different genomic lesions
(Kavanagh et al., 2013). They can arise from the radiation
directly hitting the DNA, or indirectly by the effect of radiation-
induced reactive species resulting from the ionization of several
molecules, including water (Figure 2). The source of the DNA
lesions depends on the type of radiation. For example, X-rays
induce DNA damage mainly through indirect effects, whereas
heavy particles, such as protons, interact more directly with the
DNA backbone. Importantly, radiation creates many types of
damage on the DNA, including all kinds of base modifications,
loss of bases, single-strand breaks (SSBs) or DSBs. Indeed, it
has been estimated that IR produces ten times more SSBs
than DSBs (Ma et al., 2012). The degree of heterogeneity
of the lesions created by IR also depends on the nature of
the radiation, mostly on its LET (linear energy transfer: the
amount of energy that the particle transfers to the medium
along its trajectory per distance unit) (Zirkle and Tobias, 1953).
In any case, all different types of DNA damage are quickly
repaired, except for DNA breaks. DSBs formed upon ionizing
radiation exposure are normally clustered SSBs, i.e., usually
formed when two DNA lesions appear in opposite strands in
close proximity (<10 bp) (Milligan et al., 1995). The broken DNA
ends produced by radiation usually show chemical alterations,
being considered “dirty” ends (Weinfeld and Soderlind, 1991).
While IR induces breaks stochastically all over the genome,
the randomness also depends on the LET of the radiation.
Indeed, high LET particles tend to produce clusters of DSBs
in close proximity (Löbrich et al., 1996; Newman et al., 1997).
Additionally, high LET radiation seems to induce DSBs less
randomly than photons in high-order chromatin structures
(Radulescu et al., 2006).

Of interest, upon DSB induction following exposure to
radiation, many DDR factors tend to accumulate temporarily at
sites of DNA damage, forming the so-called Ionizing Radiation-
Induced Foci (IRIF) (Ciccia and Elledge, 2010; Polo and
Jackson, 2011). Importantly, some of these, including γH2AX,
can spread over megabases along the DNA flanking the break
(Iacovoni et al., 2010). If combined with the use of specific
antibodies or fluorescent tagged-versions, this strong regional
concentration allows for the visualization of IRIF under a
fluorescent microscope (Figure 2). Hence IRIF formation has
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FIGURE 1 | Pathways for DSB repair. The main steps of non-homologous end joining and homologous recombination repair mechanisms are represented.
Homologous recombination can proceed through distinct pathways (holiday junction resolution, synthesis-dependent strand annealing (SDSA), break-induced
replication (BIR) and holiday junction dissolution) all sharing identical initial steps. The cell cycle is a major determinant of the choice between the DSB repair
mechanisms. While NHEJ is available throughout interphase, homologous recombination pathways are restricted to S/G2 phases of the cell cycle.

been and still is, one of the easiest and most used tools to study the
recruitment of DNA repair factors during the DDR. Additionally,
since some of them, such as γH2AX foci, appear specifically in
response to a DNA lesion and disappear when the repair process
has been completed, clearance of IRIF provides a simple way to
analyze the kinetics of DNA repair (Bouquet et al., 2006).

Analysis of IRIF can also inform on the DNA repair pathway
choice. For instance, early steps of HR can be observed by
the accumulation of the MRN complex or CtIP that will in
turn be responsible of the formation of ssDNA (Mirzoeva
and Petrini, 2001; Sartori et al., 2007). Resection products can
also be observed by the accumulation of RPA (Sartori et al.,
2007; Cruz-García et al., 2014; López-Saavedra et al., 2016;

Figure 2). An alternative is the observation of BrdU-labeled
ssDNA using non-denaturing conditions in cells treated with
this thymidine analog for one cell cycle to ensure that one
DNA strand is completely labeled in all chromosomes (Sartori
et al., 2007). For later DNA repair steps, RAD51 accumulation
is the preferred marker of recombination (Mirzoeva and Petrini,
2001; Figure 2). NHEJ proteins, however, are difficult to
see at DNA damage foci due to the low number of units
bound to each DSB and the high background levels. Thus,
specific protocols have been developed for their observation
(Britton et al., 2013). Alternatively, other accessory factors
of NHEJ and HR, such as 53BP1 or BRCA1, respectively,
can be used as a proxy for these DNA repair pathways
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FIGURE 2 | Schematic overview of methods to induce random DNA breaks in the genome using radiation (top left) or chemical agents (top right). The energy of
radiation can be transferred directly to the DNA molecule or can ionize other molecules like water that will then attack the DNA. In addition to DNA breaks, radiation
damage induces additional modifications on the DNA, represented as stars, pentagons or triangles. Examples of chemical induction of DSBs by the direct attack of
DNA (using drugs such as neocarzinostatin) or indirectly by affecting specific proteins (Etoposide inhibits the topoisomerase cycle) are shown. Experimental
approaches that can be coupled with these methods to induce DSBs are also represented in the bottom. From left to right, chromatin fractionation, to observe the
accumulation of a protein on the cytoplasmic (Cyto), nucleoplasmic (Nuc), or chromatin (Chrom) fractions; Immunofluorescence, to visualize the formation of nuclear
foci using specific antibodies; SMART, to measure the length of resected DNA; PFGE, to visualize the presence of pieces of broken chromatin (in the figure, S.
cerevisiae chromosomes untreatated (U) or at different times upon irradiation); and comet assay, to study the appearance of breaks at the single-cell level. For
details, see the main text.
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(Chapman et al., 2013; Escribano-Díaz et al., 2013; Zimmermann
et al., 2013). Additionally, for low abundant factors, the signal
can be boosted by using a Proximity Ligation Assay (PLA) to
visualize if our protein or specific post-translational modification
of interest is in close proximity to factors/modifications known to
enrich at DSBs, such as γH2AX (Gullberg et al., 2003). A recent
variation of the PLA, the DNA damage in situ ligation followed by
proximity ligation assay (DI-PLA), allows detection and imaging
of individual DSBs in cells (Galbiati et al., 2017).

If immunofluorescence analysis of IRIF is not appropriate (for
instance, due to lack of antibodies or low amount of protein
at DNA breaks precluding the observation of a positive signal
under the microscope), the binding, recruitment, retention or
release of specific proteins can be studied using a chromatin
fractionation approach (Figure 2). First used to analyze the
recruitment of NHEJ factors (Drouet et al., 2005), it can be
adapted for any factor if there are specific antibodies that work
in western blot. Briefly, chromatin fractionation consists in the
separation of cytosolic, nucleoplasmic, and chromatin fractions
from undamaged and radiation-exposed cells. The resolution
of the proteins in SDS-PAGE followed by western blotting
using appropriate antibodies from samples collected at different
time-points upon DNA damage uncovers the dynamics of
recruitment/retention/release of the studied factors. This method
can be combined with depletion or inhibition of specific proteins,
therefore uncovering the hierarchy of recruitment of different
DNA repair factors to DSBs.

DNA resection can be specifically investigated with high
resolution using single-molecule analysis of resection tracks
(SMARTs). This is a modified DNA combing approach, in
which resection of broken DNA ends leads to the exposure of
otherwise inaccessible BrdU-epitopes previously incorporated
in the DNA. When combined with an immunodetection
protocol using fluorescence microscopy, SMARTs allows
the direct visualization and quantification of individual
tracks of resected DNA after IR (Cruz-García et al., 2014;
Huertas and Cruz-Garcia, 2018; Figure 2).

Finally, approaches such as pulsed-field gel electrophoresis
(PGFE) or single-cell gel electrophoresis (also known as comet
assay) can also be combined with IR exposure to directly
investigate DSB repair (Figure 2). IR-induced DSBs fragment
the genome in smaller portions, which can be measured using
PFGE to estimate the number and repair of DNA breaks. This
technique allows the separation of rather large DNA pieces by
forcing them to pass through an agarose matrix in response
to changing electric fields (Schwartz and Cantor, 1984; Carle
and Olson, 1985). Yeast chromosomes are small enough to
be resolved in PFGE (Schwartz and Cantor, 1984; Carle and
Olson, 1985; Figure 2), thus fragmentation due to DNA damage
can be observed by the appearance of a smear of smaller
bands (Contopoulou et al., 1987). The much larger mammalian
chromosomes, on the contrary, remain on the wells during PFGE,
and only smaller fragments caused by random DSBs will enter
the gel (Ager et al., 1990). The size distribution of the DNA
portions is dependent on the number of breaks. Thus, PFGE
reveals the appearance of DSBs and estimates their number.
Moreover, by taking samples at fixed times after exposure to a

DNA damaging source, PFGE can be used to quantify the kinetics
of DNA repair. A variation of this technique was developed in
the Resnick laboratory using circular chromosomes in yeast or
Epstein-Barr virus episomes in human cells (Ma et al., 2008,
2012). Another variation of this technique, the single-cell gel
electrophoresis or comet assay, is a convenient way to estimate
the number of DSBs created upon a given treatment with DNA
damaging agents, such as IR, and to follow the kinetics of DNA
repair in individual cells. Comet assays can be performed using
either neutral or alkaline buffers to focus on DSBs or SSBs,
respectively. Briefly, cells are treated with the DNA damage
source, embedded in agarose to retain the nuclear structure,
lysed and subjected to electrophoresis (Olive et al., 1991). DNA
is attracted to the anode, but only broken fragments are small
enough to abandon the nucleus (Figure 2). After staining with
a DNA dye, nuclei are observed with a fluorescent microscope
and the displacement of DNA from the nucleus depends on the
number of breaks per genome (Olive et al., 1991). By analyzing
samples at different time points after DSB induction, the kinetics
of repair can be estimated.

Key Points
(+) Radiation exposure provides an easy and robust way to

analyze the recruitment of proteins to sites of DNA damage
(provided that their level of binding is high enough) and to study
the DNA repair kinetics using different approaches (e.g., γH2AX
foci disappearance, comet assays, or PGFE).

(−) Radiation not only induces DSBs but also a plethora
of other damages in the cell, and creates “dirty” ends, mostly
in a random manner on the genome, hence likely biased
toward the untranscribed genome in higher eukaryotes (given
that genes represent a minority of the mammalian genome).
Moreover, since radiation induces DSBs at unknown locations,
and in a non-homogenous manner in the cell population,
locus-specific analyses of DDR factor recruitment or chromatin
modifications using chromatin immunoprecipitation (ChIP)
studies, for instance, is not possible.
∗ Additionally, each readout of these stochastic DSBs has

its own pros and cons. For example, ssDNA observed by
SMART, RPA or BrdU foci might reflect unwound DNA; the
COMET assay also detects apoptotic cells, albeit the tail shape is
different; chromatin accumulation of some factors might occur
independently of DNA damage and in response to other signals.
Thus, in all cases, appropriate controls must be used.

Non-ionizing Radiation: Laser Beams
In addition to IR-induced DNA damage, in which cells are
exposed to an X-ray lamp or a Cesium irradiator, non-ionizing
radiation can also be used to study DSBs. For instance, ultraviolet
A (UVA) radiation can be used to create hundreds of DSBs along
the path of a laser beam (line or spot) through laser scanning
microscopy (Lukas et al., 2003). UVA does not directly generate
DSBs. However, pre-treatment of cells with the thymidine analog
BrdU for one cell cycle to allow its incorporation in one DNA
strand, sensitizes DNA to UVA, causing the appearance of
clustered SSBs and DSBs along the laser beam track. Laser
irradiation provides two main advantages. First, one can decide
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where to direct the laser beam in the nucleus, allowing to
target specific subnuclear compartments, such as the nucleolus
(Kruhlak et al., 2007). Second, the concentration of hundreds
of breaks along a laser track facilitates the observation of the
recruitment of factors that either do not spread at all, or
gradually increase over time, and for which foci are therefore
difficult to see, especially at early time points. As such, laser
irradiation represents the most powerful tool to accurately
determine the kinetics of DDR factors, providing a temporal
resolution below 10 s.

Combined with the expression of fluorescently labeled
proteins, laser microirradiation has provided unprecedented
temporal resolution of the sequence of events following DNA
damage (Kochan et al., 2017; Aleksandrov et al., 2018). This
approach can also be complemented with FRAP and FLIP studies
(see Mortusewicz and Leonhardt, 2007). The use of fluorescently-
tagged histone proteins allowed the study of chromatin dynamics
following damage with great resolution (Burgess et al., 2014;
Luijsterburg et al., 2016; Sellou et al., 2016; Smith et al., 2018).
Finally, this method has been useful to investigate the release
of factors from DSBs and the post-translational modifications
(PTMs) that drive such dynamics. In this case, the signal void
created by the absence of the protein or by the removal of a
specific PTM can be seen as a negative stripe (or anti-stripe)
(Chou et al., 2010; López-Saavedra et al., 2016).

Key Points
(+) Laser microirradiation represents the best technique today

to temporally resolve the sequence of events at DSBs, allowing
to observe very early (<10 s) and/or transient repair proteins
recruitment and chromatin modifications.

(−) Microirradiation induces a large number of localized,
clustered DNA lesions (not only DSBs), that may also initiate
specific responses. Moreover, it is neither amenable for molecular
characterization of the repair outcome at the sequence level, nor
for ChIP, which limits the spatial resolution that can be achieved.

Chemically Induced Breaks
In contrast to radiation treatments, that require specialized and
expensive equipment, chemical-induction of DSBs is cheap and
easy to implement in any laboratory and can be coupled with
almost any experimental protocol. Usually, cells are treated with
a defined concentration of a chemical agent for a fixed amount
of time. It is important to distinguish between acute (from
minutes to a few hours) versus chronic (for days) treatments,
as the responses will vary enormously. Many types of chemical
agents can indirectly cause DNA breaks. For example, chemical
inhibition of topoisomerases I and II causes SSB and DSB
respectively (Huang et al., 2003; Figure 2). SSBs caused by
camptothecin, a common inhibitor of topoisomerase I, can,
in turn, be converted to DSBs during replication. Replication
inhibitors, such as HU or aphidicolin, and crosslinker agents,
like cisplatin or mitomycin C, can also cause one ended
DSBs due to fork collapse (Saintigny et al., 2001; Noll et al.,
2006). Additionally, several chemical agents imitate the effect
of ionizing radiation and break the DNA directly (Figure 2).
These radiomimetic drugs include bleomycin, phleomycin or

neocarzinostatin (Sleigh, 1976; Edo and Koide, 1997; Chen and
Stubbe, 2005).

Of importance, given their different modes of action, all the
above-mentioned drugs will produce different types of DSBs:
either located at different genomic regions and/or introduced
during different cell-cycle stages. For instance, DSBs created
by radiomimetic drugs show a bias toward specific sequences
(Murray and Martin, 1985; Burden et al., 1996). Moreover,
topoisomerase II poisons such as etoposide preferentially
induce lesions at CTCF binding loci located close or within
transcriptionally active units (Canela et al., 2017, 2019; Gothe
et al., 2019). Topoisomerase I and replication inhibitors induce
DSBs specifically during S phase or the following mitosis
(Saintigny et al., 2001; Huang et al., 2003).

The analysis of DSBs induced by chemical agents can be
performed by the same approaches described for irradiation-
induced breaks (Figure 2). In addition, a number of genome-wide
methodologies have been recently developed to directly map DSB
distribution at a nucleotide resolution across the genomes in
a cell population (Bouwman and Crosetto, 2018) including for
instance Break-seq, BLESS, iBLESS, BLISS, DSB-capture, End-
seq and BrlTL (Hoffman et al., 2015; Canela et al., 2016; Lensing
et al., 2016; Biernacka et al., 2018; Mirzazadeh et al., 2018; Shastri
et al., 2018). These techniques are well suited to investigate
DSBs that occur non-randomly across the genome such as those
induced by topoisomerase II poisons for instance. Of importance
they not only provide an information about DSBs positions on
the genome, but they are also quantitative, hence providing an
estimate of break frequency in the cell population (Aymard et al.,
2017; Canela et al., 2019).

Key Points
(+) Treatment with genotoxic compounds represents an easy

to implement and robust way to analyze the recruitment of DSB
repair factors and to study the repair kinetics using different
approaches (kinetics of γH2AX foci, comet assays, and PGFE).

(−) Drugs produce different types of DNA damage, at
different genomic loci, and most show a preference for specific
cell cycle stages, which should be carefully considered during
data interpretation.

METHODS TO INDUCE ANNOTATED
DNA BREAKS AT TRANSGENIC LOCI
INSERTED IN THE GENOME

Different labs have sought to develop tools for the site-specific
induction of DNA breaks making use of restriction enzymes
targeting integrated exogenous cleavage sites, otherwise absent
from the genome. Such tools overcome the ambiguity of DNA
lesions introduced by previous methods and allow the inspection
of protein recruitment during the DDR to a site-specific DSB and
the assessment of chromatin remodeling events with nucleosome
resolution. Moreover, they can be combined with strategies to
control the timing of DSB induction, for instance by controlling
the nuclear translocation of the restriction enzyme, affording a
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valuable strategy to measure kinetic parameters of the DDR in
live cells (Berkovich et al., 2007; Soutoglou et al., 2007).

The first reporter system, employing a site-specific DSB at a
reporter transgene integrated into the genome of mammalian
cells was developed in the mid-1990s. This genetic assay was
devised by the Jasin lab to detect and quantify HR repair of
DSBs induced by the rare-cutting endonuclease, I-SceI (Rouet
et al., 1994; Figure 3). Following this seminal work, a large
number of labs further developed similar strategies based on I-
SceI cut of a transgenic locus to investigate various aspect of
the DDR, including repair pathway preferences and efficiency
(Gunn and Stark, 2012; Gelot et al., 2016), DNA-ends mobility

and translocation (Soutoglou et al., 2007; Roukos et al., 2013),
and the crosstalk with transcription (Shanbhag et al., 2010; Ui
et al., 2015; Vítor et al., 2019). For example, Soutoglou et al.
(2007) developed a cell system to visualize the dynamics of a
single DSB induced at a defined genomic site in mammalian
cells and demonstrated that broken ends are immobile in the
nuclear space. For that, stable cell lines derived from mouse
embryonic fibroblasts (NIH3T3) were generated containing a
single I-SceI restriction site flanked by arrays of lac-repressor
binding sites and tetracycline-response elements (L-I-SceI-T
array) (Figure 3). Expression and binding of fluorescently-
tagged lac and tetracycline-repressors to these arrays enabled

FIGURE 3 | Schematic overview of methods to induce annotated DNA breaks at transgenic loci inserted in the genome. Examples of reporter genes that allow the
direct inspection of DSB repair pathways and transcription and chromatin dynamics are represented. Experimental approaches that can be coupled with the
methods to induce DSBs at transgenic loci are shown.
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the simultaneous detection of both DNA ends. The use of an
I-SceI enzyme fused to a glucocorticoid receptor (I-SceI-GR)
that translocated to the nucleus upon triamcinolone acetonide
(TA) addition, allowed the controlled induction of a DSB at the
L-I-SceI-T array and the live-cell tracking of the broken DNA
ends in real-time (Soutoglou et al., 2007).

Additional systems were further developed to generate
multiple DSBs on a specific transgene, thus rendering the
DNA repair easier to visualize. The Greenberg lab developed
a noteworthy single-cell assay specifically designed to
simultaneously analyze both the DSB repair and its effects
on local transcription. The experimental procedure was based on
the introduction of multiple nuclease-induced DSBs upstream
the promoter of an inducible transgene, modified to enable
the visualization of transcriptional and translational events
(Shanbhag et al., 2010). The reporter system, integrated in
the genome of a human osteosarcoma (U2OS) cell line, is
visualized upon binding of the mCherry-fluorescently-tagged
lac-repressor protein (mCherry-LacI) to a lac-operator array.
Nascent transcription is visualized by the accumulation of
fluorescent MS2-binding proteins at the transcription site, upon
binding to nascent MS2 stem-loop structures present at the
reporter gene RNA (Shanbhag et al., 2010). Expression of the
FokI nuclease domain fused to the mCherry-LacI creates DSBs
at the lac operator array (Shanbhag and Greenberg, 2013).
Of note, this approach leads to persistent and extensive DSB
induction and the time of damage induction is dependent on
the expression of mCherry-LacI-FokI. A similar system to study
transcription in proximity to DSBs was engineered by Ui et al.
(2015). The authors established a U2OS cell line harboring
multiple copies of an array of transcription units including
tetracycline response elements (TRE) sites, MS2 sequences
and I-SceI restriction sites (Ui et al., 2015). Upon tamoxifen
treatment, the mCherry-tTA-ER fusion proteins translocate into
the nucleus and localize at transcription sites (TRE sites), to
induce transcription activation, detected by the accumulation of
fluorescently tagged-MS2 protein (Rafalska-Metcalf et al., 2010).
Expression of a plasmid encoding I-SceI generates DSBs at target
restriction sites, thus enabling the study of the effect of DSBs
on transcription. Using this experimental system the authors
reported a DSB-induced transcriptional repression mechanism
involving the transcription elongation factor ENL (Ui et al.,
2015). More recently, the de Almeida lab developed a set of
reporter genes that allow the direct visualization of transcription
with single-molecule resolution upon the controlled induction
of a unique DSB (Vítor et al., 2019; Figure 3). A single I-SceI
restriction site was inserted in either the promoter-proximal
region or within an internal exon of a reporter gene. The
binding of fluorescent proteins to MS2 and/or PP7 stem loops
at the nascent transcripts allows measurements of transcription
dynamics upon induction of the DSB. The exact timing of
DSB induction is controlled using an I-SceI-GR fusion protein.
Using these reporters, the authors found that whereas induction
of a DSB at the promoter region suppresses transcription, a
DSB generated within an internal exon drives bidirectional
break-induced transcription initiation (Vítor et al., 2019). In
addition to live-cell microscopy imaging, these reporters may be

combined with ChIP-qPCR, providing a valuable tool to directly
inspect the recruitment of DNA repair factors to a DSB, to assess
histone modifications or measure nucleosome occupancy at
broken ends.

The direct visualization of DNA break-induced transcription
activation using reporter genes, support a model whereby
the DDR signaling involves the action of non-coding RNAs
(ncRNAs) generated at sites of DNA damage (Michelini et al.,
2018). To investigate the role of such DSB-induced ncRNAs in the
DDR, the d’adda di Fagagna lab developed the RNase A treatment
and reconstitution (RATaR) method, in which different RNA
species of interest are used to reconstitute cells previously treated
with recombinant RNase A (Michelini et al., 2019). RATaR may
be employed to address the role of ncRNAs in the recruitment of
repair proteins during the DDR using imaging approaches.

Key Points
(+) I-SceI or FokI mediated DSB induction on transgenic

loci are powerful systems to investigate the response to clean
DSBs. These systems allow analyzing the repair event at a
molecular resolution, the repair frequency (thanks to designed
reporters cassettes) and the DNA damage repair/signaling in
single cells (using imaging approaches). They can be combined
with additional reporters to investigate with great detail the
functional links between the DDR and transcriptional activity,
chromatin modification and spatial organization, or DNA
replication, for instance.

(−) These systems rely on transfection, transcriptional
regulation, or nuclear localization of the endonuclease.
Consequently, they cannot provide the same temporal resolution
achieved using microirradiation, where DSB induction is
immediate and highly synchronized. Moreover, the transgenic
nature of the analyzed loci calls for caution, especially when
repeat-rich transgenes are used (creating either multiple clustered
DSBs or a single DSB but in a highly repeated transgenic locus,
which may display a peculiar chromatin structure). Finally, the
accurate repair of endonuclease-created breaks reconstitutes the
target site, therefore being re-cleavable until the target site has
been mutated. Hence, most of the outputs measured in these
experimental contexts address mutagenic repair, leaving faithful
repair out of reach.

METHODS TO INDUCE DNA BREAKS AT
SPECIFIC ENDOGENOUS LOCI IN THE
GENOME

In order to bypass the need for introducing a transgene and to
avoid potential, non-generalizable, side effects of transgenic loci
on the repair process (e.g., in the case of LacI repeats, a high
copy number triggering a peculiar chromatin state), efforts have
been made recently to develop alternative systems where DSBs
can be induced at endogenous, annotated loci on the genome
(Figure 4). On one hand, homing endonucleases and type II
restriction enzymes have been used, allowing to induce breaks at
annotated but not controllable positions, and on the other hand,
the development of transcription activator-like effector nucleases
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(TALEN) and more recently of the clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 system has opened the
possibility to introduce breaks at chosen loci.

Type II Restriction Enzymes and Homing
Endonucleases: Induction of Multiple
DSBs but at Constrained Locations
I-PpoI
The Kastan lab developed a system that uses the eukaryotic
homing endonuclease I-PpoI, which has a recognition sequence
of 15bp, to form site-specific DSBs within endogenous target
sites of the human genome (Berkovich et al., 2007). Expression
of I-PpoI in human cells results in the production of
DSB at one site within the 28S ribosomal RNA gene,
present in ∼300 copies, and fifteen additional unique loci.
To tightly control DSB induction, a ligand-binding domain
of the estrogen receptor (ER) was fused to I-PpoI. The
addition of 4-hydroxytamoxifen (4-OHT) promotes rapid
nuclear localization of ER-I-PpoI and the subsequent time-
dependent cleavage of the endogenous sites. Using this
system, the Kastan lab disclosed the distribution of Nbs1
and ATM, and histones (Berkovich et al., 2007; Goldstein
et al., 2013) at DSBs by ChIP-qPCR. This system was used
by others to investigate the dynamics of the transcription
machinery following I-PpoI DSB induction in RNA Polymerase
II-transcribed genes, revealing a DNAPK-dependent break-
induced transcriptional arrest (Pankotai et al., 2012; Caron
et al., 2019), or to investigate the DDR induced in the
nucleolus (Harding et al., 2015; Warmerdam et al., 2016;
Pefani et al., 2018). I-PpoI has been further applied to
interrogate DSB repair mechanisms in other organisms, such
as fission yeast (Sunder et al., 2012; Kuntz and O’Connell,
2013; Ohle et al., 2016) and mice (Kim et al., 2016). Of
interest, in the latter, both temporal and spatial regulation
of I-PpoI activity was achieved by using a GFP-I-PpoI
endonuclease fused to an ER domain for tamoxifen-dependent
temporal induction and whose tissue-specific expression was
dependent on Cre recombinase. The results obtained using
this in vivo model system showed transient, and DDR-
dependent, decrease in gene expression of break-bearing - but
not more distant - genes, further reversed upon DSB repair
(Kim et al., 2016).

I-CreI
In Drosophila, the I-CreI homing endonuclease has also been
used to create annotated DSBs in the ribosomal DNA (Royou
et al., 2010). This allowed the authors to uncover a new
Bub1R/Bub3/Polo kinase-dependent pathway that contributes to
handle unrepaired rDNA DSBs during mitosis and to ensure
correct segregation of broken chromosomes (Royou et al., 2010;
Derive et al., 2015).

AsiSI
Another DSB-inducible tool developed to create multiple
endogenous, sequence-specific breaks, makes use of the AsiSI
- 8bp cutter - restriction enzyme. The Legube lab, fused
AsiSI to a modified ER ligand-binding domain, which controls

nuclear localization of AsiSI–ER fusion protein, and to an
auxin-inducible degron enabling controlled ubiquitination and
degradation of the enzyme (Iacovoni et al., 2010; Massip et al.,
2010; Aymard et al., 2014). Stable integration of this construct
in the genome of U2OS cells generated a DSB inducible via
AsiSI (DIvA) system, where multiple annotated DSBs can be
induced after 4-OHT treatment and DNA repair accurately
monitored following auxin treatment. AsiSI induces 100-200
DSBs across the human genome [as determined by BLESS
(Clouaire et al., 2018) and BLISS (Iannelli et al., 2017)], as
well as one break in the ribosomal DNA repeat (Marnef et al.,
2017). This system is then amenable to compare DNA repair
at various genomic positions. Importantly, while AsiSI is not
able to damage heterochromatin, likely due to both the DNA
methylation status and decreased accessibility of compacted
chromatin (Iacovoni et al., 2010; Clouaire et al., 2018), it induces
DSBs at both transcribed and untranscribed loci (Aymard
et al., 2014; Clouaire et al., 2018). The DIvA system has been
used to inspect DNA repair pathway preferences at different
chromatin regions (Aymard et al., 2014), to measure site-specific
resection (Zhou et al., 2014) and repair kinetics and translocation
frequency (Aymard et al., 2014; Cohen et al., 2018), and is
instrumental to investigate the role of repair factors in HR or
NHEJ [see, for example (Jacquet et al., 2016; Schrank et al.,
2018)] Furthermore, combined with ChIP-seq, or any other
high throughput genomic methods, it allows investigating DNA
repair simultaneously at multiple DSBs and at high resolution.
Consequently it has been extensively used to provide high-
resolution maps of repair proteins and chromatin changes
(Iacovoni et al., 2010; Caron et al., 2012, 2015; Aymard et al.,
2014; Clouaire et al., 2018), of R-loops (Cohen et al., 2018;
Lu et al., 2018), or long-range contacts (Aymard et al., 2017)
around several breaks in the human genome. When combined
to transcription mapping (RNA-seq, BrU-seq, Pol II ChIP-seq,
or NET-seq) it disclosed insights into the interplay between
γH2AX profile and transcription (Iacovoni et al., 2010), on
the behavior of transcription at DSBs (Iacovoni et al., 2010;
Iannelli et al., 2017; Cohen et al., 2018; Burger et al., 2019), as
well as a novel DSB repair pathway coupled to transcription
(Marnef et al., 2017).

Key Points
(+) These systems represent powerful tools to compare DNA

repair events that occur at different genomic loci and, because
they induce DSBs at annotated positions in a homogenous
manner in the cell population, are compatible with all high
resolution, high throughput sequencing-based techniques such as
ChIP-seq, Hi-C, etc.

(−) For all these systems, as for the above-mentioned
I-SceI based systems: (i) DSB production is not immediate
nor synchronized in the cell population and (ii) accurately
repaired DSB can be re-cleaved. Hence while being powerful
to analyze the spatial distribution of repair protein and
chromatin changes around DSBs, they preclude a fine
temporal resolution of these events. Moreover, the position
of the DSBs is dictated by the target site of the chosen
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FIGURE 4 | Schematic overview of methods to induce annotated DNA breaks at endogenous loci, including Type II endonuclease, Homing endonucleases, FokI
based system, and CRISPR/Cas9 system. Given that these DSBs are induced at annotated positions and in a homogeneous manner in the cell population, one can
use ChIP to investigate protein recruitment at the site of damage. This can also be coupled to high throughput sequencing analyses to investigate simultaneously
repair events at multiples breaks (ChIP-seq). Finally, BLESS, BLISS, Break-Seq and any other related genome wide methods to map DSB distribution across
genomes can be used to analyze repair kinetics of these annotated DSBs.
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enzyme, which can represent a limitation to the number of
different loci analyzed.

Zinc Finger Nucleases, TALEN and
CRISPR/Cas9: Induction of a Single DSB
but at a Chosen Locus
A number of specific tools have more recently allowed to induce
DSBs at chosen endogenous genomic loci.

Fusing FokI to a Protein of Interest
To introduce DSBs at specific loci of interest, it is possible to fuse
the FokI endonuclease to a protein able to specifically target a
particular locus. This approach was implemented for example to
induce DSBs at telomeres by fusing FokI to the shelterin protein
TRF1 (Tang et al., 2013; Cho et al., 2014; Doksani and de Lange,
2016).

Zinc Finger Nucleases and TALEN
Zinc finger nucleases (ZNF) are chimeric proteins comprised of
both a zinc finger domain designed to recognize a specific locus
and the FokI nuclease. Using a pair of ZNF binding opposite
strands allows the introduction of a DSB at a locus of interest. For
instance, ZNF able to target the intron 1 of the PPP1R12C gene
(p84-ZNF) (Urnov et al., 2005) were used in order to investigate
chromatin changes by ChIP-qPCR (Xu et al., 2012; Ayrapetov
et al., 2014; Gursoy-Yuzugullu et al., 2015) and translocation
biogenesis (Ghezraoui et al., 2014).

TALE proteins were discovered as composed of a succession
of 34aa monomers, each displaying the ability to recognize one
nucleotide. Fused to FokI, this system provides a rapid and easy
way to design sequence-specific nucleases called TALEN. TALEN
have been used to investigate DNA repair in a large number of
organisms and genomic contexts, such as in CTG trinucleotide
repeats in budding yeast (Mosbach et al., 2018), or to understand
the influence of the transcription status of a locus on the repair
pathway choice (Aymard et al., 2014).

CRISPR/Cas9
The discovery of the CRISPR/Cas9 system in 2013 strongly
revolutionized the DDR field by providing the ability to introduce
DSBs at annotated loci, in a particularly simple and efficient
manner, by the mean of a small guide RNA embedded in
the Cas9 nuclease. For instance, this approach has been used
successfully to induce DSBs and study DNA repair in rDNA
(van Sluis and McStay, 2015; Korsholm et al., 2019). It allowed
demonstrating RNA Pol I transcription inhibition in cis to
rDNA DSBs and nucleolar reorganization upon rDNA breakage.
CRISPR/Cas9 has also been instrumental to study the repair
of heterochromatin. The Soutoglou lab used it to induce
DSBs in a-satellites in mouse cells, demonstrating that, as for
rDNA, heterochromatin foci are reorganized in G2 upon DSB
induction (Tsouroula et al., 2016). CRISPR/Cas9 was also used
to induce DNA breaks at multiple unique loci in order to
study translocation biogenesis and repair mechanisms, such
as on c-Myc, MLL, TMPRSS2, as well as G4 enriched or
non-enriched genes (Ghezraoui et al., 2014; Day et al., 2017;
Iannelli et al., 2017; Panchakshari et al., 2018; Wei et al., 2018;

Meisenberg et al., 2019). However, of importance, it is yet
unclear whether CRISPR/Cas9-induced breaks behave similarly
to other types of DSBs. Indeed, recent studies indicated that Cas9-
induced DSBs display highly mutagenic repair with nearly no
accurate repair events (Brinkman et al., 2018; Richardson et al.,
2018) and evidence suggests that they may be handled by the
Fanconi Anemia repair pathway rather than canonical DSB repair
machinery (Richardson et al., 2018).

Key Points
(+) Methods to induce DNA breaks at specific endogenous

loci in the genome are particularly powerful in that they
provide the liberty to choose the locus to be analyzed. As for
the other endonuclease-mediated DSB induction systems, they
are amenable to both imaging and molecular high throughput
sequencing-based technologies such as ChIP-seq.

(−) Yet, similarly to the other endonuclease-mediated DSB
induction, they are less suited for thorough, careful kinetics
analyses since they rely on the controlled expression of the Cas9,
or transient transfection of the sgRNA and accurately repaired
DSBs may be re-cleaved by Cas9. Moreover, the fact that Cas9-
induced DSBs may be particularly refractory to repair, and hence
biased in terms of repair pathway choice, call for caution when
using these systems.

Telomere Deprotection as a Tool to
Generate DSBs at Chromosome Ends
Coating of telomeres with shelterin factors including telomeric
repeat-binding factor 2 (TRF2), prevents fusions of linear
chromosome ends and suppresses local DNA damage responses
(de Lange, 2018). Dysfunctional telomeres induce cellular
responses that are highly similar to the ones elicited by DSBs,
such as DDR activation and cellular senescence (Fumagalli et al.,
2012; Hewitt et al., 2012). Indeed, replicative telomere shortening,
which eventually culminates in telomere deprotection, induces
molecular markers characteristic of DSBs and may serve as
models to investigate DNA damage signaling in the context of
senescence and aging (D’Adda Di Fagagna et al., 2003).

Dysfunctional telomeres can be generated through telomere
uncapping and other forms of telomere damage, which may
be specifically induced to activate the DDR in cycling cells.
In addition to FokI fusion with TRF1 described above, DSB-
signaling at telomeres can be activated upon TRF2 deletion
(Celli and de Lange, 2005). Deletion of TRF2 provokes
sustained DNA damage at mammalian chromosome ends, and
the resulting uncapped telomeres are processed by the NHEJ
pathway (Celli and de Lange, 2005). A plethora of methods
- ranging from the visualization of DNA repair factors foci
using immunofluorescence to the biochemical characterization
of DDR complexes assembled at dysfunctional telomeres using
ChIP - can be coupled to the TRF2 inactivation to investigate the
molecular details of different aspects of the DDR. Importantly,
dysfunctional telomeres have been instrumental to discover
the function of various proteins in DSB repair [e.g., Rif1
(Zimmermann et al., 2013); Pol θ (Mateos-Gomez et al., 2015);
the LINC complex (Lottersberger et al., 2015); or CST and
shieldin (Mirman et al., 2018)].
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Key Points
(+) Using dysfunctional telomeres as surrogates for DSBs is

easy to implement and can be coupled with different imaging and
biochemical approaches to directly inspect the molecular details
of the DDR signaling.

(−) Telomeres possess several specific features that render
them particularly refractory to repair, and, when uncapped
through TFR2 deletion, show a strong bias in terms of repair
pathway choice toward NHEJ. The number of dysfunctional
telomeres may vary considerably between cells and this
heterogeneity may raise issues related with cells viability.

CONCLUSION

Our capacity to create DSBs in a programed manner and in such
a way that is compatible with a set of diverse methodologies
to investigate the events that follow DNA damage, has led to
our current deep understanding of the DDR. The induction of
DSBs at random locations using different sources of radiation or
genotoxic compounds, provides the easiest approach to analyze
the recruitment kinetics of proteins to sites of DNA damage and
is a powerful strategy to temporally resolve the sequence of DNA
repair events. The development of methods to induce annotated
DNA breaks at transgenic loci inserted in the genome, or at
endogenous loci (restriction enzymes, CRISPR/Cas9) allowed
the analysis of the DDR at molecular resolution and were
instrumental in disclosing functional links between the DDR

and processes such as transcriptional, chromatin dynamics,
and DNA replication. Yet all the tools described here display
significant drawbacks. For instance, nucleases-induced DSBs
undergo consecutive cycles of repair/cleavage until these have
been mutated, calling for caution when investigating DNA repair
using these tools. A major challenge is now to refine these DSB-
inducible systems and the subsequent methodologies to analyze
repair in order to overcome these limitations.
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