
fmolb-07-00026 March 10, 2020 Time: 20:22 # 1

METHODS
published: 12 March 2020

doi: 10.3389/fmolb.2020.00026

Edited by:
Lisa Sedger,

University of Technology Sydney,
Australia

Reviewed by:
Efthymia Giannitsioti,

University General Hospital Attikon,
Greece

Haider Abdul-Lateef Mousa,
University of Basrah, Iraq
Bernard Joseph Hudson,

New South Wales Health Pathology,
Australia

*Correspondence:
Salma Alsassa

engsalma80@gmail.com

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 10 November 2018
Accepted: 07 February 2020

Published: 12 March 2020

Citation:
Alsassa S, Lefèvre T, Laugier V,

Stindel E and Ansart S (2020)
Modeling Early Stages of Bone
and Joint Infections Dynamics

in Humans: A Multi-Agent,
Multi-System Based Model.

Front. Mol. Biosci. 7:26.
doi: 10.3389/fmolb.2020.00026

Modeling Early Stages of Bone and
Joint Infections Dynamics in
Humans: A Multi-Agent,
Multi-System Based Model
Salma Alsassa1,2* , Thomas Lefèvre3,4, Vincent Laugier2, Eric Stindel1,5 and
Séverine Ansart1,5

1 Laboratory of Medical Information Processing (LaTIM - UMR 1101 INSERM), IBRS, Université de Bretagne Occidentale,
Department of Medicine, Brest, France, 2 Tekliko SARL, Paris, France, 3 Iris UMR 8156 CNRS - U997 Inserm - EHESS - UP
13, Paris, France, 4 AP-HP, Jean Verdier Teaching Hospital, Department of Legal and Social Medicine, Bondy, France, 5 La
Cavale Blanche University Hospital, Infection Diseases Unit, Brest, France

Diagnosis and management of bone and joint infections (BJI) is a challenging task.
The high intra and inter patient’s variability in terms of clinical presentation makes it
impossible to rely on a systematic description or classical statistical analysis for its
diagnosis. Advances can be achieved through a better understanding of the system
behavior that results from the interactions between the components at a micro-scale
level, which is difficult to mastered using traditional methods. Multiple studies from the
literature report factors and interactions that affect the dynamics of the BJI system.
The objectives of this study were (i) to perform a systematic review to identify relevant
interactions between agents (cells, pathogens) and parameters values that characterize
agents and interactions, and (ii) to develop a two dimensional computational model of
the BJI system based on the results of the systematic review. The model would simulate
the behavior resulting from the interactions on the cellular and molecular levels to explore
the BJI dynamics, using an agent-based modeling approach. The BJI system’s response
to different microbial inoculum levels was simulated. The model succeeded in mimicking
the dynamics of bacteria, the innate immune cells, and the bone mass during the first
stage of infection and for different inoculum levels in a consistent manner. The simulation
displayed the destruction in bone tissue as a result of the alteration in bone remodeling
process during the infection. The model was used to generate different patterns of
system behaviors that could be analyzed in further steps. Simulations results suggested
evidence for the existence of latent infections. Finally, we presented a way to analyze
and synthesize massive simulated data in a concise and comprehensive manner based
on the semi-supervised identification of ordinary differential equations (ODE) systems.
It allows to use the known framework for temporal and structural ODE analyses and
therefore summarize the whole simulated system dynamical behavior. This first model is
intended to be validated by in vivo or in vitro data and expected to generate hypotheses
to be challenged by real data. Step by step, it can be modified and complexified based
on the test/validation iteration cycles.

Keywords: bone and joint infections, agent-based model, NetLogo, multi-scale, bone remodeling, diagnosis,
Staphylococcus aureus
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INTRODUCTION

Bone and joint infections (BJI) are challenging pathologies that
seriously affect public health, by means of irreversible bone loss,
functional impairment and reduced quality of life (Stengel et al.,
2001). BJI can result from hematogenous spread of infection
and develop within 2 weeks (acute hematogenous BJI) (Carek
et al., 2001; Jorge et al., 2010). In adults, BJI develop more
frequently from direct inoculation of bacteria secondary to
trauma, internal fixation of a fracture, or prostheses placement
and progress slowly within months (Smith et al., 2006; Birt
et al., 2017). The incidence of BJI is increasing annually in the
developed countries due to several reasons such as the rise in
arthroplasties, and diabetes (Kurtz et al., 2011; Walter et al.,
2012). In 2013, 70 cases per 100,000 of the population were
reported as BJI related in France, compared to 54 cases in 2008,
along with higher readmission frequency and longer hospital
stays. Furthermore, the BJI inpatient mortality rate was reported
as 4.6% (Grammatico-Guillon et al., 2012; Laurent et al., 2016).
In the USA, Olmsted County, the BJI incidence increased from
11.4 cases per 100,000 of population per year in the period
from 1969 to 1979 to 24.4 per year in the period from 2000
to 2009 (Kremers et al., 2015). BJI are also a significant cause
of higher healthcare costs each year. The higher cost is due
to prolonged and repeated hospitalizations supplemented by
complex and long-term treatments, in addition to the need for
surgical intervention (Gentry, 1997; Lipsky et al., 2007).

BJI are characterized by a complex biological system on
both structural and functional levels. They are defined by
multiple variables that have impacts on their pathogenesis
(Ciampolini and Harding, 2000). They have a dynamic
environment that comprised of different bone matrix qualities,
cell types, in addition to the potential presence of biofilms or
prostheses (Buckwalter et al., 1996). They encompass complex
interactions at both cellular and molecular levels that are
difficult to observe and control for using the traditional methods
(Lebeaux et al., 2013). Thus, BJI should be better understood
through investigating the system behavior that evolves from
the interactions between the individual agents. Improving the
understanding of the infection dynamics is key to selecting the
optimum treatment method.

Numerous animal models have been proposed to study the
BJI caused by Staphylococcus aureus, the most common cause
of this disease (Crémieux and Carbon, 1997; Xing et al., 2012;
Johansen et al., 2013). However, these models were limited by the
duration of the experiments and the incapacity to observe and
control for the interactions between the agents within the process
(Mader, 1985; Lebeaux et al., 2013). In addition, the high inter
and intra patient’s variability of the disease presentation imposes
another limitation in front of the classical statistical analysis
tools. Thus, the lack of the available evidence and the challenges
that accompany the proposed traditional methods necessitate
exploring the strength of computational tools to (1) simulate
the BJI systems, (2) analyze their progression, and (3) provide
insights in selecting evidence-based treatment strategies.

BJI development is the result of the continued interplay
between bacteria and two systems within the host: the bone

tissue and the immune defense system. Bacterial invasion of
the bone leads to a cascade of adverse changes in bone tissue
system components and functions. Specifically, it causes an
imbalance in the bone remodeling process, through interactions
between the bacteria and bone cells, leading to the activation
of bone destruction pathway (Claro et al., 2011; Josse et al.,
2015). Concurrently, the presence of bacteria triggers the
innate immune cells to signal a response against the invader.
The infected bone cells also take part in releasing cytokines
that contribute to either directing immune cell reactions or
increasing severe inflammatory damage (Bost et al., 1999;
Marriott et al., 2005).

Having an integral insight into the disease needs to
integrate the various components that manage and direct
the dynamic interactions within the BJI process in a
computational modeling framework. To date, scarce attempts
in the literature investigated the BJI using computational
modeling techniques. Pietro and associates (Lio et al., 2012),
proposed a computational model to compare the effects of
osteomyelitis and osteoporosis on bone remodeling process
using the differential equations and probabilistic verification
methods based on population-based approach. However, the
model emerges from the equation-based approach which
lacks the spatial distribution and the micro-interactions
of the components, and it ignores the interplay with
the immune system.

In this context, the agent-based modeling approach offers
a promising framework to translate the system biology and
generate a plausible representation of the individual component
behavior. ABM approach is a rule-based, bottom-up approach
where the system is represented through its entities (agents)
that act autonomously in the environment, and the overall
behavior of the system results from the accumulation of the
local attitudes and interactions of the concerned agents. This
approach is based on the principle that mainly local interactions
are described. These interactions can take place between agents
or between agents and their environment. Global behavior is
therefore observed as a phenomenon emerging from the multiple
interactions defined in the model. The simulation itself then
makes it possible to observe the evolution of the system, by letting
it “live” according to the rules and interactions that have been
defined on a local scale (An et al., 2009; Shi et al., 2014).

The different features of the ABM approach such as the
built-in randomness, spatial architecture, emergent behavior, and
taking parallel mechanisms outcomes capability make ABM well
suited to represent the biological system and display its hidden
and multi-scale behavior (Folcik et al., 2007; Politopoulos, 2007).
The ABM models could reproduce the complex behavior of the
biological system with heterogeneous components and diverse
essential rules, even if they are simple and not complete (Gelfand,
2013; Hammond, 2015). The ABM also has an intuitive paradigm
that considers the individual character, decision and propensity.
It has the ability to represent the non-linear relationships at the
micro-level, which contributes to enhancing the understanding
and controlling the different patterns of the system behavior
(Kitano, 2002a,b; Ghosh et al., 2011; Hernán, 2015). Using ABM
facilitates system simulations to analyze processes that were not
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measured in the experimental set-up otherwise (Holcombe et al.,
2012; Horn et al., 2012).

In this study, we identified experimental evidence on
various aspects of BJI in adults following a literature review
and integrated it in a multi-agent, multi-system model based
synthesis. We focused on the early stage of the infection to
investigate the critical role of innate immune cells in eliminating
the bacteria, as well as the loss in bone tissue in this stage. We
are focusing on how the cellular mechanisms and interactions
influence the BJI development and give rise to the system-level
behavior. We developed a two-dimensional agent-based model of
BJI that introduces a plausible representation of the system and a
simulated experimental environment to reproduce the infection
and examine its dynamics as a result of cellular interactions. The
BJI system will be modeled through the interaction between the
components of three subsystems: the bacteria, the infected bone,
and the immune response. Concerning the investigated bacteria,
we studied here in this first model S. aureus in general, which is
the major bacteria in BJI, notably because it expresses different
strategies of persistence such as producing biofilm or hiding
intracellularly, and for that it is mainly involved in relapsing
infections. The model simulations will be used to test several
hypotheses that exist in the literature and to investigate the effect
of different parameters changes on the cells dynamics, such as
the initial concentration of bacteria, which is a major element
in the clinical expression of this infection, and the quality of the
immune system during the first stage of infection.

MATERIALS AND METHODS

In this study, a three-step approach was followed: (i) to conduct a
systematic literature search identifying behavior and interactions
between agents in both cellular and molecular levels, as well
as the values of the parameters involved, (ii) to develop a
two-dimensional model of early stages of BJI using the ABM
approach, based on the results obtained in the first step, and (iii)to
conduct simulations to investigate the outcomes of the infected
system under different conditions.

Literature Review for Agents Interactions
and Parameters Values Identification
The first step toward ABM model development was describing
the BJI system and its behaviors and characterizing its
components and their roles. A systematic literature search
was conducted to retrieve the agents’ behaviors, rules, and
interactions, and to identify the relevant parameters and their
ranges of applicable values. By giving some parameters a range
of values, we enriched the ABM model with the capacity of
simulating variable behaviors of the agents and testing several
hypotheses. We used the information from the basic biology
to characterize the cellular and molecular attitudes of different
components of BJI biological system during the first stage of
infection; namely those cover the innate immune response, the
bone remodeling cells and signals, and the bacteria development.
These biological characteristics will be simplified and formulated
as agents’ rules. The different parameters were retrieved by

first looking for human studies, but regarding the lack of
several information, we extended our search to include general
characteristics of the components, animal models of BJI, and
mathematical models of the bone remodeling process.

Search was conducted in PubMed and ScienceDirect databases
exploring the relevant journal papers from their inception to
date, July 2017. Literature search strategy, i.e., search queries
and inclusion/exclusion criteria, are described in detail in
Supplementary Material and Supplementary Table S1.

The Agent-Based Model of Early Stages
Bone and Joint Infections
The Environment
NetLogo was chosen for implementing the BJI model for its
several features such as supporting investigating the agent
behaviors over time and space and emerging the agents’
heterogeneity within its framework (Wilensky, 1999). Among
ABM toolkits, NetLogo introduces an academic and community-
supported tool to simulate the compound phenomena using
a high-level multi-agent programming language and a robust,
simple modeling platform.

The general 2D space of our model was divided into two
rectangles of overall dimension 151 × 101 patches (patches
represent the grids in the landscape in NetLogo). The first
rectangle (101 × 101 patches) was a bone tissue represented as
a two-dimensional layer; we assumed this dimension according
to 2 mm2 of bone tissue. We also assumed that this surface
contained one basic multicellular unit (BMU). The second
rectangle was the adjacent surface (50 × 101 patches), where the
bacteria was initially present (Figure 1A). The virtual time scale
was used in the environment “ticks” with each tick mapping to
1 h of the real-time. The model algorithm started with an initial
state with all the parameters set to their initial values, followed
by a set of rules and functions that were repeated until the end
of the simulation.

Agent Types, Rules, and Parameters
The agents in the model were chosen based on their importance
during the first stage of the infection. The bone and immune cell
agents interact with the bacteria agents through main interactions
while maintaining their functions (Figure 2). Furthermore, the
agents in the model and the mediators with their functions and
roles are summarized in Tables 1, 2.

Bone tissue
The bone tissue was represented through the main cells

and signals that involved in the bone remodeling process. The
agents of bone tissue consisted of Osteoclasts, Osteoblasts, and
Osteocytes cells, surrounded by an extracellular matrix (ECM)
(the non-cell agents). The interactions between these cells were
mediated by the receptor activator of nuclear factor-kappa
B ligand (RANKL)/RANK/osteoprotegerin (OPG) signaling
system. The individual agents of the three types of bone cells
were non-mobile agents and each agent occupied one patch in the
grid. The RANKL and OPG signals were represented as mobile
agents released by osteoblast cells, whilst the osteoclasts were

Frontiers in Molecular Biosciences | www.frontiersin.org 3 March 2020 | Volume 7 | Article 26

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00026 March 10, 2020 Time: 20:22 # 4

Alsassa et al. Modeling Early Stages of BJI Dynamics

FIGURE 1 | Screenshots of the ABM space at three different time steps for inoculum infection state of (5 × 102 CFU/mm2). The left rectangle in each sub-figure
represents the bacteria population, and the right rectangle represents 2 mm2 of bone tissue where the bone cells, osteoblasts, osteoclasts, and osteocytes, are
randomly allocated respecting their percentage and minimum distance. (A) Shows the initial state of the model at = 0 h, where the bacteria are randomly distributed
in the adjacent surface, the left rectangle, with low presence of immune cells especially macrophages. (B) Shows the state at time t = 60 h, where the bacteria
entered the bone tissue and started destroying it. (C) Shows the model’ state at t = 150 h, where the damage happens to the bone tissue, the black patches within
bone tissue reflect this destruction, while at the same time the bacteria count was decreased because of engulfing by immune cells.

FIGURE 2 | Schematic diagram showing agents used in the model, interactions between them, and governing functions for each of them. The oval shapes
represent cell agents; hexagons represent signals in the model. The rectangle boxes represent the main functions and roles of each agent. A solid arrow indicates
the flow of agent functions, a dotted arrow characterizes stimulation from source to target (destination), while a double-lined arrow reflects the opposite effect
(source leads to reduce the destination object).
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TABLE 1 | List of the agents in the bone and joint infections agent-based model, their rules, and behaviors.

Agent type Agent parameters Agent’ rules in bond and joint infections ABM References

Bacteria Inoculum size
Reproduction rate

Increase rapidly and spread spatially to invade the bone tissue, stimulate
releasing RANKL and activating OC, stimulate immune defense and are
engulfed by them, stimulate OB death

Fullilove et al., 2000; Claro et al., 2011; Olson
and Horswill, 2013

Neutrophils
(PMN)

Count, Lifespan
Reproduction rate

Undergo reproduction and death function, recruited due to the presence
of bacteria and try to ingest them, recruit MDM

Cassatella, 1995; Kaplanski et al., 2003;
Bekkering, 2013; Boff et al., 2018

Macrophages
(MA)

Count, Lifespan
Reproduction rate

Undertake reproduction and death function, stimulated by the presence
of bacteria and attack them, regulate macrophages and MDM recruitment
through TGF-beta, stimulating neutrophils

Kim and Luster, 2015; Kaufmann and Dorhoi,
2016; Prame Kumar et al., 2018

Monocytes
(MDM)

Count, Lifespan
Reproduction rate

Undergo reproduction and death function, stimulated by the presence of
bacteria, PMN, and MA after T hours, phagocytosis the bacteria, release
TGF-beta to regulate macrophages and MDM recruitment

Deshmane et al., 2009; Lee et al., 2011; Gong
et al., 2012; Ginhoux and Jung, 2014; Patel
et al., 2017

Osteoblasts
(OB)

Count, Lifespan
Reproduction rate

Go through reproduction and death cycle, spatial localization, releasing
RANKL and OPG, take a role in bone remodeling process: form new
osteocytes

Jilka et al., 1998; Boyce and Xing, 2008;
Shapiro, 2008

Osteoclasts
(OC)

Count, Lifespan
Reproduction rate

Go through reproduction and death cycle, spatial localization, bind with
RANKL to be activated, take a role in bone remodeling process:
destroying osteocytes

Parfitt, 1994; Blair, 1998; Eriksen, 2010

Osteocytes
(OS)

Count, percentage Form bone osteocytes cells network with respecting the minimum
distance between them, derived from mature osteoblasts, destroyed by
active osteoclasts

Franz-Odendaal et al., 2006; Bonewald, 2007;
Schneider et al., 2010

PMN, Neutrophils; MA, Macrophages; MDM, Monocyte-derived Macrophages; TGF-β, Transforming growth factor-beta; RANKL, Receptor activator of nuclear factor-
kappa-B ligand; OPG, Osteoprotegerin.

TABLE 2 | List of the mediators and their effects that are represented in the bone and joint infections ABM.

Mediator
variable

Mediator
parameter

Source Role in BJI agent-based model References

RANKL Concentration Osteoblasts Diffusion, activate osteoclasts by binding to them or inhibit their
activation by binding with OPG

Anandarajah, 2009

OPG Concentration Osteoblasts Diffusion, bind with RANKL to inhibit activating osteoclasts Boyce and Xing, 2008

TGF-beta Concentration Macrophages
Monocytes

Released by both monocyte and macrophages to increase monocytes
recruitment and decrease macrophage recruitment

Ashcroft, 1999

MCP-1 Concentration Neutrophils Released by neutrophils to stimulate monocytes recruitment Gopalakrishnan et al., 2013;
Tecchio et al., 2014

TNF Concentration Macrophages Released by macrophages to enlist neutrophils to the site Prame Kumar et al., 2018

BJI, bone and joint infections; TGF-β, Transforming growth factor-beta; RANKL, Receptor activator of nuclear factor-kappa-B ligand; OPG, Osteoprotegerin; MCP-1,
Monocyte chemoattractant protein-1; TNF, Tumor necrosis factor.

modeled to react as RANK receptors. The osteoclast agents were
modeled to perform bone resorption through destroying existing
osteocyte agents, after being activated by binding to RANKL.
On the other hand, the osteoblast agents were modeled to move
toward building new osteocyte agents within the cell-matrix and
to control the osteoclast agents’ activation through RANKL/OPG
signals. While RANKL was modeled to increase osteoclasts
activation, OPG, in turn, is modeled to inhibit this activation
by binding to RANKL. In a healthy state, the resorption and
formation of new osteocytes are balanced. However, this process
is modeled to be altered during the infection by increasing the
RANKL concentration and subsequently the osteoclasts activity
toward increasing bone destruction. Bone cells were modeled to
have the following behavior rules and functions.
Osteoclasts.

1. During initialization, they are distributed depending
on their count in one BMU (Komarova et al., 2003;
Paoletti et al., 2012).

2. They go through apoptosis when their ages, which are
increased by each time step, reach the lifespan parameter
(Manolagas, 2000; Ryser et al., 2009; Lio et al., 2012).

3. New osteoclasts are reproduced every day depending on
their reproduction rate parameter.

4. The osteoclasts have RANK receptors on their surfaces
(Roodman, 1999), which cause osteoclasts activation
through binding to RANKL molecules.

5. Activated osteoclasts move toward destroying neighboring
osteocytes cells (Figure 2).

Osteoblasts.

1. Their initial distribution is based on their count in
one BMU (Komarova et al., 2003; Paoletti et al., 2012;
Florencio-Silva et al., 2015).

2. When their ages reach their lifespan parameter,
they change their status to new osteocytes
(Dallas and Bonewald, 2010).
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3. New osteoblasts are reproduced every day depending on
their reproduction rate parameter.

4. Osteoblasts agents are considered as the source of releasing
RANKL. Releasing RANKL is depending on both the
reproduction rate parameter and the existence of the
bacteria. RANKL modeled to bind to RANK and activate
osteoclasts (Figure 2). The releasing process was verified
using diffuse instruction in NetLogo.

5. OPG molecules are also released by osteoblasts agents
using their reproduction rate and modeled to bind to
RANKL in order to inhibit osteoclasts activation.

6. Osteoblasts agents migrate toward forming new osteocytes,
after searching for a place where no osteocyte occupies a
nearby location to maintain a minimum distance between
two osteocytes (Repp et al., 2017).

Osteocytes.

1. At the initial state, they are distributed in the bone tissue
space taking into account a minimum distance between
them forming a network of osteocytes cells within the
extracellular matrix of bone.

2. Because of their long lifespan that could extend for decades
(Franz-Odendaal et al., 2006; Dallas et al., 2013), they were
not modeled to undergo reproduction and death phase.

3. Instead, new osteocytes originated from mature osteoblasts
and were destroyed by activated osteoclasts.

Immune system
It was modeled with three types of innate immune cells namely
macrophages, neutrophils, and monocyte-derived macrophages
(MDM), which represent the first actors against the bacteria
and they respond to the infection in sequential roles (Kaplanski
et al., 2003; Strydom and Rankin, 2013; Kim and Luster, 2015).
These immune cells were represented as mobile agents “turtles”
in the model. The response sequence is modeled on two steps.
First, the macrophage and neutrophil agents are modeled to react
directly against the bacteria and phagocytose them. In addition,
their stimulation is increased by the proliferation of bacteria and
regulated by the tumor necrosis factor TNF and transforming
growth factor-beta TGF-β cytokines. The second step of defense
is modeled to take place if both of macrophages and neutrophils
cells could not succeed in eliminating the bacteria by the first
48 h, through recruiting MDM cells to the site of infection. The
MDM cells were modeled to be stimulated by the Monocyte
chemoattractant protein-1 (MCP-1) cytokine. MDM population
is also regulated by the TGF- β signal through a positive feedback
loop. TGF-β was represented as mobile agents in the model, while
MCP-1 and TNF were represented as variables associated with
the infected patches. The functions and rules behind the innate
immune cells’ work follow.

Macrophages.

1. At initialization, macrophages agents are distributed
randomly in the model space depending on their
initial number, and they are stimulated by the presence
of the bacteria.

2. Macrophages go through apoptosis depending on
their lifespan parameter, while their ages increase
at each time step.

3. New macrophages are reproduced depending on their
reproduction rate. The reproduction process follows the
uniform distribution function in which the probability of
reproducing new macrophages in one time interval is the
same for the whole reproduction time.

4. The macrophages agents move around the space and are
attracted to the presence of bacteria to phagocytosis them.
When one macrophage engulfs a bacterial agent, it dies.

5. The macrophages reproduce TGF-β cytokines that have
a double role. They decrease the reproduction of
macrophages through a negative feedback loop, while on
the second hand, they increase the monocyte production.

6. The macrophages also increase the inflammation by
releasing the TNF cytokine as an associated variable
that used to interact with neutrophils agents to increase
their recruitments.

Neutrophils.

1. Since they are recruited to the infection site within 4–
8 h (Strydom and Rankin, 2013), they were modeled
to react against the invader with no delay. Neutrophils
agents are created with the initialization of the model
and randomly distributed in the modeled area with an
initial concentration.

2. Neutrophils go through apoptosis depending on
their lifespan parameter, while their ages increase
at each time step.

3. New neutrophils agents are produced each day depending
on their reproduction rate. Agents’ reproduction is also
equally distributed over the time of reproduction.

4. Neutrophils agents follow a random walk
toward phagocytosis the bacteria. They die after
engulfing the bacteria.

5. They are stimulated by the presence of bacteria and by the
pro-inflammatory cytokine TNF that are released by the
macrophages. In addition, they are considered as the source
of MCP-1, through which the monocytes are recruited.

Monocyte-derived-macrophages (MDM).

1. They are recruited to the site 48 h post the bacterial
invasion, stimulated by macrophages and neutrophils
through MCP-1 and TGF-β cytokines.

2. They have a life cycle that goes through increasing the
age and ends by the apoptosis depending on the lifespan
parameter (Whitelaw and Bell, 1966; Ginhoux and Jung,
2014; Italiani and Boraschi, 2014).

3. Each day, new MDM agents are modeled to be produced
following the uniform distribution function.

4. They are modeled to move toward phagocytosis the
bacteria, and they die after engulfing one.

5. They were also considered as a source of TGF-beta
signal, through which their count was increased through
a positive feedback loop.
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The reproduction rate of each of the immune cells was
estimated using the method used in the mathematical model of
Smith et al. (2011). We assumed that the steady-state N is given
by N = s/d, where s is the reproduction rate of cells per day and d
is the clearance rate per day. The clearance rate of macrophages,
which is taken from their identified lifespan, is in the range
d = 7–14 × 10−2 day−1, implying s = 28–115 cell/day, for a
steady-state 200–800 cell/mm3 (Wallace et al., 1993). In the same
way, the reproduction rate for each of neutrophils and monocytes
was estimated for steady values taken from an animal model of
bone infections (Corrado et al., 2016). The reproduction rate of
neutrophils was calculated as 120–700 cell/day for steady-state
250–700 cell/mm3 and d = 0.2–1 day−1. When the monocytes
are activated, they will reproduce at a rate of 4–70 cell/day that
estimated for d = 0.2–1 day−1 and steady-state 20–70 cell/mm3.

Bacteria
The bacteria in the model were modeled to be affected by
several factors; some of them were related to the bacteria
themselves, such as their initial inoculum size and reproduction
rate. The other factors were those related to the immune cells’
defense and ability to eliminate the bacteria. In their turn, the
bacteria dynamics affected the bone tissue health represented
by the number of osteocytes or ECM agents. The bacteria
were represented in the model as turtles with each individual
mapped to one patch, and they propagate depending on their
reproduction rate parameter (Table 3). The reproduction rate of
bacteria differs in the controlled culture from it in the human
body. This rate is difficult to be determined in the human
body because of the different factors that have impacts on the
bacterial growth in the infected bone such as the location,
vascularization, pH, nutrition, and type of prosthesis, if exist.
The bacteria characteristics, such as SCV, also have an impact
on the growth rate toward decreasing it (Bui et al., 2015).
The reproduction rate in the model was identified by the
range of 1–24 h to cover several proposed values (Fux et al.,
2005; Anwar et al., 2007). The modeled bacterial behaviors
rules follow:

1. Bacteria agents are randomly distributed depending on
their initial inoculum size.

2. Their life cycle goes through the reproduction phase
depending on their reproduction rate parameter.

3. The bacteria spread and move toward invading
the bone tissue.

4. The bacteria go through death rate which symbolizes the
run out of their resources of survival.

5. The existence of bacteria stimulates the immune cells to
react against the invasion starting by macrophages and
neutrophils agents.

Process Overview and Events Sequence
The simulation was launched using a function that mainly
sets all the variables to their initial values, in addition to
carrying out the following tasks. First, it established a basic
grid of patches (151 × 101 patches). Second, it initiated
the bone cells patches according to their percentage of bone
cells count and allocated them randomly. Third, it created

numbers of macrophage and neutrophil agents corresponding
to their initial value and distributed them randomly. Fourth,
it created a number of bacteria agents (turtles) respecting
their chosen initial value, and randomly allocated each cell
to one patch on the adjacent part of the grid. Finally,
it created numbers of signaling agents (TGF-β, RANKL,
OPG) corresponding to their initial concentration level, and
distributed them randomly.

After initialization, the simulation started looking through
the set of functions and rules over time and were repeated
up to the end of simulation either by eliminating the bacteria
or reaching the determined simulation time (300 h). After
the initialization of bacteria, proliferation was modeled using
binary fission depending on varied reproduction time. The
fission function was modeled to follow the normal distribution
over the time of reproduction (Table 3). For one bacteria to
undergo fission, it must search for one empty neighboring
patch of the bone tissue; otherwise, no fission would take
place. At each time step, the agents updated their location
and moved upon their functions and rules, the bacteria
moved toward invading the bone tissue, the immune cells
moved toward engulfing the bacteria, and the osteoclasts
and osteoblasts updated their location toward resorbing and
forming new osteocytes.

The population and distribution of each type of agent were
calculated at each time step, if some agents reached their lifespan,
they went under apoptosis, otherwise, they increased their age.
At the time of reproduction, new agents were created upon
their reproduction rate and allocation conditions. During their
life, each type of agents performed its rules and functions that
described in section Agent Types, Rules, and Parameters.

During the simulation and at each time step, the populations
of a pre-defined set of agents were saved to “.csv” file. These
output files were identified by the initial conditions of the
simulation. Multiple runs of the same simulation were saved to
the same output file in order to analyze the model outcomes
for the same initial conditions. The progress of the infection
over time and space during the simulation is shown in the
simulator interface (Figure 1). Changes in the agents’ counts were
monitored through time graphs for each type of agent in the
NetLogo interface.

Simulated Experiments
The goals of the simulation were to illustrate the relationships
between variation in the bone cell population and the evolution
of infectious processes. The goal was also to investigate the
efficiency of the innate immune system in defending the
bacteria during the first stage of the BJI for several scenarios
without treatment intervention. Further, the simulations were
conducted to detect sensitive parameters that affected the
dynamics of the system.

To verify the model stability and performance, and to
investigate the effect of bacterial inoculum size on the system
dynamics, the initial number of bacteria were adjusted to three
different values (5, 5 × 10, 5 × 102 CFU/mm2). These values
were assumed to represent three different infected inoculum
states – low (5 CFU/mm2), medium (5 × 10 CFU/mm2) and
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TABLE 3 | The parameters in the model and their values or ranges used.

Parameter Range in
literature

References Type of study Range in the
model

Step size Simulation
value

Bacteria
production-rate

1–24 h Fux et al., 2005; Anwar
et al., 2007

In vitro [1–24] hour 1 h 12 h

Bacteria inoculum size 0–500 CFU/mm3 Assumed [0–500] CFU/mm2 10 CFU/mm2 5, 50,
500 CFU/mm2

Osteocytes initial
number

500–900 cell/mm2 Vashishth et al., 2000;
Goggin et al., 2016

In vivo, Human study 1500–2000 cells – 1790 cells

Osteoblasts
production-rate

4 cell/day Parfitt, 1994; Komarova
et al., 2003

In vivo, human study [1–10] cell/day 1 cell/day 4 cell/day

Osteoblasts lifespan 3 months Manolagas, 2000 Human study [10–90] day 5 days 50 days

Osteoblasts initial
number

800–2000
cells/BMU

Parfitt, 1994; Komarova
et al., 2003

In vivo, human study 800–2000 cells – 1000 cells

Osteoclasts
production-rate

3 cell/day Parfitt, 1994; Komarova
et al., 2003

In vivo, human study [1–5] cell/day 1 cell/day 3 cell/day

Osteoclasts lifespan 2 weeks Manolagas, 2000 Human study [1–14] day 1 day 7 days

Osteoclasts initial
number

5–20 cells/BMU Parfitt, 1994; Komarova
et al., 2003

In vivo, human study 5–20 cells – 8 cells

RANKL concentration 10−6 mol/cell/day Ryser et al., 2009 Estimated according to
in vivo observation

1 µmol/cell/day 1 µmol/cell/day 1 µmol/cell/day

OPG concentration 3.10−6

mol/cell/day
Ryser et al., 2009 Estimated according to

in vivo observation
3 µmol/cell/day 1 µmol/cell/day 3 µmol/cell/day

TGF-β concentration 150–500 pg/ml Knapp et al., 1998 In vivo, human study 1 × 10−3

pg/cell/day
– 1 × 10−3

pg/cell/day

TNF concentration 0–1000 pg/ml Corrado et al., 2016 In vivo, animal study
(murine)

1 × 10−3

pg/cell/day
– 1 × 10−3

pg/cell/day

MCP-1 concentration 0–2000 pg/ml Corrado et al., 2016 In vivo, animal study
(murine)

1 × 10−3

pg/cell/day
– 1 × 10−3

pg/cell/day

Neutrophil
reproduction-rate

— Estimated [120–700] cell/hour 50 cells 550 cell/day

Neutrophil lifespan
tissue

24–120 h Rankin, 2010; Bekkering,
2013

In vivo, human study,
mice study

[24–120] hour 6 h 60 h

Monocyte lifespan 24–120 h Whitelaw and Bell, 1966;
Ginhoux and Jung, 2014;
Italiani and Boraschi, 2014;
Patel et al., 2017

In vivo, human study,
mice study

[24–120] hour 5 h 60 h

Monocyte reproduction
rate

– Estimated [4–70] cell/day 50 cell/day 150 cell/day

Macrophage lifespan 1–14 days Parwaresch and Wacker,
1984

In vivo, rat study [24–300] hours 6 h 24 h

Macrophage
reproduction-rate

– Estimated [28–115] cell/day 10 cell/day 550 cell/day

BMU, Basic Multicellular Unit.

high (5 × 102 CFU/mm2). We ran the simulations for n = 100
iterations for each of the infected inoculum state, while all other
changeable parameters were set to the median of their range
(Table 3). For each iteration, the dynamics of the population for
bacteria, osteocytes, and neutrophils agents for a time duration
of 300 h (t = 300 ticks) was tracked. The generated data at
each time click (1 h) were saved to an output data (.csv) file
for analysis. Subsequently, the mean and standard deviation
for the population at each time step for each type of these
agents was quantified. Further, the relation between two agents
over time under the same initial conditions was analyzed. We
benefitted from the 3D surface graphs and the generated data
from the previous step to analyze the relationships between each
of bacteria and neutrophils populations over time, bacteria and

osteocytes populations over time, and neutrophils and osteocytes
populations over time.

RESULTS

Characterizing the Agent Interactions
and Parameters Values
The systematic search process identified 42 articles for bone cell
characterizations, 48 articles for immune cell characterization,
12 articles for bacteria characterization, and 29 articles for
interactions (Supplementary Figures S1–S4). Following the
systematic literature search, the agent interactions and the
parameter ranges were identified from the retrieved articles.
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Flowcharts of the review steps along with the list of all articles
used for the study are reported in Supplementary Figures S1–S4
and Supplementary Table S2.

The Developed Agent-Based Model of
BJI
A representative example of the model space was taken during
one simulation at three different times (Figure 1). The initial state
of the model was represented at the beginning of the simulation
(0 h), for initial inoculum infection state of (5 × 102 CFU/mm2),
where this initial number of bacteria were randomly distributed
in the adjacent surface. It also demonstrated the low presence of
immune cells macrophages and neutrophils, and the initial state
of bone tissue before being damaged (Figure 1A). The progress
of the infection during the simulation (60 h) later showed that
the bacteria propagated toward entering the bone tissue and
destroying it. The monocytes also had been activated in this step
besides the other immune cells (Figure 1B). The simulation state
at (150 h) showed the system after 6 days, where the damage
happened to the bone tissue, and the bacteria count decreased
because of engulfing by the immune cells (Figure 1C). This model
is 2D what makes it suitable to represent trabeculae bone, but it
could be also considered as a cross-section of cortical bone.

Simulated Experiments Output
The mean and the standard deviation of the dynamics of the
population for 100 iterations under different infection inoculum
states (low, medium, high) revealed interesting behavior for each
of the bacterial, neutrophil (PMN), and osteocyte population
(Figure 3). The bacterial population inclined toward the
same steady non-null counts, regardless of the inoculum state
(Figures 3A1–A3). In addition, the population intensity of the
first few days was proportional to inoculum size. It was also
observed that the behavior of the bacteria varied compared to
the mean behavior with small variance magnitude even if the
output illustrated (by the effect of time characteristic) a high-
frequency oscillation in the bacteria population. At the same time,
it showed low fluctuation in the context of the general trend of the
bacterial population (Figures 3A1–A3). It was also observed that
the bacterial population faced quasi-extinction, followed by re-
growth for the inoculum in the medium and high infection state
for all 100 iterations.

On the other hand, the PMN dynamics followed the
evolution of the bacteria with a slight delay, reaching a non-
zero stable level on the 12th day. In addition, it illustrated
that the PMN population was not subject to rapid variations
represented by the low-frequency oscillations, which are
comparatively smoother than those introduced by the bacteria
(Figures 3B1–B3). Asymptotic behavior of PMN population for
the three inoculum states proposed a non-null mean value with
fixed frequency oscillations and decreasing magnitude with time
(Figures 3B1–B3).

Concerning the bone tissue loss in each state, the osteocyte
population dynamics was similar in mean population intensity,
while it differed from the mean behavior with important variance
magnitudes whatever the inoculum. The bone cell population

predicted a trend of unexpected high-frequency oscillations after
t = 200 h (Figures 3C1–C3).

Comparisons of system response for different inoculum states
and over time for the same type of agent population suggested
that the high inoculum infection state was associated with close
to elimination of bacteria population and full elimination of PMN
population. It was also associated with the highest population
counts for both agent types in the first few days of the infection
(Figure 3). The results presented that bacteria and PMN tended
toward a steady asymptotic non-null state, regardless of the
inoculum infection state. With regards to bone tissue damage, the
first response stage had a similar degradation phase of the bone
infected site represented by decreasing count of osteocytes for
each inoculum state, where it was noted that osteocytes passed
by a common minimum level by the 7th-8th day for all three
inoculum states, representing 2% of the loss in the infected site
mass (Figure 3). During the recovery phase, it was observed
that the smallest inoculum infection state caused the most severe
and relatively stable loss on bone cells by 12th day, the medium
inoculum infection state showed better progressive recovery,
and the high inoculum infection state displayed an intermediate
recovery, with sub-optimum recovery at 300 h. The displayed loss
of bone tissue compared to baseline for each inoculum infection
state was 1.4, 1.2, and 1%, respectively (Figure 3).

The 3D representation of the relation between two types
of agents over time suggested minimum levels of bacteria and
PMN population count around the fourth day of infection,
while it suggested a delay in minimum levels of population in
osteocytes count with regard to the minimum levels of bacteria
and PMN (Figure 4).

DISCUSSION

The incidence rate of post-operative/post-traumatic infections
is showing an important annual increase due to the rising in
arthroplasties procedures associated with mounting risk factors
such as diabetes and peripheral vascular disease, in addition
to the variation in the population’s age structure (Walter
et al., 2012). BJI are complex and characterized by different
patterns of bacteria progression and different hypotheses in
the literature. The lack of strong evidence is exacerbated by
indefinite possible dynamic processes and interactions at cellular
and molecular levels. This infection is characterized by high
divergence during inter and intra infected cases, and by multi pre-
defined variables, making it difficult to rely on classical statistical
models. By integrating the ABM modeling technique along with
the knowledge from the literature review, this study introduced
an innovative in silico experimental environment to explain the
hypotheses and knowledge in the literature and investigate the
role and dynamics of other interactions that could be proposed.
The developed model offers a means to test the impact of
several factors on the infected tissue. Through this model, this
study illustrated the role of bacterial virulence and host defense
state that identify the consequences of bacterial invasion to the
bone. Although the simulations are at the preliminary levels
with regards to their accuracy and validity, several interesting
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FIGURE 3 | The mean and standard deviation (SD) for 100 iterations for agent populations over time, t = 300 h, at three inoculum infection states of bacteria (5, 50,
500 CFU/mm2). (A1–A3) Show the mean and SD of the bacteria population over time. (B1–B3) Show the mean and SD corresponding to neutrophils population.
(C1–C3) Represent mean and SD for osteocytes population. First, second and third columns represent the results for inoculum infection states of low (5 CFU/mm2),
medium (5 × 10 CFU/mm2), and high (5 × 102CFU/mm2) bacteria respectively.

outcomes were observed that would certainly provide insights
into the BJI dynamics.

Observation
For the proposed inoculum infection states, on the12th day,
the observed bacterial population for the inoculum of the
order of 100 was stable and not extinct, which could also
be considered as an indication for latent infection. Since the
PMN populations followed, in the same manner, the bacteria
populations but in a slight delay to reach the stable non-null
levels on the 12th day, it could also be used as an indication
of the latent infection. If so, it should be validated in terms of
PMN count in the biological laboratory test. In addition, the
relationship between the osteocytes and the inoculum infection
state raises the question of whether it states a restitutio ad
integrum for the medium infection state that introduced the best
progressive recovery.

Further, the observed stable non-extinct level of bacteria
population 10 days after the infection showed the inability of the

innate immune cells to completely eliminate the bacteria. This
points out the imperative role of further defense methods: the
adaptive immune response, which initiated by the 4th–7th day
post the infection, and the need for therapeutic intervention.

In terms of population fluctuations (intra-simulation), the
observed small variance within the bacterial population dynamics
highlighted their stable behavior even with the rapid, strong
oscillation which could be an artifact of the internal clock
management in NetLogo algorithm. The fluctuations observed in
the PMN population had a less important effect compared to the
bacterial state, which reflects a spatial impact. In fact, greater the
probability that a PMN encountered a bacterium, more likely it
would have reacted, which ultimately reduced the fluctuations.

On the other hand, the predicted high-frequency oscillating
trend of the osteocytes population after t = 200 h was unexpected.
It was expected to display a rapid decreasing phase, and then
a slower increasing phase. This considerable fluctuations in the
osteocytes population appeared interesting as it could partially
explain the inter-individual variability. Further, these fluctuations
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FIGURE 4 | 3D surface graphs to analyze the relationships between two types of agents over time at inoculum infection states of bacteria (50 CFU/mm2). In the top,
the graph shows the relationship between bacteria vs. osteocytes (OS) population over time for the three initial inoculum values. The second row corresponds to the
osteocytes (OS) vs. neutrophils (PMN) population over time. The third row shows the relationship of neutrophils (PMN) vs. bacteria populations over time.
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increased in intensity over time, raising the question if it could
be explained as a pre-chaotic behavior “positive feedback.” It
was also noted that the PMN and the bacteria populations reach
their minimum levels simultaneously before rising again. This
weakness in the innate immune response could provide a better
possible window to start the therapeutic treatment.

Strengths
The BJI system model developed in this study is the first
to incorporate experimental data with the ABM modeling
approach and extract information in the form of a dynamic
system and it lays the foundations for an in-depth and detailed
BJI simulation system. The interactions between the agents
and signals provide a comprehensive ability to analyze the
system considering the spatial characteristics and the inter-
agent variability. Additionally, the observed results corroborate
with clinically and microbiologically available pathophysiological
pathways and they are generally in line with expectations, as that
the investigated populations move toward equilibrium (Wagner
et al., 2003). This model has also shown its predictive ability for
the evolution of bone mass with respect to bacterial inoculum
states and time. The proposed model framework introduces a
flexible and interactive virtual laboratory to test and explain
several existing hypotheses or even to design new ones.

Limitations
One of the major limitations of the ABM approach is that it
generally cannot be released simply, unless the entire model is
given. Evidence is also difficult to obtain, and implementation
details can cause many problems. For that, we had to start with
a less complex model (at the same time integral one) and to build
later upon it. The developed model presents certain limitations,
and all the results should be evaluated within the framework of
these limitations. The first limitation is model validation due to
the lack of experimental data, which might be acquired at a later
stage (e.g., the bone mass). The 2D representation represents a
limitation with regards to the ability of agents to interact in a 3D
space. However, we adopted the simplicity in building this first
model aiming at developing a feasible modeling framework and
understanding the complex integration of available physiological
data with the ABM modeling framework. Future work is aimed
at enhancing the model by a more realistic architecture, tissue
specification, and patient-based data. The current model lacks
the second stage of the immune response, the adaptive immune
response, which is necessary to investigate the further progression
of the infection. The bacteria biofilms, which are lacking in the
current model, also play an important role in identifying the
behavior of the bacteria itself and the system response due to
their resistance to immune defense and antibiotic agents. Since
biofilms are common during this infection, it is worthwhile to
model them in the future. In this model we were limited to
S. aureus, other pathogens will be investigated in the future. In
this first model, the BJI was modeled without prostheses, which
will be added in the future. Other agents including bacterial
survival factors have a significant contribution in introducing
an additional approximation to mimic the real system. The
adaptability of the present model depends on the type of

modifications that are foreseen. All modifications needed would
be investigated through the same process we described in this
study: first, identify if (i) new agents (e.g., cells) should be
integrated and (ii) already modeled interactions are sufficient
or should be modified or completed by new ones; second, list
all relevant parameters and parameters values related to these
modifications through literature search; finally, model agents,
messengers and implement parameters values in the new model.
This process can be applied if we want to introduce variants or
new pathogens that may interact with each other and with the
existing agents or if we want to model cancellous bone rather
than cortical bone or if children and adults BJIs differ from
critical aspects.

Vision
This work has drawn attention toward the incorporation
between modeling power and current literature using the ABM
modeling framework of infection dynamics. It also highlights the
progression of the simulation environment that generates data
that would be used in the extraction and synthesis of the model
in the form of differential equation systems. This model could in
fine be integrated within a global predictive approach to propose
more personalized therapeutic treatments. The future global
approach would combine microbiological and imaging data of
the patient to extract infection parameters (bacteria, immune
system) and patient-specific bone morphology. As further data
are made available, the model would be refined to better
estimate an in-depth comprehension of BJI’s pathophysiology.
Furthermore, studying the dynamics of the BJI including critical
parameters such as the agent interactions and cross-talk signals
could make it possible to test new or alternative therapeutic
pathways for their efficacy.
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