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A central approach for better understanding the forces involved in maintaining protein
structures is to investigate the protein folding and thermodynamic properties. The effect
of the folding process is often disturbed in mutated states. To explore the dynamic
properties behind mutations, molecular dynamic (MD) simulations have been widely
performed, especially in unveiling the mechanism of drug failure behind mutation. When
comparing wild type (WT) and mutants (MTs), the structural changes along with solvation
free energy (SFE), and Gibbs free energy (GFE) are calculated after the MD simulation, to
measure the effect of mutations on protein structure. Pyrazinamide (PZA) is one of the
first-line drugs, effective against latent Mycobacterium tuberculosis isolates, affecting
the global TB control program 2030. Resistance to this drug emerges due to mutations
in pncA and rpsA genes, encoding pyrazinamidase (PZase) and ribosomal protein S1
(RpsA) respectively. The question of how the GFE may be a measure of PZase and RpsA
stabilities, has been addressed in the current review. The GFE and SFE of MTs have
been compared with WT, which were already found to be PZA-resistant. WT structures
attained a more stable state in comparison with MTs. The physiological effect of a
mutation in PZase and RpsA may be due to the difference in energies. This difference
between WT and MTs, depicted through GFE plots, might be useful in predicting the
stability and PZA-resistance behind mutation. This study provides useful information for
better management of drug resistance, to control the global TB problem.

Keywords: GFE, wild type, mutants, PZase, RpsA, resistance

INTRODUCTION

Evolution may have optimized proteins to perform proper functions, native to the host
organism, in different environmental conditions. Pharmaceutical industries desire changes in the
thermodynamic properties of a protein (Liszka et al., 2012; Gapsys et al., 2016) to enhance the
thermal stability, improving the protein–protein interactions. These desired changes are oftenly
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GRAPHICAL ABSTRACT | Most of the functions are performed by DNA, RNA, and proteins molecules. Mutations in these molecules may affect the dynamic
properties and free energies, results in weak or loss of interactions.

accomplished by mutations, and the free-energy changes are
predicted to gain the desired properties. However, natural
mutation in drug target may cause a resistance to the therapeutic
drugs. Such mutations pose a great threat to the treatment
of major infectious diseases. Understanding the forces like
thermodynamic properties and protein folding involved in
maintaining the protein structures, is of central interest when
working on drug resistance. The folding process is most often
affected by mutations (Carra and Privalov, 1996). To explore
the dynamic properties behind mutations, molecular dynamic
(MD) simulations have been widely performed, and have been
especially useful in unveiling the mechanism of drug failure
behind mutation (Carter Childers and Daggett, 2017; Dong
et al., 2018; Hashemzadeh et al., 2019; Kaushik et al., 2019).
MD simulation studies of ligand-protein interactions are a
widely applied approach for explaining the mechanisms of
drug resistance behind mutations (Aggarwal et al., 2017; Carter
Childers and Daggett, 2017; Bera et al., 2018; Liu et al.,
2018; Pandey et al., 2018; Ishima et al., 2019). During in vivo
analysis, the crystal structure is analyzed for drug resistance.
However, it can be formed based on some experimental
conditions where none of the protein-drug complexes provide
the mechanism of resistance, and none of the structures can
be attained by X-ray. Investigating the insight mechanism at
molecular level, MD simulation has got a certain advantage over
experimental approaches of exploring drug resistance behind
mutations (Liu and Yao, 2010; Khalaf and Mansoori, 2018;
Liu et al., 2018; Meng et al., 2018; Mehmood et al., 2019).
Furthermore, the dynamics and residues level analysis could be

performed which was difficult to achieve through experimental
approaches (Hou et al., 2008; Xue et al., 2012; Ding et al., 2013;
Khan et al., 2018).

The effect of mutations on a protein complex is experimentally
performed by different methods including isothermal titration
calorimetry (ITC) (Ghai et al., 2012), surface plasmon resonance
(Masi et al., 2010), Fluorescence resonance energy transfer
(FRET) (Phillip et al., 2012), and some other procedures as
described earlier (Kastritis and Bonvin, 2013). However, all these
techniques are considered to be time consuming as well as costly.
The mechanism of resistance behind mutation is of key interest
where free energy is commonly altered. To estimate changes in
the thermodynamics of wild types and mutant proteins, MD-
based free energy calculations allow a precise measurement of
changes (Aldeghi et al., 2019). Gibbs free energy (GFE) or free
enthalpy (Greiner et al., 1995; Matthews, 2000; Li et al., 2014;
Rietman et al., 2016) can be used to estimate the maximum
level at which the process is reversible, performed through a
thermodynamic system. The GFE is the non-expansion work,
calculated from a thermodynamically closed system where this
maximum can be achieved individually in an entirely reversible
procedure. The reversible transformation of a system is going to
decrease in GFE, from initial state to a final state, equal to the
work done by the system to its surroundings, minus the work of
the pressure forces (Matthews, 2000).

The most common cause of drug resistance is mutation
in the target proteins (Thomas et al., 1996; Bell et al., 2005;
Wang et al., 2007; Ashworth, 2008; Yun et al., 2008; Tyagi
et al., 2013; Reiche et al., 2017; Palzkill and Palzkill, 2018;

Frontiers in Molecular Biosciences | www.frontiersin.org 2 April 2020 | Volume 7 | Article 52

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00052 April 7, 2020 Time: 19:5 # 3

Khan et al. Gibbs Free Energy of Mutations

Yang et al., 2018). Pyrazinamidase (PZase) has three major
regions, 3–17, 61–85, and 132–142, associated with PZase
catalytic activity (Lemaitre et al., 2001; Sheen et al., 2009).
However, Yoon et al. reported that mutations which occurred far
from the active site might be involved in altering the catalytic
property by changing the protein folding and expression rate
(Sheen et al., 2009; Rajendran and Sethumadhavan, 2013; Yoon
et al., 2014; Yadon et al., 2017). Amino acid substitution of
a protein’s structure may result in drastic effects, especially
on the binding pockets and its surroundings (Worth et al.,
2009; Ganesan and Ramalingam, 2018) or they may have long-
ranging effects (Kosloff and Kolodny, 2008). The second major
cause behind PZA resistance is mutations in RpsA. In MTB
it has four S1 domains (amino acids from 36–105, 123–188,
209–277, and 294–363) (Salah et al., 2009). Residues, F307,
F310, H322, D352, and R357 are present in RNA binding sites,
involved in proper function (Bycroft et al., 1997). Residues in
the fourth S1 domain, which is known as a highly conserved
region and is able to interact with pyrazinoic acid (POA), the
active form of PZA.

The internal motion of the system is measured using
Principal Component Analysis (PCA), which is performed on
the mass-weighted cartesian coordinates, and the long dynamics
are able to recognize low modes in proteins (Jencks, 1981;
Rajendran et al., 2018). In a long trajectory, PCA reduces
the complicated motion (Novotny, 1991; Zídek et al., 1999;
Datar et al., 2006). In a comparative analysis of two sets of
proteins, a transformed set of variables z1, z2. . ., zp called
principal components (PCs) where the PC1 and PC2 are the
first two components, give the trajectories on the primary
two principal components of motion (Verma et al., 2008;
Martis et al., 2015).

Binding free energy calculations yield either absolute free
energies (Molecular mechanics generalized Born surface area
and Molecular mechanics Poisson–Boltzmann surface area) or
relative free energies (Alchemical method) (Michel and Essex,
2010; Chodera et al., 2011; Mobley and Klimovich, 2012).
Alchemical free energy calculations work by introducing a series
of intermediate unphysical states spanning between the desired
end states. Molecular docking combined with MD simulations
followed by Molecular mechanics Poisson–Boltzmann surface
area (MM/PBSA) analysis is an efficient approach for Free
energy calculation. The results of MM/PBSA are in reasonable
agreement with previous experiments (Wang and Kollman, 2000,
2001; Wang et al., 2001) and less computationally demanding
than alchemical free energy methods. These two methods
have been widely applied in biomolecules such as protein
folding, protein–ligand binding, protein–protein interaction, etc.
(Hou, 2010; Xu et al., 2013; Chen et al., 2015, 2019; Sun
et al., 2018; Wang et al., 2019). MM-PBSA and Molecular
Mechanics/Generalized Born Surface Area (MM/GBSA) have
been the two most efficient methods to rapidly evaluate binding
ability and to compute binding free energies (Hou, 2010;
Sun et al., 2014a).

In previous studies, we have investigated the PZA drug
sensitivity testing and then sequencing to find mutations in
pncA and rpsA genes associated with PZA-resistance (Khan

et al., 2018,a, Khan et al., 2019c) (Accession No. MH461111).
MD simulation of some MTs in comparison with WT have
been investigated as the cause behind resistance (Junaid et al.,
2018; Khan et al., 2018,a,c, 2019b; Rehman et al., 2019). In the
current paper, we aimed to reanalyze the free energy differences,
predicted via MM/GBSA and MM/PBSA, of WT and MTs that
may be applied as a measure of stability in the binding affinity of
drug and targets.

MATERIALS AND METHODS

Mutants Selection in pncA
The primary cause behind PZA resistance have been associated
with mutations in the pncA gene. The majority of studies have
been conducted to investigate the drug resistance mechanism
behind mutation by analyzing the root mean square deviation,
root mean square fluctuation, and motion of MTs and WT
PZase. However, the comparison of free energy as a mechanism
of changes that occur behind a mutation is required to be
investigated for better understanding of PZA-resistance. Here
we selected N11K, P69T, D126N, L19R, R140H, and E144K to
analyze the effect of mutations on free energy by comparing the
MTs and WT (Junaid et al., 2018; Khan et al., 2018,a). A three-
dimensional structure (PDB ID 3pl1) was retrieved from the
Brookhaven Raster Display (BRAD) protein data bank (PDB)
(Berman et al., 2000). Using the mutate_Model script of Modeller
(Webb and Sali, 2016) and PYMOL (DeLano, 2002), mutants
were created at specific locations.

Mutants Selection in rpsA
In our previous study (Khan et al., 2018,b), we detected
mutations, S324F, E325K, G341R, D342N, D343N, A344P, I351F,
T370P, and W403G in the conserved region (292–363) called
C-terminus RpsA (MtRpsACTD) of the rpsA gene in PZA
resistance isolates. The crystal structure of RpsA (Yang et al.,
2015) (PDB ID 4NNI) was retrieved from PDB Databank, and
all the water of crystallization was removed. Mutants were
generated at positions S324F, E325K, G341R, D342N, D343N,
A344P, I351F, T370P, and W403G using PYMOL (DeLano,
2002). Free energy differences between MTs and WT RpsA
from our previous papers (Khan et al., 2018c, 2019b; Rehman
et al., 2019) were re-analyzed. PZA is a prodrug, activated by
MTB encoded pncA into POA, targeting RpsA. POA-resistance
may occur when mutations arise at the C-terminus of RpsA
(MtRpsACTD), causing conformational changes (Yang et al.,
2015; Huang et al., 2019; Khan et al., 2019a; Shi et al., 2019;
Singh et al., 2019; Zhi et al., 2019). Residues in the fourth
S1 domain, which is known as a highly conserved region,
were able to interact with POA (Shi et al., 2011; Yang et al.,
2015). The C-terminal region of RpsA is the drug binding site,
replacing the transfer-messenger RNA (tmRNA) complex during
the translation process (Shi et al., 2011).

Protein-Ligand Interaction
Protein and ligand structures were prepared as described in
earlier studies (Aggarwal et al., 2017; Friesner et al., 2004)
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using MOE. Incorrect hydrogen atoms were corrected and
selenomethionine were changed into methionine. Protein–drug
interactions were examined in MOE as a flexible docking. WT
and MTs structure were subjected to MD simulations in apo and
complex with the drug.

Molecular Dynamics Simulation (MD)
MD simulation was performed on all the MTs and WT
using the Amber14 package (Salomon-Ferrer et al., 2013; Sun
et al., 2014a,b) with the ff14SB force field. The TIP3P water
model was used to solvate each system and counterion were
added to neutralize the system (Jorgensen et al., 1983). The
neutralized systems were minimized with the steepest descent
minimization step (6000 cycles) and conjugate gradient (3000
cycles) followed by heating upto 300K. The systems were
equilibrated at 1 atm and 300 K. For control of the temperature,
the Langevin thermostat was turned on. For Long-range
electrostatic interactions, the Particle Mesh Ewald algorithm
was used (Darden et al., 1993; Essmann et al., 1995) and the
treatment of the covalent bonds was performed with the SHAKE
algorithm (Ryckaert et al., 1977). The production step of MD
simulation was performed with pmemd code 30 (Götz et al.,
2012). The cpptraj package in Amber 14 was used to analyze
the trajectories.

Principal Component Analysis and Gibbs
Free Energy Calculation
The high fluctuations in residues of protein were captured
through principal component analysis (PCA) (Amadei et al.,
1993) while variation in GFE values has been accounted for
in the calculation of stability level in proteins molecules to
perform proper function (Rajendran et al., 2018; Martis and
Coutinho, 2019; Sohaib Shahzan et al., 2019). GFE calculation
is a useful process for understanding the thermodynamic
properties of antibody-antigen complex formation and proteins-
proteins interactions (Jencks, 1981; Novotny, 1991; Zídek
et al., 1999). Using a cpptraj package, the covariance matrix
was calculated considering only the Cα coordinates followed
by the diagonalization to calculate the eigenvectors and
eigenvalues. PCA was calculated from the trajectory, containing
5000 snapshots. PC1 and PC2, the first two components,
were used for the plotting. The binding free energy was
calculated as described in previous studies (Sun et al., 2014a,b;
Martis and Coutinho, 2019).

1Gbind = Gcomplex − (Gprotein + Gligand) (1)

The binding events involved many interactions (Wang and
Wade, 2001; Datar et al., 2006; Verma et al., 2008; Martis et al.,
2015), therefore the classical binding free energy equation may
be written as follows:

1Gbind = Gsol + Gconf + Gint + Gmotion (2)

In equation 2, Gsol: solvation energy, Gconf : conformational
energy, Gint energy due to interaction with residues in the
vicinity, Gmotion: energy of motions (translational, rotational,
and vibrational).

The free energy landscape (FEL) was developed using g_sham
module to capture the lowest energy stable state. The deep valleys
on a plot show the stable state while the boundaries between deep
valleys represent the intermediate conformations (Hoang et al.,
2004). The first two principal components were used to calculate
the FEL based on the equation:

1 G(PC1, PC2) = − KBTlnP(PC1, PC2) (3)

PC1 and PC2 are reaction coordinates, KB symbolizes
the Boltzmann constant, and P (PC1, PC2) illustrate the
probability distribution of the system along the first two
principal components.

The changes in enthalpy (1H), standard free energy (1G),
and entropy (1S) are calculated using the following equation
(Basu, 2010; Gautam and Chattopadhyaya, 2016);

1 G = 1 H −−T1 S (4)

Where, 1H = Enthalpy, T = temperature in Kelvin,
1S = entropy, 1G = Gibbs Free Energy.

In the current review we analyzed the GFE of MTs and
WT PZase and RpsA that might be useful to measure the
resistance among drug target proteins for better management of
drug resistance.

Solvation Free Energies of Wild Type and
Mutants
The solvation free energy is the product of the atomic solvation
parameter and the accessibility of the atom to the solvent. This
method estimates the relative stability of protein conformations,
and estimates the free energy of proteins binding to ligands
(Eisenberg and McLachlan, 1986). The stability and fluctuation of
protein are measured through the solvation. Protein and solvent
interactions at atomic level is quantified by solvation free energy
(SFE). Free energy of protein hydration (solvation) is carried
out with explicit solvent and all-atom treatment (Weber and
Asthagiri, 2012; Kokubo et al., 2013; Matubayasi, 2017). Here we
calculated the Solvation Free Energy (1Gsolv) of WT and MTs
PZase and RpsA to find the effect of mutation on the proteins
solvation free energy.

RESULTS AND DISCUSSION

PCA and Entropy
Intra-protein information is transmitted over distances via
allosteric processes. This ubiquitous protein process allows
for protein function changes due to ligand binding events.
Understanding protein allostery is essential in protein functions.
Allostery in the protein has been inspected using a rigid residue
scan method along with configurational entropy calculation and
PCA. Based on a covariance correlation analysis of simulations,
the contributions from individual residues to whole-protein
dynamics have been systematically assessed and the entropic
contributions of individual residues to whole-protein dynamics
were also evaluated. When individual residues are held rigid, the
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FIGURE 1 | Gibbs free energy of PZase and mutants (N11K, P69T and D126N) in apo and complex state with PZA. The Gibbs free energy landscape for wild and
mutated proteins in their apo and wild states is depicted along with their value bars against PC1 and PC2. Noticeable differences can be observed. The red color
represents the high energy state, yellow and green low and blue represents the lowest stable state. (A) WT apo (without bound PZA) in comparison with MTs apo
have been shown (C,E,G). (B) WT complex (bound with PZA) in comparison with MTs complex (D,F,H).

variations of overall protein entropy favor the rigidity/flexibility
equilibrium in protein structure. Further, the change of entropic
contribution from each residue has been linked to the intrinsic
differences among all the residues. These findings provide a
systematic approach to dig out the contribution of individual
residue’s internal motion to overall protein dynamics and
allostery (Bhakat et al., 2014; Kalescky et al., 2016).

Gibbs Free Energy Comparison Between
Wild Type and Mutant in PncA
Geographically distinct and novel mutations have been detected
in our recent studies (Khan et al., 2018,b, Khan et al., 2019c)

after the drug susceptibility testing followed by pncA and
rpsA sequencing of PZA resistance Mycobacterium tuberculosis
isolates. Changes in values of GFE might be important in
calculating the stability of proteins’ confirmation. In order
to explore the protein conformational shift from WT to
mutant, the GFE for the first two principal components
(PC1 and PC2) has been calculated. The energy landscape
of both the apo and complex states of WT, and three
mutants, N11K, P69T and D126N have been shown in
Figure 1. The minimum energy area is indicated by the
blue color. WT protein shows a clear large global energy
minima basin (in blue), whereas the MTs reveal several
different energy minima states. The blue areas depict more
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FIGURE 2 | Gibbs free energy of PZase and MTs (L19R, R140H, and E144K) in apo and complex state with PZA. (A,B) GFE peaks of WT apo and complex with
PZA. (C,E,F) MTs apo. (D,F,H) MTs complex with PZA. GFE plots of WT and MTs shows a significant difference in stability states behind mutations involved in PZA
resistance (Khan, 2019).

stability while more blue areas indicate transitions in the
protein conformation followed by the thermodynamically
more favorable state. The WT shows low energy state as
compared to the MTs. The result demonstrates that native
PZase has a more stable cluster as compared to the MTs
that might be involved in low binding affinity with PZA,
causing resistance (Junaid et al., 2018; Yang et al., 2018).
Calculating the GFE in case of PZA resistance might be
a useful way to analyze the MTs stability and also aid in
alternative drug discovery.

The differences in GFE values of WT and MTs PZase,
L19R, R140H, and E144K showed that mutations may alter
the stability (Figure 2) which could be a measure to evaluate
the PZA resistance.

Gibbs Free Energy Comparison Between
Wild Type and Mutants RpsA
A number of mutations, S24Phe, E325K, G341R, D342N,
D343N, A344P, I351F, T370P, and W403G have been detected
in the conserved region (292-363) called C-terminal domain
(MtRpsACTD) of the RpsA (Table 1) in our previous studies
among PZA resistance isolates of Mycobacterium tuberculosis
(MTB) (Khan et al., 2018,b, Khan et al., 2019b; Rehman
et al., 2019). The MtRpsACTD is the POA binding site. All
these MTs at 100 and 50 ns of MD simulations showed

TABLE 1 | Mutations in RpsA gene in PZA resistant pncAWT isolates (Khan et al.,
2018,c).

NO. Base Position Codon Codon Change Amino Acid Change

1 76delA 26 ATA Ile26FRAME

2 220G > A 74 GTC > ATC Val74Ile

3 278A > G 93 AAG > AGG Lys93Arg

4 618G > A 206 TTG > TTA Leu206Leu

5 636A > C 212 CGA > CGC Arg212Arg

6 830A > G 277 AAG > AGG Lys277Arg

7 971C > T 324 TCC > TTC *Ser324Phe

8 973G > A 325 GAG > AAG *Glu325Lys

9 1021G > C 341 GGC > CGC *Gly341Arg

10 1024G > A 342 GAC > AAC *Asp342Asn

11 1027G > A 343 GAC > AAC *Asp343Asn

12 1030G > C 344 GCG > CCG *Ala344Pro

13 1051A > T 351 ATC > TTC *Ile351Phe

14 1108A > C 370 ACC > CCC *Thr370Pro

15 1207T > G 403 TGG > GGG *Trp403Gly

*Mutation detected in C-terminus RpsA (MtRpsACTD)

significant change in the structure and activity of RpsA
(Figures 3–5).

A native RpsA structure has the minimum GFE,
exhibiting significant variations when compared
with MTs, D342N, D343N, A344P and I351F
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FIGURE 3 | Gibbs free energy (GFE) of WT and MTS, D342N, D343N, A344P, and I351F in apo and complex states. Wild type has a significant GFE difference to
MTs as indicated by the color of the GFE plot. WT exhibited a more stable state as compared to mutants. POA resistance might be due the GFE states altering the
affinity of RpsA (Khan et al., 2019b).

FIGURE 4 | Comparison of Gibbs free energy of MTs and wild type RpsA. WT exhibited a significant difference in GFE as indicated by the peak color of GFE plot.

(Figure 3). The color (red) in the plot is more
prevalent in mutants, and seems less stable when
compared with WT.

The differences in GFE values of other MTs RpsA (S324F,
E325K, and G341R) has been shown (Figure 4), revealing
that they may have altered the stability of MTs RpsA. WT
attained a significant value in comparison with MTs (Figure 5).
The peak color in both states of the native is seems to be
more stable, indicating the importance of GFE calculation

when measuring the effect of mutation on proteins dynamics
characteristics.

In a more insightful study of WT and MTs, T370P and
W403G RpsA, the comparison shows a significant difference not
only in GFE states but also a difference in the loop structure
(Figure 5). The loop structure in MTs is seemed to be more
open in both apo and complex with POA. These changes may
cause POA resistance, resulting in weak or no binding with RpsA.
Further, the high energy state might be involved to exhibit a
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FIGURE 5 | Gibbs Free energy Landscape of WT and MTs (T370P and W403G) in apo (A) and complex states (B). WT exhibited a GFE difference as indicated by
the color of the plot. RpsA structure was analyzed at 10, 20, 30, 60, 70, and 90 ns shows variation among the loop and starting residues in ST1, ST2, ST3. The loop
and starting residues of proteins are more open at 90 and 70 ns. ST, stable state; mST, metastable state.
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more open loop residue. However, further confirmation through
experimental approaches will enhance the understanding of low,
medium, and high levels of POA resistance.

The differences in GFE values may have effects on the
binding affinity and the stability calculation, resulting in weak
interactions or loss of interactions with POA. In a farther
site mutation, WT exhibited a significant difference in GFE
in comparison with mutants, T370P and W403G (Figure 5).
Mutations in C-terminal site of RpsA might be involved
in the alteration of GFE, resulting in a loss of binding
affinity with the drug.

Solvation Free Energies of Wild Type and
Mutant PZase and RpsA
Hydrogen bonding is an important part of molecular interactions
where the solvent is water. Free energy of protein hydration
(solvation) is carried out with explicit solvent and all-atom
treatment (Weber and Asthagiri, 2012; Kokubo et al., 2013;
Matubayasi, 2017). The solvation free energy is the product
of the atomic solvation parameter and the accessibility of
the atom to the solvent. This method estimates the relative
stability of protein conformations, and free energy of proteins
binding to ligands (Eisenberg and McLachlan, 1986). Protein
and solvent interactions at an atomic level is quantified
by solvation free energy (SFE). The Solvation Free Energy
(1Gsolv) of WT and MTs have been given (Table 2).
Interestingly the MTs PZase exhibited a decreased level of
SFE than WT except P69T (−681.60) and D126N (−385.29).
Similarly during the investigation of protein kinetics and
thermodynamics, the MTs, Y91Q exhibited a decreased SFE
and hydrophobicity compared to WT. This may be due to
the more exposed and solvated hydrophilic side chains in the
R1-region in acylphosphatase (Chong et al., 2011). Another

important property while studying the protein thermodynamics
is the energy of solvation (ES), recorded when dissolving a
solute in a solvent. A positive and negative SE represents
endothermic and exothermic processes respectively. This process
of solvation is thermodynamically favored only when the
overall GFE of the solution is decreased, as compared
to the GFE of separated solvent and solute. A negative
value is obtained when the change in enthalpy minus the
change in entropy is multiplied by the absolute temperature
or GFE of the system decreases. All the MTs exhibited
lower ES than WT except P69T and D126N (Table 2).
Similarly MTs RpsA attained a much lower ES than WT
except E325K. Entropy of WT and MTs has been found in
significant variation, a measure of a system’s thermal energy
per unit temperature, unavailable for useful work. Molecular
disorder, or randomness, of a system may also be measured
through entropy (Chong and Ham, 2012; Caro et al., 2017;
Verteramo et al., 2019).

Overall, SFE changes by point mutation in PZase and
RpsA casusing PZA-resistance during TB treatment regime.
The SFE is commonly influenced by the hydrophilic
residues. In a previous study the SFE of Y91Q has been
found lower by 25.1 kcal/mol than WT acylphosphatase,
indicating that Y91Q is less hydrophobic (Chong and
Ham, 2011; Chong et al., 2011). Two mutations (R1s40H,
E144K) that have been detected in α-helix of PZase
exhibited the lowest SFE and SE as shown (Table 2 and
Figures 6, 7). All the MTs RpsA attained lower SFE
and SE than WT except E325K and G341R. Further,
the solvation entropy of all the MTs is higher than WT
(−3664.43 kcal/mol) except E325K (−3682.23 kcal/mol) and
G341R (−3705.82 kcal/mol). The standard deviation of total
free energy has also been given in Table 1 and along with
Supplementary Table 1.

TABLE 2 | Comparison of solvation energies of wild types and mutants PZase and RpsA.

PZase Solvation Free Energy (1Gsolv) Solvation Energy (1Esolv) Solvation Entropy (T1Ssolv) SD* (T1Ssolv) SD Free Energy

WT-PZase −772.70 −46.1984 −38.4714 0.2716 2.8375

N11K −12.0446 −50.9215 −38.8769

P69T −6.8160 −45.7975 −38.9815

D126N −3.8529 −42.6047 −38.7518

L19R −14.3924 −53.0405 −38.6481

R140H −22.1441 −60.5053 −38.3612

E144K −11.5408 −49.7881 −38.2473

WT RpsA −10.0013 −46.6455 −36.6443 5.2244 0.3518

S324F −12.0042 −48.2927 −36.2885

E325K −6.9712 −43.7935 −36.8223

G341R −9.9028 −46.9610 −37.0582

D342N −27.7402 −54.6808 −26.9406

D343N −27.2003 −53.3689 −26.1685

A344P −32.2376 −57.0564 −24.8188

I351F −29.1930 −5780.69 −28.6139

T370P −13.5490 −50.0132 −36.4642

W403G −14.0142 −50.2518 −36.2376

SD*, standard deviation.
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FIGURE 6 | Wild type and mutants PZase structures. Majority of the MTs have been detected in the loop region except (F,G). Fe+2 ion parameters have been
adjusted in Supplementary Table 1.
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FIGURE 7 | Wild type and mutants RpsA structures. MTs have been highlighted at their original positions. (A) POA interacting residues have been shown. (E,I,J)
Mutations in loop region. (B–D) Superimposed MTs and WT. (F–H) Mutations in helix regions.

CONCLUSION

In the current analysis GFE along with SFE and SE of WT
and MTs exhibited a significant difference which might
be useful in predicting the drug resistance level behind
mutations in PZase and RpsA. Molecular dynamics simulations,
binding free energy, and PCA clearly show the impact
of mutations on thr thermodynamics of proteins. These
findings depict that mutations affect the overall enzyme’s
conformational landscape and distort the atomic interaction
network. The GFE differences provide rapid potential, key
for further designing of novel inhibitors to combat MTB
resistant strains. The physiological effect of mutations
in drug targets might be due to the energy differences.
Evolutionary pressures might have maintained a protein
folding integrity and stability while mutations may have
decreased and posed severe consequences in disturbing bonds
of intrinsic energy. The level of resistance might be analyzed
through further experimental analysis and alternative drug
discovery for better achieving the goals of the global TB
eradication program 2030.
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