
fmolb-07-00057 April 10, 2020 Time: 17:59 # 1

REVIEW
published: 15 April 2020

doi: 10.3389/fmolb.2020.00057

Edited by:
Angela Gritti,

San Raffaele Scientific Institute
(IRCCS), Italy

Reviewed by:
Alessandro Fraldi,

Telethon Institute of Genetics
and Medicine, Italy

Maria Irene Givogri,
The University of Illinois at Chicago,

United States

*Correspondence:
Daesung Shin

daesungs@buffalo.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Diagnostics
and Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 28 January 2020
Accepted: 20 March 2020

Published: 15 April 2020

Citation:
Favret JM, Weinstock NI, Feltri ML

and Shin D (2020) Pre-clinical Mouse
Models of Neurodegenerative
Lysosomal Storage Diseases.

Front. Mol. Biosci. 7:57.
doi: 10.3389/fmolb.2020.00057

Pre-clinical Mouse Models of
Neurodegenerative Lysosomal
Storage Diseases
Jacob M. Favret†, Nadav I. Weinstock†, M. Laura Feltri and Daesung Shin*

Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine
and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States

There are over 50 lysosomal hydrolase deficiencies, many of which cause
neurodegeneration, cognitive decline and death. In recent years, a number of broad
innovative therapies have been proposed and investigated for lysosomal storage
diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic
chaperones, stem cell transplantation, and various forms of gene therapy. Murine
models that accurately reflect the phenotypes observed in human LSDs are critical for
the development, assessment and implementation of novel translational therapies. The
goal of this review is to summarize the neurodegenerative murine LSD models available
that recapitulate human disease, and the pre-clinical studies previously conducted.
We also describe some limitations and difficulties in working with mouse models of
neurodegenerative LSDs.

Keywords: lysosomal diseases, preclinical mouse models, HSCT, enzyme replacement therapy, gene therapy,
chaperone therapy, substrate reduction therapy

INTRODUCTION

The lysosome orchestrates a number of cellular homeostatic processes, primarily focused on the
catabolism of diverse macromolecules. Lysosomes contain more than 50 unique acid hydrolases,
each facilitating the degradation of specific metabolites including glycosides, sulfates, phosphates,
various lipids, phospholipids, proteins and nucleic acids. Lysosomal hydrolases are synthesized in
the ER, tagged with a mannose-6-phosphate (M6P) residue in the Golgi apparatus, and properly
trafficked to the lysosome via M6P receptors. These receptors are also expressed at the plasma
membrane of cells, thus allowing for the internalization of secreted lysosomal enzymes from the
environment (Platt and Walkley, 2004).

Lysosomal storage diseases (LSDs) are a heterogeneous group of inherited diseases, caused
by mutations leading to a deficiency of lysosomal hydrolases or transporters. LSDs lead to the
accumulation of specific substrates within the lysosomal compartment, consequentially triggering
a number of secondary cellular responses that result in cellular dysfunction, death and tissue
damage. Substrate storage causes a wide range of perturbed cellular functions including the loss-
of-function in housekeeping processes and pathways, modulation of signal transduction cascades,
aberrant activation of inflammatory responses, impaired intracellular trafficking of vesicles and
membrane-bound proteins, and disequilibrium of autophagic flux (Walkley, 2009). Although the
nature of substrate accumulation and generalized lysosomal dysfunction is seemingly intuitive,
there are a number of intriguing unanswered questions in the field of LSDs. For example, though
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lysosomal hydrolases are generally ubiquitously expressed, the
lysosomal storage often varies even among neighboring cells
(Marques and Saftig, 2019). This may be explained by a
number of factors including the ability of cells to upregulate the
lysosomal-autophagy pathway (Schultz et al., 2011) or whether
cells have alternate strategies to dispose of stored material
(Schultz et al., 2011; Ferraz et al., 2016).

Due to the heterogeneous accumulation of enzymatic
substrates among multiple tissues and organs, the phenotypes
among LSDs vary widely and often include visceral, ocular,
hematologic, skeletal and neurological manifestations. In
particular, those related to the involvement of the central nervous
system (CNS) may cause progressive neurodegeneration and
severe cognitive impairment. Approximately two thirds of LSD
patients display CNS imparment to some extent, resulting in
progressive neurodegeneration (Parenti et al., 2013). Post-mitotic
cells such as neurons rely heavily on the endolysosomal and
autophagic systems to prevent accumulation of debris that would
otherwise become toxic. Furthermore, the extreme anatomical
architecture of neurons makes the actual sequestration and
degradation of substrates very challenging, as lysosomes have
to travel very long distances from the cell soma to distal axons
and dendrites. On top of all of this, lysosomal and autophagic
functions decrease in aging (Cuervo and Dice, 2000; Lynch
and Bi, 2003; Kurz et al., 2008), further pressuring the system’s
efficiency. Therefore, it is not surprising that many LSDs have
nervous system involvement and that various aging-related
neurodegenerative diseases are caused, at least in part, by
endolysosomal dysfunction. These include Parkinson’s (Anglade
et al., 1997), Alzheimer’s (Nixon et al., 2005), Huntington’s
diseases (Rudnicki et al., 2008), and amyotrophic lateral sclerosis
(Sasaki, 2011) caused by the accumulation of aberrant or
misfolded proteins. Due to the common underlying mechanisms
between LSDs and neurodegenerative diseases, the development
of novel treatments for LSDs may have supplemental benefits
for a larger spectrum of neurodegenerative conditions. Here, we
review currently available mouse models for neurodegenerative
LSDs and discuss how those models have been used for
pre-clinical trials and have helped move therapies forward.

MAIN TEXT

Therapeutic Approaches for LSDs
During the past three decades, research in the field of LSDs
has made marked progress. Innovation of novel therapeutic
approaches has given hope to many where historically the
outlook has been bleak. Some LSDs are now treatable, though
most cannot be treated after symptoms begin. The major
strategy implemented in the treatment of LSDs is to restore
or replace the defective enzyme’s activity. These modalities
include hematopoietic stem cell transplantation (HSCT), enzyme
replacement therapy (ERT), pharmacological chaperone therapy
(PCT) and gene therapy (GT). Alternative approaches include
substrate reduction therapy (SRT), based on reducing the
synthesis of the substrates stored in the lysosomes (Figure 1;
Eisenstein, 2016).

Hematopoietic Stem Cell Transplantation Therapy
Hematopoietic stem cell therapy (HSCT) is one of the more
common treatments of LSDs. HSCT is the main therapy for
mucopolysaccharidosis (MPS) I and Krabbe disease, and has
been used in other LSDs including MPS II, MPS IVA, MPS VII,
metachromatic leukodystrophy and fucosidosis (Poswar et al.,
2019). HSCT allows for the delivery and engraftment of donor
derived stem cells in patients with LSDs. The healthy cells
repopulate in specific tissues and secrete functional lysosomal
hydrolases into the extracellular space and into the blood
circulation. The secreted normal enzyme may be taken up by the
endogenous cells to cross-correct the enzyme deficiency of the
mutated cells (Prasad and Kurtzberg, 2009). Additional benefits
of HSCT have also been speculated to be immunomodulatory.
HSCT-derived macrophages, which have functional lysosomal
enzymes, may be able to better phagocytize dying cells/debris.
Generally, earlier HSCT leads to improved outcomes but is only
efficacious if delivered to pre-symptomatic patients, presumably
before the occurrence of irreversible cell damage. This is
particularly true for the neurologic symptoms of LSDs. Recently,
genetically modified HSCT, termed HSCGT (Hematopoietic
Stem Cell - Gene Therapy) has been used successfully to treat
metachromatic leukodystrophy patients (MLD) (Biffi et al.,
2013; Lorioli and Biffi, 2015) who re-introduced the patients’
own CD34+cells with lentivirus-transfected cells, overexpressing
arylsulfatase A (ARSA). Similarly, MPS IIIA phase I/II clinical
trials of SGSH are currently underway based on an HSCGT pre-
clinical study in MPSIIIA mice (Bhaumik et al., 1999; Ellison
et al., 2019). Alternatively, gene editing approaches have also
been implemented to modify HSCT or induced pluripotent
stem cells (iPSCs) (Mandal et al., 2014; Christensen and Choy,
2017). Other non-LSDs like cerebral adrenoleukodystrophy
(Eichler et al., 2017), have had success treating patients
with HSCGT which has garnered significant attention and
excitement. Furthermore, alternative stem cell transplantation,
like oligodendrocyte progenitor cell implantation (Scaravilli and
Jacobs, 1981, 1982; Scaravilli and Suzuki, 1983; Givogri et al.,
2006) has also been explored in MLD.

Enzyme Replacement Therapy
Enzyme replacement therapy (ERT) consists of periodic
intravenous infusions of recombinant lysosomal enzyme
in patients with LSDs. The first use of ERT was the use of
glucocerebrosidase for Gaucher disease in 1991 (Barton et al.,
1991). ERT has since been used for Farber’s disease, Pompe
disease, MPS types I, II, IVA, VI, and VII and lysosomal acid
lipase deficiency, and is currently being developed for others
(Poswar et al., 2019). It is now possible to mass produce purified
enzyme due to advances in recombinant DNA techniques.
Once injected, the normal recombinant enzymes are distributed
to tissues, internalized by endocytosis and targeted to the
lysosomal compartment, where they replace the defective
enzyme. Receptor-mediated endocytosis underlies the cellular
uptake of lysosomal enzymes with mannose residues that
bind to mannose receptors on the cell surface, as well as M6P
residues that bind to M6P receptors (Platt et al., 2018). A major
limitation of ERT is that not all organs are freely accessible to the
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FIGURE 1 | Depiction of potential therapeutic approaches to correct substrate accumulation of lysosomal storage diseases. (1) Bone marrow transplantation (BMT)
alleviates storage by introducing normal donor-derived macrophages that will cross-correct with viable lysosomal hydrolases and/or phagocytize excess substrate.
(2) Enzyme replacement therapy (ERT) compensates for the loss of endogenous hydrolase activity by providing recombinant enzyme, which could be taken up by
mannose/M6P receptors on the cell surface. (3) Pharmacologic chaperone therapy (PCT) can improve the catalytic activity of misfolded lysosomal enzyme by
promoting folding and acquisition of functional conformation of the nascent mutant peptide and thus evading pre-mature degradation. (4) Gene therapy (GT) is a
therapeutic approach designed to deliver recombinant DNA to enzyme deficient cells, often via viral vector therapy. (5) Substrate reduction therapy (SRT) involves
delivery of small molecule inhibitors that reduce biosynthesis of the specific accumulating substrate.

administered enzyme. Recombinant enzymes are large molecules
that do not passively diffuse across membranes. Consequently,
the enzyme is unable to reach therapeutic concentrations in
some of the key target tissues. Most notably, there is poor efficacy
of recombinant enzyme in reaching the CNS, due in part to
restricted diffusion across the blood brain barrier (BBB). To
overcome the challenges presented by the BBB, it has been tried
to make modified enzymes to be transported through existing
systems, such as the insulin or transferrin receptors. Moreover,
direct administration of recombinant enzyme into the CNS has
proven an effective method of distribution (Platt et al., 2018;
Kohlschütter et al., 2019). Another major limitation of ERT is
that the exogenous recombinant enzyme can elicit an immune
reaction. These responses include hypersensitivity reactions,
neutralizing antibodies to the recombinant enzyme and altered
enzyme turnover and uptake (Brooks, 1999).

Pharmacological Chaperone Therapy
Pharmacological chaperone therapy (PCT) attempts to rescue
reduced or absent function of mutant lysosomal protein which
is misfolded or mis-trafficked. The approach uses small molecule
ligands which bind and stabilize mutant enzyme. The binding of

chaperone to mutant enzyme facilitates increased cellular enzyme
concentrations, improved enzyme trafficking and increased
lysosomal activity (Parenti et al., 2015). For example, sub-
inhibitory concentrations of active site inhibitors can stabilize
the mutant enzyme, which extends half-life (Platt et al., 2018).
Competitive enzyme inhibitors are expected to be effective as
active site specific chaperones, because of their high affinity to
the catalytic domain (Fan, 2008). As a result, the enzymatic
activity of the mutant protein is partially rescued. Minor increases
in enzymatic activity have a favorable impact on the clearance
of storage material and thus patient status and rate of disease
progression. PCTs have several advantages, as compared to other
therapies, as they can be administered orally, allowing for a non-
invasive treatment and are non-immunogenic. Furthermore,
pharmaceutical chaperones are generally small enough to
diffuse passively across cell membranes and reach therapeutic
concentrations in different tissues and systems, including the
CNS. A major limitation of PCT is that it cannot be used for stop-
codon mutations because they result in premature termination or
nonsense mRNA decay. For this type of nonsense mutant, other
type of small molecules that can override or read-through the
stop-codons are now under development (Platt et al., 2018). The
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development of nonsense mutation LSD mouse models has better
allows researchers to test these nonsense-suppression therapies
(NST). This is of importance as many LSDs harbor nonsensense
mutations. For example, greater than 50% of CLN1 disease is
caused by nonsense mutations (Miller et al., 2015).

Gene Therapy
Gene therapy (GT) for LSDs is a rapidly advancing field of
treatment. The major approach in GT is the direct transfer of
the defective gene into the cells of the patient. The normal
gene product is generally delivered to the patient via a viral
vector (Ohashi, 2019). The first GT for LSDs was for Gaucher
disease in 1998, which resulted in transient enzymatic expression
in the patient (Dunbar et al., 1998). However, retroviruses
generally only infect mitotically active cell types. This property
seriously limits the usefulness of retroviruses as the vector of
GT for CNS disease, in which most cells are post-mitotic. To
overcome this limitation, other viral vectors have been studied
and implemented, including adeno-associated virus (AAV) and
lentivirus (LV) (Suzuki, 2004). AAV has been especially effective
in correcting genetic diseases, quickly becoming one of the
most promising viral vectors for the treatment of LSDs. AAVs
are capable of infecting cells that are not going through
mitosis and persist primarily as non-integrative episomal units.
Therefore, various AAV serotypes have been developed with
particular tropism for cells and tissues of interest, including
neurons and glia, and tested in pre-clinical mouse models
of LSDs (Bailey et al., 2018). AAV-mediated GT successfully
improved the phenotypes of GM1 gangliosidosis, MPS I & IIIB,
Sandhoff disease, metachromatic leukodystrophy, and Krabbe
disease (Gonzalez and Baldo, 2017). Based on the positive
results from these animal models, multiple phase I/II clinical
trials are currently being conducted, many of which have
promising results. Of note, multiple technical approaches exist
regarding the site of injection, particularly in regards to treating
the CNS in neurodegenerative LSDs. Some approaches have
implemented systemic intravenous GT administration (Fu et al.,
2016), while others attempted more localized intracerebral
(Winner et al., 2016) or intrathecal administration of the viral
vector (Karumuthil-Melethil et al., 2016; Bey et al., 2017),
or an approach across multiple sites (Marshall et al., 2018).
Furthermore, major advances in the realm of GT in recent years
has been centered on the bourgeoning field of gene editing
via CRISPR/Cas9 and zinc finger nuclease (ZFN) technologies.
These approaches either introduce exogenous genetic material
or repair the defunct endogenous locus. Alternatively, non-viral
methods of introducing the gene of interest such as electro gene
therapy, the phiC31, minicircle and Sleeping Beauty gene transfer
systems have been implemented pre-clinically to test the efficacy
of non-viral gene therapy (Aronovich et al., 2007, 2009; Osborn
et al., 2008; Stilhano et al., 2015). General advantages of GT
over other approaches are the stable and long-term production
of therapeutic protein. GT therefore has advantages compared
to ERT and small molecule therapies, which require life-long
treatment. Concerns of GT do remain, including the risk that
the modification of genomic DNA in the patient increases the
risk of carcinogenesis (Chandler et al., 2017a). Furthermore,

the expression of supra-physiologic levels of enzyme may cause
unintended side effects. Finally, one challenge remaining in
certain cases is the broad distribution of the viral vector to all the
tissues involved (Cearley and Wolfe, 2007).

Substrate Reduction Therapy
Substrate reduction therapy (SRT) often uses small-molecule
inhibitors to partially inhibit specific steps of the biosynthetic
pathways of substrates that accumulate in LSDs (Radin, 1996).
Two SRT drugs for Gaucher disease (miglustat and eliglustat
tartrate) have been approved and others are undergoing clinical
trials (Coutinho et al., 2016). Since SRT drugs are orally
administered, SRT does not involve an invasive delivery. Due
to their general low molecular mass, SRT drugs are non-
immunogenic, and mostly can cross the BBB. Although in
principle SRT could be useful for all LSDs, it is restricted to
the one whose specific upstream biosynthetic pathways have
been identified. An intriguing expansion of this approach can
be thought of as genetic SRT, in which small interfering RNAs
could theoretically be used to silence enzymes responsible
for the production of LSD accumulated substrates (Coutinho
et al., 2016). Other forms of SRT include dietary modification
and restriction of substrate intake (Denny et al., 2010;
Soga et al., 2015).

Combination Therapy
Since LSDs are multisystem disorders, multiple therapies may
be required to effectively treat different components of disease
pathology. Due to the partial effect of different modalities
of therapies, combining different forms of therapy can be
more effective than a single approach. Therefore, combination
therapies to address the diverse symptoms of LSDs may be
required (Platt et al., 2018). In animal models, the efficacy
of combination therapy is actively being investigated, and
in some cases the synergy that is reported is striking. For
example, combining different forms of therapy has had profound
improvements of survival on the twitcher mouse model of Krabbe
disease (KD). In particular, the use of HSCT has been particularly
efficacious in synergizing with viral-directed gene therapy. The
combination of HSCT and GT has been replicated by many
different labs with different viral vectors and regiments of delivery
(Hawkins-Salsbury et al., 2015; Rafi et al., 2015b).

Autophagy Modulators
Additional strategies for treating LSDs involve targeting
common mechanisms involved in LSD and neurodegenerative
pathophysiology. The benefit of these approaches, which are
downstream of the specific lysosomal hydrolase mutation, is that
they can theoretically be applied broadly. For example, defects
in autophagy have been associated with a large number of LSDs
(Settembre et al., 2008; Seranova et al., 2017). Recent attempts
to increase autophagy in LSDs has been successfully employed
in a variety of pre-clinical models including overexpression of
the MiTF transcription factors TFEB and TFE3 (Spampanato
et al., 2013; Rega et al., 2016) or by manipulation of the mTOR
pathway (Bartolomeo et al., 2014). These approaches also have
the added benefit of increasing lysosomal exocytosis, which is
thought to decrease the lysosomal storage burden and associated
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pathology. Alternatively, for neurodegenerative LSDs, attempts
to decrease the accumulation of misfolded proteins and restore
proper autophagy have been employed (Monaco et al., 2020).
While most of these trials remain in the pre-clinical stage, their
clinical applications seem promising.

Other Therapies Under Development
A large number of alternative therapeutic strategies relating
to inflammation and neurodegeneration have also been tested
in various pre-clinical trials. Prolonged neuroinflammation
contributes to neuronal degeneration and can exacerbate the
LSD phenotype and pre-clinical trials have exhibited the
beneficial effects of non-steroidal anti-inflammatory drugs
(NSAIDs) and other anti-inflammatory (AI) agents (Stein
et al., 2015; Dannhausen et al., 2018). Some pre-clinical trials
target proteins involved in modulating reactions to symptoms
of the particular LSD; for example abolishing macrophage-
inflammatory protein (MIP)-1 activity (Wu and Proia, 2004)
to attenuate inflammation. LSDs are also often accompanied
by oxidative stress, which can be treated with pharmacologic
or dietary antioxidants (Wei et al., 2011; Hawkins-Salsbury
et al., 2012; Saha et al., 2012; Donida et al., 2017). Akin to
other neurodegenerative diseases such as Alzheimer’s disease and
Huntington’s disease, LSDs can elicit aberrant neuronal signaling
leading to neurotransmitter mediated excitotoxicity. Pre-clinical
trials evaluating receptor antagonism (RA), AMPA-RA (Kovacs
and Pearce, 2008) and NMDA-RA (Finn et al., 2013) have
improved the neurobehavioral phenotypes associated with LSDs.
Furthermore, a number of pharmacological agents have been
explored eliciting various effects from modulating membrane
fluidity (Schultz et al., 2018), modulating Ca2+ (Chang et al.,
2007) or cholesterol levels (Erickson et al., 2000; Pelled et al.,
2003; Kim et al., 2007; Repa et al., 2007; Abi-Mosleh et al., 2009;
Liu et al., 2010; Taylor et al., 2012; Hovakimyan et al., 2013; Nusca
et al., 2014; Tanaka et al., 2014; Soga et al., 2015; Demais et al.,
2016; Liou et al., 2016), and enhancing enzyme activity (Arroyo
et al., 2014) via the use of neurosteroids (NS) (Griffin et al., 2004;
Liao et al., 2009). There is also interest in facilitating sphingolipid
degradation via the upregulation of heat shock proteins (HSP)
(Chung et al., 2016; Kirkegaard et al., 2016).

Mouse Models of Neurodegenerative
LSDs
The majority of LSDs are associated with neurodegenerative
features, that are often progressive over the course of the
disease. Therapies are available only for a small subset of LSDs
and have not been much effective on neurological symptoms.
Mouse models have played a major role in the development and
improvement of novel therapeutic modalities. Pre-clinical animal
models are particularly useful as they can aid in elucidating key
molecular changes involved with disease pathogenesis. Various
LSD mouse models have been characterized and developed and
are extensively being used for the design of novel therapeutics.
The use of authentic pre-clinical animal models has been
shown to be predictive of therapeutic outcomes in LSD human
clinical trials, and therefore reduces the time and cost of drug
development. In addition, due to the small patient numbers

available when studying LSDs and other rare diseases, it is
difficult to standardize endpoint measurements and generate
the statistical power necessary for accurate interpretation and
study design (Augustine et al., 2013). Therefore, the use of pre-
clinical models is important for acquiring as much information
as possible about the safety and efficacy of new therapies. Here,
we categorize currently available models for neurodegenerative
LSDs and elaborate on how those models have been used for
pre-clinical purposes. We explore the critical role of animal
models in developing novel therapies and discuss broadly the
advantages and caveats of existing animal models. We restrict our
focus to LSDs which include neurological disease, and specifically
review the mucopolysaccharidoses (MPSs), glycoproteinoses,
sphingolipidoses, lysosomal transport disorders, multiple enzyme
deficiency, glycogen storage diseases, and neuronal ceroid
lipofuscinosis (Table 1).

Mucopolysaccharidoses
The mucopolysaccharidoses (MPS) are a family of lysosomal
storage diseases wherein patients have an inability to properly
metabolize glycosaminoglycan’s (GAGs) resulting in toxic
accumulation of undigested dermatan sulfate (DS), heparan
sulfate (HS) and/or keratin sulfate (KS) in the lysosome. GAGs
are complex polymers comprised of alternating sulfated or amino
disaccharides attached to protein cores, and are distributed in a
wide variety of tissues, including bones, cartilage and the nervous
system. There are eleven enzymes involved in the degradation
of GAGs and mutations in any of these enzymes can elicit
one of the seven characterized MPS. MPS are classified into 7
subtypes, with varied clinical phenotypes. The incidence for all
types of MPS is estimated at 1 in 20,000 live births. The degree
of CNS dysfunction, if any, varies widely among the 7 subtypes,
but it seems to correlate with the degree of storage of HS, a
major component of the extracellular matrix of the CNS. For
example, MPS III A-D (Sanfilippo A-D) manifest as primarily
CNS disorders, and often present with aggressive behavior and
subsequent neurologic decline. On the other end of the spectrum,
MPS VI (Maroteaux-Lamy), MPS IV A-B (Morquio) and MPS
IX (Natowicz syndrome) present primarily as soft tissue or
skeletal disease without neurological involvement. Other MPS
can have variable degrees of neurologic involvement, in addition
to soft tissue and skeletal disease, including MPS I (Hurler,
Hurler-Scheie, Sheie), MPS II (Hunter) and MPS VII (Sly)
(Coutinho et al., 2012).

1. MPS, Type I (OMIM [Online Mendelian Inheritance
in Man] #252800) is caused by mutations in IDUA,
which encodes a glycosidase involved in degrading HS
and DS. MPS I is a multisystem disorder that ranges
over a continuum of severity from severe (Hurler;
MPS I-H) to attenuated (Scheie; MPS I-S) symptoms.
Intellectual disability and developmental delay is common
in MPS I-H, and neurological involvement and learning
disabilities can be present in MPS I-S (Coutinho et al.,
2012). Standard of care treatment includes HSCT, which
can increase survival and peripheral symptoms, and
may slow the development of mild, but not of severe,
cognitive impairment. ERT with laronidase (Aldurazyme)
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TABLE 1 | List of LSDs having neurodegeneration and currently available pre-clinical mouse models.

Gene Disease Mouse model Neurodegeneration Recaps clinical
phenotype

Pre-clinical trial use

Mucopolysaccharidosis

IDUA Mucopolysaccharidosis,
type I

Idua(−/−) (Clarke
et al., 1997)

+ + AAV (Hartung et al., 1999, 2004; Desmaris
et al., 2004), BMT (Kuehn et al., 2015;
Pievani et al., 2015), Crispr (Miki et al.,
2019), ERT (Tong et al., 2017; Le et al.,
2018; Ghosh et al., 2019), HSCT (Watson
et al., 2014; Azario et al., 2017), LV (Di
Domenico et al., 2005), NVGT (Aronovich
et al., 2007, 2009; Osborn et al., 2008,
2011), RV (Chung et al., 2007)

Idua(−/−) (Ohmi
et al., 2003)

+ + AAV (Watson et al., 2006; Janson et al.,
2014; Ou et al., 2019), BMT (Nan et al.,
2012; Wolf et al., 2012), Crispr (Schuh et al.,
2018), ERT (Piller Puicher et al., 2012;
Pasqualim et al., 2015; Lizzi Lagranha et al.,
2017), LV (Wang et al., 2009; da Silva et al.,
2012; Ou et al., 2016), NVGT (Camassola
et al., 2005; Stilhano et al., 2015), RV (Zheng
et al., 2003; Baldo et al., 2013), ZFN (Ou
et al., 2019)

Idua(W392X ) (Wang
et al., 2012)

+ + Crispr (Wang et al., 2018), ERT (Baldo et al.,
2012) NST (Wang et al., 2012; Keeling et al.,
2013)

Idua(−/−) (Mendez
et al., 2015)

+ + BT (Azario et al., 2017), HSCT
(Gomez-Ospina et al., 2019)

IDS Mucopolysaccharidosis
type II

Ids(−/−) (Muenzer
et al., 2002)

+ + AAV (Cardone et al., 2006; Polito and
Cosma, 2009; Motas et al., 2016), ERT
(Muenzer et al., 2002; Polito et al., 2010),
NVGT (Friso et al., 2008), ZFN (Laoharawee
et al., 2018)

Ids(−/−) (Jung et al.,
2010)

+ + AAV (Jung et al., 2010), ERT (Lee et al.,
2011, 2014; Higuchi et al., 2012; Hong
et al., 2012; Sohn et al., 2018)

SGSH Mucopolysaccharidosis,
type IIIA

Mgat3(−/−) (Bhaumik
et al., 1999)

+ + AAV (Fraldi et al., 2007; Haurigot et al.,
2013), AI (Arfi et al., 2011), BMT (Lau et al.,
2012), LV (McIntyre et al., 2008), SRT
(Roberts et al., 2010)

Mgat3(D31N)

(Bhattacharyya et al.,
2001)

+ + AAV (Ruzo et al., 2012; Haurigot et al.,
2013), ERT (Gustavsson et al., 2019), GT
(Quiviger et al., 2014), SRT (Roberts et al.,
2007)

Mgat3(CKO) (Lau
et al., 2017)

+* <*

NAGLU Mucopolysaccharidosis,
type IIIB

Naglu (−/−) (Li et al.,
1999)

+ + AAV (Cressant et al., 2004; Ribera et al.,
2015), ERT (Kan et al., 2014), LV (Di Natale
et al., 2005)

HGSNAT Mucopolysaccharidosis,
type IIIC

Hgsnat (−/−) (Martins
et al., 2015)

+ + AAV (Tordo et al., 2018)

Hgsnat (−/−) (Marcó
et al., 2016)

+ + AAV (Marcó et al., 2016)

GNS Mucopolysaccharidosis,
type IIID

Gns (−/−) (Roca
et al., 2017)

+ + AAV (Roca et al., 2017)

Glycoproteinoses

MAN2B1 Alpha-Mannosidosis Man2b1(−/−) (Stinchi
et al., 1999)

+ + ERT (Roces et al., 2004; Blanz et al., 2008;
Damme et al., 2011)

NEU1 Sialidosis, Type I & II Neu1(−/−) (de Geest
et al., 2002)

+ <

Neu1(V54M) (Bonten
et al., 2013)

+ + Chaperone-AAV (Bonten et al., 2013)

(Continued)
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TABLE 1 | Continued

Gene Disease Mouse model Neurodegeneration Recaps clinical
phenotype

Pre-clinical trial use

Sphingolipidoses

ASAH1 Farber disease Asah1P361R (Alayoubi
et al., 2013)

+ + LV (Alayoubi et al., 2013)

Asah1(−/−) (Eliyahu
et al., 2012)

Embryonic lethal −

ASA Metachromatic
leukodystrophy

Asa (−/−) (Hess
et al., 1996)

+ < AI (Stein et al., 2015), ERT (Matzner et al.,
2005; Matthes et al., 2012), HSCT (Biffi et al.,
2004; Capotondo et al., 2012), OLP (Givogri
et al., 2006), RV (Matzner et al., 2000)

GALC Krabbe disease GalcTwi (Kobayashi
et al., 1980)

+ + AAV (Lin et al., 2015; Rafi et al., 2015a), AI
(Luzi et al., 2009), AO (Hawkins-Salsbury
et al., 2012), BMT (Luzi et al., 2005),
Combination (Qin et al., 2012;
Hawkins-Salsbury et al., 2015; Ricca et al.,
2015), HSCT (Yeager et al., 1984, 1991; Yagi
et al., 2004), Nerve Graft (Scaravilli and
Jacobs, 1981, 1982; Scaravilli and Suzuki,
1983)

Galctwi−5J (Potter
et al., 2013)

+ +

Galc(H168C) (Luzi
et al., 2001)

+ +

Galc(G270D) (Matthes
et al., 2015)

+ + ERT (Matthes et al., 2015)

Sapa(−/−) (Matsuda
et al., 2001)

+ + HSCT (Yagi et al., 2005)

GBA Gaucher disease, type II Gba(−/−) (Tybulewicz
et al., 1992)

- -

Gba(L444P) (Liu et al.,
1998)

- -

Gba(pmuts) (Xu et al.,
2003)

+ +

Gba(lnl/lnl) (Enquist
et al., 2007)

+ + Chaperone (Dasgupta et al., 2015), CM (Liou
et al., 2016), ERT (Cabrera-Salazar et al.,
2010), SRT (Cabrera-Salazar et al., 2012)

GLB1 GM1-Gangliosidosis Glb1(−/−) (Matsuda
et al., 1997)

+ + Chaperone (Takamura et al., 2011)

Glb1(−/−) (Hahn
et al., 1997)

+ < BMT (Sano et al., 2005), SRT (Kasperzyk
et al., 2005; Elliot-Smith et al., 2008)

HEXA GM2-gangliosidosis,
type I

HexA(−/−) (Sango
et al., 1995)

- -

HexA(−/−)

(Yamanaka et al.,
1994)

- - SRT (Platt et al., 1997)

HexA(−/−) &
Neu3(−/−)

(Seyrantepe et al.,
2018)

+ +

HEXB GM2-gangliosidosis,
type II

HexB(−/−) (Sango
et al., 1995)

+ + AAV (Sargeant et al., 2011;
Cachon-Gonzalez et al., 2014), BMT (Norflus
et al., 1998; Wada et al., 2000), CM (Pelled
et al., 2003), Diet (Denny et al., 2010), HSP
(Kirkegaard et al., 2016), MIP-1 (Wu and
Proia, 2004), SRT (Jeyakumar et al., 1999)

HexB(−/−) (Sargeant
et al., 2011)

+ +

(Continued)
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TABLE 1 | Continued

Gene Disease Mouse model Neurodegeneration Recaps clinical
phenotype

Pre-clinical trial use

NPC1 Niemann-pick disease,
type C1

Npc1(−/−) (Morris
et al., 1977)

+ - AAV (Chandler et al., 2017b; Xie et al., 2017;
Hughes et al., 2018), AI (Alvarez et al., 2008),
AO (Fu et al., 2013), CM (Erickson et al.,
2000; Repa et al., 2007; Abi-Mosleh et al.,
2009; Liu et al., 2010; Taylor et al., 2012;
Hovakimyan et al., 2013; Nusca et al., 2014;
Tanaka et al., 2014; Soga et al., 2015;
Demais et al., 2016), Diet (Jelinek et al.,
2015; Soga et al., 2015), HSP (Chung et al.,
2016; Kirkegaard et al., 2016), NS (Griffin
et al., 2004; Liao et al., 2009), Transplant
(Veyron et al., 1996)

Npc1(D1005G) (Maue
et al., 2012)

+ + HSP (Chung et al., 2016)

Npc1(Flox) (Elrick
et al., 2010)

+** <**

Npc1(P202A&F203A)

(Xie et al., 2011)
+ +

Npc1(I1061T)

(Praggastis et al.,
2015)

+ <

Npc1(1554−1004G>A)

(Gómez-Grau et al.,
2017)

+ +

SMPD1 Niemann-pick disease,
type A & B

Asm(−/−) (Otterbach
and Stoffel, 1995)

+ +

Asm(−/−) (Horinouchi
et al., 1995)

+ + AAV (Passini et al., 2007), NSMA (Arroyo
et al., 2014), ERT (Dodge et al., 2009)

Lysosomal transport defects

CTN5 Cystinosis Ctns(−/−) (Cherqui
et al., 2002)

+ < ERT (Cherqui et al., 2002; Simpson et al.,
2011), HSCT (Syres et al., 2009; Rocca
et al., 2015; Gaide Chevronnay et al., 2016)

SLC17A5 Free sialic acid storage
disorder

Sialin(−/−) (Prolo
et al., 2009)

+ +

Multiple enzyme deficiency

SUMF1 Multiple sulfatase
deficiency

Sumf1(−/−)

(Settembre et al.,
2007)

+ + AAV (Spampanato et al., 2011)

GNPTAB Mucolipidosis, type II Gnptab(−/−) (Ko
et al., 2016)

+ + AAV (Ko et al., 2016)

Gnptab(Y888) (Paton
et al., 2014)

+ +

Gnptab(−/−)

(Gelfman et al., 2007)
+ <

MCOLN1 Mucolipidosis, type IV Mcoln1(−/−)

(Venugopal et al.,
2007)

+ + BMT (Walker and Montell, 2016), SRT
(Boudewyn et al., 2017)

Glycogen storage disease

GAA Glycogen storage
disease

Gaa(−/−) (Raben
et al., 1998)

+ + AAV (Rucker et al., 2004; Zhu et al., 2005;
Gatto et al., 2017; Puzzo et al., 2017), BMT
(Mori et al., 2008), Chaperone (Khanna et al.,
2012, 2014), ERT (Raben et al., 2001, 2002,
2010; Xu et al., 2004), SRT (Ashe et al.,
2010; Douillard-Guilloux et al., 2010)

Gaa(−/−) (Bijvoet
et al., 1998)

+ + HSCT (van Til et al., 2010)

LAMP2 Danon disease Lamp2(y/−)***
(Tanaka et al., 2000)

+ +

(Continued)
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TABLE 1 | Continued

Gene Disease Mouse model Neurodegeneration Recaps clinical
phenotype

Pre-clinical trial use

Neuronal ceroid lipofuscinosis

CLN2 Ceroid lipofuscinosis,
neuronal 2

Cln2(−/−) (Sleat
et al., 2004)

+ + AAV (Sondhi et al., 2008; Chen et al., 2009),
Anti-Apoptosis (Kim et al., 2009), ERT (Kim
et al., 2008; Sleat et al., 2008; Meng et al.,
2012)

CLN3 Ceroid lipofuscinosis,
neuronal 3

Cln3 (−/−) (Cotman
et al., 2002)

+ + AI (Dannhausen et al., 2018)

Cln3(LacZ) (Eliason
et al., 2007)

+ + Membrane Fluidity Modulation (Schultz et al.,
2018)

Cln3 (−/−) (Mitchison
et al., 1999)

+ + AMPARA (Kovacs and Pearce, 2008), CaM
(Chang et al., 2007)

CLN6 Ceroid lipofuscinosis,
neuronal 6

Cln6(−/−) (Bronson
et al., 1998)

+ + Diet (Mirza et al., 2013), LV (Jankowiak et al.,
2015)

PPT1 Ceroid lipofuscinosis,
neuronal 1

Ppt1(−/−) (Gupta
et al., 2001)

+ + AAV (Macauley et al., 2014; Shyng et al.,
2017), AO (Wei et al., 2011; Saha et al.,
2012), ERT (Hu et al., 2012), NMDARA (Finn
et al., 2013), SRT (Sarkar et al., 2013)

Ppt1(R151X ) (Miller
et al., 2015)

+ + NST (Miller et al., 2015)

Ppt1(C451T)

(Bouchelion et al.,
2014)

+ +

AAV, Adeno-associated virus; AI, Anti-Inflammatory; AMPARA, AMPA-Receptor antagonist; AO, Anti-Oxidant; BMT, Bone Marrow Transplant; BT, Blood Transfusion; CaM,
Ca2+ Modulation; CM, Cholesterol Modulation; ERT, Enzyme Replacement Therapy; HSCT, Hematopoietic Stem Cell Transplant; HSP, Heat shock protein; LV, Lentivirus;
NMDARA, NMDA-Receptor Antagonist; NSMA, Neutral Sphingomyelinase Activation; NS, Neurosteroids; NST, Nonsense Suppression Therapy; NVGT, Non-Viral Gene
Transfer; OLP, Oligodendrocyte Progenitor Therapy; RV, Retrovirus; SRT, Substrate Reduction Therapy; ZFN, Zinc Finger Nuclease. (+) distinguishes murine models of
LSD that presents neuronal degeneration or presents with analogous disease progression as seen in humans. (−) a lack of neuronal degeneration and/or comparable
disease pathology. (<) Represents murine models that display a similar yet milder disease progression than human patients. *The neuronal degeneration and recaps clinical
phenotype designations for the Mgat3(CKO) model were interpreted from the conditional knockout mice model crossed to with CMV-Cre line; a model with ubiquitous
expression across all tissue types. **The neuronal degeneration and recaps clinical phenotype designations for the NPC1(Flox) model were interpreted from the conditional
knockout mice crossed with Pcp2-Cre line; a driver targeting most Purkinje cells and some retinal bipolar neurons. ***The Lamp2 gene resides on the X chromosome of
mouse genome, therefore; the investigators used hemizygous null males designated as Lamp2(y/-).

is approved for non-CNS symptoms of MPS I (Al-Sannaa
et al., 2015). Two MPS I-H mouse models were generated
using targeted knockout cassettes in Idua, as well as a
knock-in nonsense mutations (Idua-W392X) (Clarke et al.,
1997; Ohmi et al., 2003; Wang et al., 2012). Knockout
MPS I mice (Idua -/-) exhibit cognitive and motor defects
with storage of GAGs in Purkinje cells (Baldo et al.,
2012). Systemic delivery of apoE-fused IDUA protein
produced from erythroid/megakaryocytic cells via LV-
mediated HSCGT successfully corrected metabolic and
behavioral deficits in MPS I mice (El-Amouri et al.,
2014). Furthermore, efforts to directly edit the genome
and correct mutations are currently underway. Several
groups have undertaken attempts using genome editing
tools such as the CRISPR/Cas9 and ZFN systems to
directly modify the endogenous Idua locus or introduce
an exogenous Idua gene (Schuh et al., 2018; Wang et al.,
2018; Gomez-Ospina et al., 2019). These techniques have
shown preliminarily success at promoting functional IDUA
and reducing GAG storage. A ZFN mediated approach
of delivering Idua to hepatocytes under control of the
albumin promoter was particularly effective in distributing
functional IDUA throughout secondary tissues via cross-
correction, consequently reducing storage pathology (Ou

et al., 2019). The therapy is currently in phase I/II of
clinical trials.

2. MPS, Type II (OMIM #309900) is caused by mutations
in the X-linked gene IDS (iduronate 2-sulfatase), which
encodes the enzyme that catabolizes DS and HS. Infants
with MPS II experience neurologic symptoms in the
first decade of life and often experience developmental
regression after 5 years of age (Scarpa, 2018). Weekly
ERT infusions of idursulfase (Elaprase) can treat somatic
manifestations and improves survival but does not treat
the neurological disease (Burrow and Leslie, 2008). An
Ids(−/−) mouse model of MPS II accumulate GAGs
diffusely and shows neuronal necrosis in the brainstem
and spinal cord by 60 weeks of age (Muenzer et al.,
2002; Jung et al., 2010). AAV2/8-mediated GT restored
DS activity in plasma and tissue of this null mice and
cleared the accumulated GAGs in all the tissues (Motas
et al., 2016). Akin to MPS I, genome editing via ZFN has
been implemented as therapeutic option for MPS II, which
elicited a vast improvement in neurocognition following
reduction of accumulated GAGs by active re-introduction
of Ids to hepatocytes and passive cross-correction through
all tissues (Laoharawee et al., 2018). The pre-clinical
success of the ZFN mediated genome editing has led
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to phase I/II clinical trials assessing the drugs efficacy
in humans and optimal dosage as administered by
intravenous injection.

3. MPS, Type III is characterized by progressive CNS
degeneration and manifests clinically as developmental
regression, severe intellectual disability and psychiatric
manifestations. There are four subtypes of MPS III,
distinguished as types ‘A-D,’ which are caused by mutations
in one of four genes, all required for the proper degradation
of HS (Wagner and Northrup, 2019). Unfortunately, there
is no effective therapy available for any form of MPS III,
aside from clinical management of neurological symptoms.
Therefore, the role of animal models for the various forms
of MPS III are especially important in the design of
emerging and future therapies (Fedele, 2015).

a. MPS, Type III A (OMIM # 252900) is caused
by a mutation in SGSH (N-sulfoglucosamine
sulfohydrolase), resulting in intellectual disability,
seizures and hyperactivity (Wagner and Northrup,
2019). The spontaneous mutant Mgat3(−/−) represents
an authentic animal model of the disease manifesting
hyperactivity and shortened lifespan akin to the human
phenotype (Bhaumik et al., 1999). This animal has been
used for GT and SRT studies which have successfully
extended mutant lifespan and reduced associated
symptomology (McIntyre et al., 2008; Roberts et al.,
2010; Haurigot et al., 2013).

b. MPS, Type III B (OMIM # 252920) is caused by a
mutation in NAGLU (N-alpha-acetylglucosaminidase)
and presents with progressive neurological
deterioration and seizures (Wagner and Northrup,
2019). The KO mouse model Naglu(−/−) had a
comparatively mild phenotype (Li et al., 1999). In
this knockout mouse, cellular inclusions in neurons
were observed but the resulting behavioral changes
were less prominent, although hypoactive behavior is
apparent. This model has been used to test GT and ERT,
which improved the behavior and neuropathology of
Naglu(−/−) mice (Cressant et al., 2004; Kan et al., 2014;
Ribera et al., 2015).

c. MPS, Type III C (OMIM #252930) is caused by
a mutation in HGSNAT (Heparan acetyl-CoA:α-
glucosaminide N-acetyltransferase), causing mental
retardation and hyperactivity. Prominent atrophy
occurs in the parieto-occipital region with a
significant thinning of the corpus callosum white
matter density (Wagner and Northrup, 2019). Two
different Hgsnat(−/−) mice were generated. Both of
which recapitulate human disease pathology including
altered locomotor capabilities, hyperactivity, decline
in cognitive memory ability, and shortened lifespan
(Martins et al., 2015; Marcó et al., 2016). An AAV2
variant, AAV-TT, was used in a GT study in the
Hgsnat(−/−) mouse model, and was able to correct the
neurological phenotype (Tordo et al., 2018).

d. MPS, Type III D (OMIM #252940) is caused by
mutations in GNS (N-acetylglucosamine-6-sulfatase)
resulting in hyperactivity and mental retardation.
White matter lesions are particularly present in
the periventricular subcortical white matter regions
(Wagner and Northrup, 2019). A Gns(−/−) mouse
was generated exhibiting similar symptomology to the
human disease, such as widespread neuroinflammation,
reduced locomotion, and a decrease in lifespan. AAV-
mediated GT of GNS to the cerebrospinal fluid in this
mouse model ameliorated disease pathology, resolving
lysosomal storage, neuroinflammation and behavioral
phenotypes (Roca et al., 2017).

Glycoproteinoses
The glycoproteinoses are a group of LSDs caused by defects in
the catabolism of glycoproteins containing N-linked or O-linked
oligosaccharides. The degradation of glycan moieties occurs
in a stepwise fashion thus the failure of one enzyme causes
a complete blockade of the cycle. Therefore, most patients
with glycoproteinoses present with very similar clinical findings
(Michalski and Klein, 1999).

1. α-Mannosidosis (OMIM #248500) is caused by mutations
in MAN2B1 (alpha-D-mannosidase), an enzyme involved
in glycoprotein metabolism that results in accumulation of
undigested oligosaccharides (Beck et al., 2013). A clinical
spectrum of disease exists, spanning from mild (type 1),
moderate (type 2) and severe (type 3). Severe patients
have primary CNS disease, primarily involving cerebellar
dysfunction and ataxia, as well as severe intellectual disability
and developmental regression (Michalski and Klein, 1999).
ERT with recombinant human α-mannosidase (Velmanase
alfa) is regarded as the standard-of-care treatment for α-
mannosidosis, which has been shown to cause improvements
in both biochemical and functional endpoints of disease
progression (Borgwardt et al., 2018; Lund et al., 2018).
Man2b1(−/−) mice were generated, and resemble a mild form
of the disease (Stinchi et al., 1999). Glycoproteins accumulate
in Purkinje cells of the cerebellum as well as cortical neurons
and pyramidal neurons of the hippocampus. The cerebellar
pathology of Man2b1(−/−) mice had a partial rescue in a pre-
clinical trial using recombinant MAN2B1 ERT (Blanz et al.,
2008; Damme et al., 2011).

2. Sialidosis, Type II (OMIM #256550) is caused by a mutation
of NEU1 (Neuraminidase-1), leading to the lysosomal
accumulation of sialylated glycopeptides and oligosaccharides,
manifesting in gait disturbances, corneal clouding and
psychomotor retardation. Patients present with decreased
cerebellum volume, as well as cortical and occipital lobe
atrophy (Gultekin et al., 2018). There is no specific treatment
for Sialidosis, Type II. Neu1(−/−) and Neu1(V54M) models of
the disease were established. The phenotypes of Neu1(−/−)

mice are not similar to those found in the human disease,
because there was a lack of early degeneration in cerebellar
Purkinje neurons (de Geest et al., 2002). The Neu1(V54M)

models a non-neuronopathic form of the disease. Therefore,
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there is currently a lack of neuronopathic representative
models of Sialidosis, Type II (Bonten et al., 2013).

Sphingolipidoses
The sphingolipidoses are characterized by the intracellular
accumulation of sphingolipids. Sphingolipids are lipids that
contain an aliphatic amino alcohol head group, or a structurally
similar element. There are three categories of sphingolipids:
ceramides, phosphosphingolipids and glycosphingolipids.
These biologically active lipids form microdomains in the
plasma membrane and facilitate signal transduction, cell
recognition and physical protection. Accumulation of specific
sphingolipids leads to the unique clinical manifestation of
each sphingolipidosis. Despite their various phenotypes, all
sphingolipidoses present at least some form of neuronopathic
pathophysiology (Platt et al., 2018).

1. Farber lipogranulomatosis (OMIM #228000) is caused
by mutations in ASAH1 (Acid ceramidase), leads to the
accumulation of lysosomal ceramide, causing neonatal
joint deformities and a characteristic hoarse voice/cry,
with life expectancy of approximately 2 years. Neurologic
symptoms are difficult to fully characterize due to the
severity of the phenotype which includes joint immobility
and early death. Older patients often develop motor
defects and intellectual disabilities. A more mild spectrum
of disease caused by ASAH1 mutations is categorized
as spinal muscular atrophy with progressive myoclonic
epilepsy, which includes progressive lower motor neuron
disease in young children, accompanied by myoclonic
and atonic seizures. The tissues of afflicted patients
contain granulomatous and lipid-laden macrophages. The
liver, spleen, lungs and heart are particularly affected
with progressive CNS degeneration and impairments
in psychomotor development (Bongarzone et al., 2012).
There is no specific treatment for Farber disease.
While a complete ‘knockout’ of ASAH1 (Asah1-/-) mice
resulted in early embryonic lethality due to oocyte
apoptosis, a ‘knock-in’ allele in Asah1, harboring a
classical Farber missense mutation (P361R), accurately
models most of the characteristics of human disease.
This may also indicate a specific role for ASAH1 in
murine development. Interestingly, intravenous lentiviral
gene transfer expressing human Acid ceramidase in
Asah1P361R/P361R reduced the symptoms, though the mice
still succumbed to disease. Conditional Asah1 floxed
mouse have also been generated, which will be helpful
in testing cell specificity and efficacy of various therapies
(Eliyahu et al., 2012; Alayoubi et al., 2013).

2. Metachromatic leukodystrophy (MLD, OMIM #250100)
is due to mutations in ARSA (Arylsulfatase A), necessary
for the metabolism of sulfatide, causing hypotonia, mental
deterioration and cognitive regression. The accumulation
of cerebroside sulfate causes demyelination of the frontal
and parietal periventricular and central zones (Eichler
et al., 2009). Currently, no effective treatment is available
to reverse the deterioration and loss of function that

MLD causes. An Arsa(−/−) mouse was generated which
displays a milder neuropathological phenotype than
human cases. The model has been useful in showing
that attempts to rescue the mild phenotype via various
therapies including ERT, HSCT and GT were successful in
ameliorating the pathology (Hess et al., 1996). The lack of
a complete recapitulation of the clinical and pathological
MLD phenotype led to the generation of the Arsa(−/−)

mice with the addition of neural cells overexpressing
the sulfatide synthesizing enzymes, including UDP-
galactose: ceramide galactosyltransferase (CGT) and
cerebroside sulfotransferase (CST). These CGT/Arsa(−/−)

and CST/Arsa(−/−) mice had increased sulfatide storage
in myelin-forming cells, resulting in axonal degeneration
leading to the development of neurological symptoms
similar to MLD (Patil and Maegawa, 2013).

3. Krabbe disease (OMIM #245200) is caused by a deficiency
of GALC (Galactosylceramidase), which leads to the
accumulation of psychosine (galactosylsphingosine), a
metabolite of galactosylceramide (Li et al., 2019). Clinical
symptoms often present in the 1st year of life including
irritability, spasticity and developmental delay. Underlying
pathology includes widespread demyelination and
neurodegeneration (Li et al., 2019). HSCT appears to be of
some benefit in cases of later onset or in infantile patients
who have been diagnosed before symptoms begin (Wright
et al., 2017). Several Galc mutant mice have been reported,
including two spontaneous mutants twitcher (Duchen
et al., 1980) and twi-5J (Potter et al., 2013), humanized
GALC transgenic (Gasperi et al., 2004), GALC-Gly270Asp
(Matthes et al., 2015), Galc-His168Cys knock-in mice
(Luzi et al., 2001) and Saposin A knockout mice (Matsuda
et al., 2001). The twitcher mouse (GalcW339X/W339X) is
an authentic murine model of Krabbe disease, presenting
a near identical neurological phenotype to the human
disease (Kobayashi et al., 1980). Due to the highly authentic
nature of the twitcher model of KD, an incredible number
of therapeutic strategies have been tested on twitcher
mice. These include HSCT (Yeager et al., 1984), neural
and mesenchymal stem cell transplantation (Taylor and
Snyder, 1997; Strazza et al., 2009; Neri et al., 2011; Ripoll
et al., 2011), SRT (LeVine et al., 2000), anti-oxidant
therapy (Pannuzzo et al., 2010), PCT (Berardi et al., 2014),
ERT (Lee et al., 2005) and GT alone (Shen et al., 2001;
Lin et al., 2005; Lee et al., 2007; Rafi et al., 2012, 2015a;
Pan et al., 2019). Although viral gene therapy should
theoretically be curative, the pre-clinical efficacy in vivo
has had major limitations. Viral-mediated GT trials in
the twitcher tends to only modestly improve survival,
typically by 1.5-2 fold. Therefore, multiple approaches
have been made to improve delivery and transducing
ability. These include diffuse and multiple injection points
by employing multiple intracerebral points of injection or a
combination of intracerebral, intrathecal and intravenous
point. Interestingly a recent paper had far better success
in the twitcher mouse by using much higher doses of
AAV9 (Marshall et al., 2018). Additionally, due to the
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partial effect among different modalities of therapies,
a number of groups have approached the concept of
combining different forms of therapy. The effect of
combining different forms of therapies has had profound
improvements of survival of both the twitcher and canine
models of KD. In particular, a robust synergistic effect of
HSCT and viral-directed GT has been noted and replicated
by multiple labs (Reddy et al., 2011; Rafi et al., 2015a;
Ricca et al., 2015). Furthermore, triple combined therapy
of HSCT, GT and SRT with L-cycloserine resulted in an
unprecedented increase in lifespan with improved motor
function, persistent GALC expression, nearly normal
psychosine levels, and decreased neuroinflammation in
the twitcher (Hawkins-Salsbury et al., 2015), suggesting
that simultaneous-treatment of multiple pathogenic
aspects of KD may be necessary for synergistic increases
in therapeutic efficacy of KD patients. The twi-5J (Galc
E130K/E130K) mice manifest a more severe phenotype with
shorter lifespan than the twitcher (Potter et al., 2013),
indicating the possible existence of a toxic gain-of function
mutation from misfolded GALC protein.

4. Gaucher Disease (OMIM #230900) is caused by
mutations of GBA (Acid β-glucosidase), which
leads to the accumulation of glucosylceramide and
glucosylsphingosine. Gaucher disease is characterized
clinically as types 1-3, with types 2 and 3 having
primary CNS disease. Infantile Gaucher disease (type
2) often presents with signs of bulbar and pyramidal
neuronal atrophy, as well as cognitive impairment and
progressive neurological deterioration and is usually
fatal by age 2 (Pastores and Hughes, 2018). Treatment
for types 1 and 3 include SRT, and ERT including
miglustat (Zavesca) and eligustat tartrate (Cerdelga).
PCT with ambroxol, a drug that breaks up phlegm of
respiratory diseases, has been evaluated for pre-clinical
testing for Gaucher disease (Bendikov-Bar et al., 2013).
Unfortunately, there is no effective treatment for the
neurologic damage of GD types 2 and 3. HSCT can
reverse the non-neurological effects of the disease, but
the procedure carries a high risk and is rarely performed
in individuals with Gaucher disease (Riboldi and Fonzo,
2019). Interestingly, patients with type 1 are at increased
risk for Parkinson’s disease and Lewy Body Dementia. It
has been suggested that accumulated glucosylceramide
may directly influence amyloid formation of α-synuclein
by stabilizing soluble oligomeric intermediates in the
lysosome of dopaminergic neurons of GBA mutant, that
is one of hallmarks of Parkinson’s disease (Mazzulli et al.,
2011). Numerous murine models have been created,
including Gba(−/−),Gba(L444),Gba(pmuts), and Gba(lnl/lnl).
The full KO and L444P models both die within 24–48 h of
birth due to a compromised endothelial layer (Tybulewicz
et al., 1992; Liu et al., 1998). The latter two models were
able to circumvent the endothelial lethality barrier by
either using cre-driven expression to negate endothelial
expression or by using point mutations causing a less
severe phenotype (Xu et al., 2003; Enquist et al., 2007).

The lnl model has been useful for pre-clinical trials with
research using PCT, ERT and SRT related therapies being
tested on the model. Some of these studies have highlighted
limitations also seen in clinical ERT trials, namely the poor
distribution of recombinant enzyme penetrating the CNS.
Conditional Gba floxed mice are also available that have
shown cell-specific toxicity in which neuroinflammation
is triggered by molecules released from dying neurons,
astrocytes and oligodendrocytes (Farfel-Becker et al., 2011;
Platt et al., 2018).

5. Type 1 GM1-Gangliosidosis (OMIM #230500) is caused
by mutations in GLB1 (beta-galactosidase-1) leading to
the accumulation of GM1 gangliosides and presenting
with prompt psychomotor dysfunction and general CNS
degeneration within the first 6 months of life. Severe
cerebral atrophy leads to death, often within the first
2 years of life (Platt et al., 2018). While there is no
effective medical treatment, anti-convulsants may control
seizures secondary to GM1 Gangliosidosis. Thus far, two
Glb1(−/−) mutants have been generated that express
disease symptomology consistent with the human disease
such as paralysis and premature death (Hahn et al., 1997;
Matsuda et al., 1997). These models have been used to study
PCT, SRT and HSCT as potential therapeutics which have
all shown promise in reversing the neurological phenotype
(Kasperzyk et al., 2005; Sano et al., 2005; Elliot-Smith et al.,
2008; Takamura et al., 2011).

6. GM2-gangliosidosis, Type I (OMIM #272800; also called
as Tay-Sachs Disease) is caused by mutations in HEXA
(β-hexosaminidase A), which normally degrades GM2
gangliosides, and typically manifests within 6 months of
life. Tay-Sachs is characterized by progressive hypotonia,
weakness, neurodegeneration and death by 4 years of
age. Neuropathology includes less pronounced fissures and
enlarged sulci with a great loss of neuronal density in
the cerebral cortex along with demyelination of cerebral
white matter (Kaback and Desnick, 2011). There is no
effective treatment for Tay-Sachs beyond palliative care.
Two HexA(−/−) murine models have been produced,
though none of them seem to recapitulate human disease.
Instead, the mouse models are asymptomatic due to a
rescue pathway involving Sialidase, not present in humans
(Yamanaka et al., 1994; Sango et al., 1995). Recently, a
dual KO model HexA(−/−) and Neu3(−/−) has since been
generated that nullifies the bypass pathway via Sialidase
(Seyrantepe et al., 2018) and more closely resembles
the human disease.

7. GM2-gangliosidosis, Type II (OMIM #268800; also called
as Sandhoff disease) is due to mutations in HEXB (β-
hexosaminidase B), and results in deficiencies of both
HexA and HexB enzymatic activities. Sandhoff disease
is therefore often indistinguishable from the Tay-Sachs
disease phenotype (Platt et al., 2018). Although there is
no available specific treatment, supportive treatment such
as proper nutrition and hydration, as well as use of anti-
convulsants for patients with Sandhoff disease. HexB(−/−)

mice were developed that recapitulates the pathology
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seen in human patients. Various approaches including
GT and HSCT in the pre-clinical trials in this model
showed slow disease progression and prolong lifespan
(Sargeant et al., 2011).

8. Niemann-Pick Disease Type A (NPD-A) & B (OMIM
#257200) are caused by mutations in ASM (Acid
sphingomyelinase), which cleaves the phosphorylcholine
group from sphingomyelin. NPD-A is categorized as
the neuronopathic form of disease, often manifesting
in early childhood, while NPD-B does not involve CNS
manifestations. Neurologic symptoms of NPD-A include
progressive hypotonia, psychomotor developmental
regression and relentless neurologic deterioration. There
is significant atrophy in the cerebellar and cortical
neurons with presentation of foam cells (Vanier, 2013).
Two Asm(−/−) mouse models have been generated that
reproduce human disease symptomology. They have
been used to study GT and ERT effects on Niemann-
Pick disease (Horinouchi et al., 1995; Otterbach and
Stoffel, 1995). These studies have shown limitations in
therapeutic techniques such as viral vector-mediated
GT as intracerebral injections were insufficient to
deliver vectors throughout the CNS, instead requiring
intracerebroventricular injections to alleviate motor
abnormities.

9. Niemann-Pick disease, Type C1 (OMIM # 257220) and
Type C2 (OMIM #607625) are due to mutations in
NPC1 and NPC2, respectively. These proteins are involved
with the trafficking of cholesterol and lipids within
lysosomes and endosomes. Specifically NPC1 is a multipass
lysosomal membrane protein that transports sphingosine
out of lysosomes, whereas NPC2 is a soluble cholesterol-
binding protein. NPC causes a secondary reduction of
ASM, thus producing overlapping symptoms with NPD-
A and B. Patients with NPC presents with mental
degeneration, dementia and dystonia due to neuronal
atrophy, particularly present in the Purkinje cells of the
cerebellum (Vanier, 2013; Platt et al., 2018). Supportive
care is essential and substantially improves the quality
of life of NPC patients. Numerous murine models of
NPC have been generated including Npc1(−/−), as well
as multiple missense knockin models (D1005G, P202A,
F203A, I1061T, and 1554-1004 G > A) and a conditional
floxed model. The latter has been used for the cell-
specific knockout of Npc1 in Purkinje cells (Morris et al.,
1977; Elrick et al., 2010; Xie et al., 2011; Maue et al.,
2012; Praggastis et al., 2015; Gómez-Grau et al., 2017).
Depending on the point mutation induced, many of the
models fully recapitulate the human disease phenotype
including neurodegeneration, shortened lifespan and
Purkinje cell atrophy. The I1061T mutant, which harbors
the most common human NPC1 mutation, was generated
to specifically study the effects of proteostatic modulation
on disease progression. Various preclinical trials including
GT, ERT, and transplant in these models have shown
different but promising levels of success in prolonging
mutant lifespan, reducing Purkinje cell atrophy and the

storage phenotype (Veyron et al., 1996; Soga et al., 2015;
Chandler et al., 2017b; Xie et al., 2017; Hughes et al., 2018).

Lysosomal Transport Defects
Whereas a majority of LSDs are the result of a defunct catabolic
enzyme unable to metabolize its substrate, lysosomal transport
defects are the results of mutations to intracellular membrane
transporters. The absence of specific transmembrane transporters
can lead to substrate being trapped in the lysosome, barred from
cellular recycling. The two most common forms of lysosomal
transport defects are Cystinosis and Sialic Acid storage disorders
(Mancini et al., 2000).

1. Cystinosis (OMIM #219800) is due to mutations in
CTNS (Cystinosin), which normally allows for the exit
of cystine from the lysosome. Cystinosis has primarily
nephropathic sequelae including renal tubular Fanconi
syndrome (generalized proximal tubular dysfunction)
and progressive glomerular failure. Advances in
therapy including cystine-depleting agents and renal
transplantation have allowed patients to survive longer
and revealed some neurologic dysfunction and cerebellar
calcification (Nesterova and Gahl, 2017). A Ctns(−/−)

mouse model was developed that displays some of the
secondary symptoms of Cystinosis, though it lacks
the primary ailment in renal failure. Nonetheless, the
murine model has still been useful in testing potential
therapeutics such as HSCT and medicinal treatments
such as Cysteamine, the first line of defense drug against
cysteine accumulation (Cherqui et al., 2002; Syres et al.,
2009; Simpson et al., 2011; Rocca et al., 2015; Gaide
Chevronnay et al., 2016).

2. Sialic acid storage disorders (infantile free sialic acid
storage disease [ISSD]; OMIM #269920, Salla disease;
OMIM #604369) are a spectrum of disorders due to
mutations in SLC17A5 (Sialin), which are autosomal
recessive neurodegenerative disorders that present as a
severe infantile form (ISSD) or as a slowly progressive
adult form (Salla disease). General symptoms include
developmental delay, low muscle tone, abnormal
movements, and seizures. They are progressive, and
symptoms get worse over time. Sialin is a sialic
acid lysosomal membrane transport protein (Adams
and Gahl, 2013). Since there is no cure, supportive
treatments including anti-convulsants and physical
therapy are recommended for the patients. Recently
developed Slc17a5(-/-) mice successfully show early
neurobehavioral milestones including hypomyelination
and leukoencephalopathy, but exhibit progressive
delay of later-stage sensory and motor milestones such
as grasping, twitching and locomotion development
(Stroobants et al., 2017).

Multiple Enzyme Deficiency
Multiple enzyme deficiency LSDs refer to those LSDs where
more than one enzyme involved in the catabolism of lipids may
be indirectly affected, thus eliciting a pathology associated with
multiple LSDs due to a single mutation (Schlotawa et al., 2019).
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1. Multiple sulfatase deficiency (MSD, OMIM #272200) is
due to a mutation in SUMF1 (sulfatase modifying factor
1) resulting in a dysfunctional or complete absence of
formylglycine-generating enzyme (Fge). Fge is responsible
for post-translationally activating sulfatase enzymes that
could affect the activity of all 13 sulfatase enzymes. While
symptoms of MSD patients can be highly variable, many
may display characteristics of the mucopolysaccharidoses,
including developmental regression and neurologic
deterioration (Schlotawa et al., 2019). There is no cure
for MSD. Similarly to MSD patients, Sumf1(-/-) mice
display early mortality, congenital growth retardation,
skeletal abnormalities, and neurological defects including
widespread neurodegeneration and neuroinflammation
(Settembre et al., 2007). Combined brain and systemic
AAV mediated GT in this mouse model resulted in
significant improvement in both growth rate and lifespan
(Surace et al., 2007; Spampanato et al., 2011).

2. Mucolipidosis (ML), Types II (I-Cell disease, OMIM
#252500), III α/β (Pseudo-Hurler polydystrophy, OMIM
#252600) and III gamma (OMIM #252605) are caused
by mutations in GNPTAB (for ML II, ML III α/β) and
GNPTG (ML III γ). GNPTAB and GNPTG give rise
to the enzyme N-acetylglucosamine-1-phosphotransferase,
a phosphotransferase which normally phosphorylates
mannose residues for proper enzymatic trafficking of
hydrolases to the lysosome. In addition to widespread
musculoskeletal and cardiac phenotypes, patients with
ML II have delays in motor milestones and expressive
language (Leroy et al., 2019). There is no specific therapy
to cure ML II and III. Speech and physical therapies
can improve motor and speech delays. The Gnptab(-/-
) mouse showed impaired growth, retinal degeneration,
lesions in secretory epithelial cells of exocrine glands,
and elevated levels of serum acid hydrolases. However,
this mutant presented with a relatively normal lifespan
and did not develop characteristic disease features, such
as skeletal and facial abnormalities (Vogel et al., 2009).
Another mouse model Nymphe (nym/nym), which was
recovered from an N-ethyl-N-nitrosourea screen, and
carries the patient mutation Y888X, recapitulates the
major features of the human disease including motor
dysfunction and psychomotor retardation with progressive
neurodegeneration of Purkinje cells. Treatment with 2-
hydroxypropyl-β-cyclodextrin delayed Purkinje cell loss in
a NPC model, but had no effect on Purkinje cell loss in
the Nymphe mouse. This finding suggested that the loss of
Npc2 (Niemann-Pick, Type C2) expression in the Nymphe
mouse brain is not a primary molecular mechanism
causing Purkinje cell degeneration (Paton et al., 2014).

3. Mucolipidosis, Type IV (MLIV) is caused by mutations
in MCOLN1 (Mucolipin 1), an endo-lysosomal pH
sensitive channel that facilitates diffusion of monovalent
and divalent ions (Dong et al., 2008) and facilitates
lysosomal and autophagic regulation via its interaction
with TFEB and mTOR signaling (Zhang et al., 2016).
Clinical findings often include developmental delay,

gross psychomotor impairments and failure to reach
developmental milestones. There is no specific treatment
to this disorder. Neurological impairments are attributed
to developmental dysregulation of the corpus callosum in
addition to atrophy and axonal spheroids in the cerebellum
(Schiffmann et al., 2014). An authentic murine model
of MLIV, Mcoln1(−/−), has been generated and closely
resembles the pathology seen in human patients including
hind limb paralysis and reduced lifespan (Venugopal
et al., 2007). The model has been used to study the
effects of HSCT and drug administration to improve the
neuropathology associated with the disease with promising
results (Walker and Montell, 2016).

Glycogen Storage Disease
Glycogen storage diseases are caused by impaired glycogen
degradation or synthesis. Of the 13 known glycogen storage
diseases, only one fits the criteria of classification as an LSD,
namely Glycogen storage disease (GSD) II. GSD II is typically
referred as Pompe disease, though the variant GSD-Type IIb
(Danon disease) also exists and shares a similar phenotype. There
is debate as to whether Danon disease should be classified as a
glycogen storage disease as the mutation occurs in a lysosomal
membrane protein and glycogen accumulation is not always
present (Nishino et al., 2000).

1. Pompe disease (GSD II, OMIM #232300) is caused by
mutations in GAA (Acid α-Glucosidase), which encodes
an enzyme that degrades the α-1,4 and α-1,6 linkages
required for the degradation of glycogen. The infantile-
onset form of disease presents with hypotonia, feeding
difficulties and is fatal due to cardiorespiratory failure.
The effects on the CNS are still obscure due to the
early age of death, however, research has shown a delay
in reaching myelination milestones in patients (Chien
et al., 2006). ERT of Myozyme (alglucosidase alfa) clearly
prolongs overall survival for infantile-onset Pompe disease.
Early diagnosis and early treatment leads to much better
outcomes (Capelle et al., 2018). ERT with Lumizyme
(alglucosidase alfa) is approved for patients with late-onset
Pompe disease without evidence of cardiac hypertrophy,
which improves survival and ambulation maintained over
time. Lumizyme and Myozyme have the same generic
ingredient (alglucosidase alfa; recombinant human GAA)
and manufacturer (Genzyme Co.), but have the difference
in the manufacturing process (Schoser et al., 2017). Two
authentic murine Gaa(-/-) models have been established,
and both of them have analogous pathology to the human
disease with hallmarks such as muscle weakening and gait
abnormalities (Bijvoet et al., 1998; Raben et al., 1998).
The models have proven useful in pre-clinical trials with
a variety of treatments including gene therapy, BMT, PCT,
ERT and glycogen accumulation suppression (Raben et al.,
2001, 2002, 2010; Rucker et al., 2004; Xu et al., 2004; Zhu
et al., 2005; Mori et al., 2008; Khanna et al., 2014; Gatto
et al., 2017; Puzzo et al., 2017).
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2. Danon disease (GSD IIb, OMIM #300257) is an
X-linked disease caused by mutations in LAMP2 and
has overlapping symptoms with Pompe disease, including
diffuse hypotonia and hypertrophic cardiomyopathy.
However, unlike Pompe disease, most male patients with
Danon disease have mild intellectual disability (Cenacchi
et al., 2019). There is no approved treatment. A mouse
model of Lamp2 knockouts exist and have inflammation,
motor deficits and impaired learning (Rothaug et al.,
2015). AAV-mediated GT increased survival rate of this
mutant (Tanaka et al., 2000; Adler et al., 2019).

Neuronal Ceroid-Lipofuscinoses
The final category of inherited, neurodegenerative, LSDs include
the neuronal ceroid-lipofuscinoses (NCLs). They are generally
characterized clinically by neurologic deterioration, seizures
and early death. While the NCL phenotypes resemble each
other, there exists broad genetic heterogeneity and multiple
mechanisms of pathogenesis. To date, thirteen genes have
been identified to cause NCLs including PPT1, TPP1, CLN3,
CLN5, CLN6, MFSD8, CLN8, CTSD, DNAJC5, CTSF, ATP13A2,
GRN, and KCTD7 (Mole and Williams, 2013). While various
therapeutic strategies are being explored for NCLs, there is only
one clinically approved drug, cerliponase alfa, that effectively
attenuates the progression of a specific form of NCLs (CLN2)
(Kohlschütter et al., 2019).

1. CLN1 (OMIM #256730; infantile NCL, Santavuori-Haltia)
is caused by mutations in PPT1, which encodes Palmitoyl-
protein thioesterase-1, responsible for the catabolism of
thioester-linked fatty acyl groups from cysteine residues.
CLN1 presents with infantile developmental delays,
myoclonic jerks and seizures. The symptoms are due to
neuronal atrophy, particularly in the cortex and cerebellum
(Mole et al., 2005). Three murine models have been
established including a full null Ppt1(−/−) and two
common missense mutations Ppt1(R151X) and Ppt1(C451T)

(Gupta et al., 2001). All of them have been shown to
recapitulate many of the pathological features observed in
CLN1 patients, such as accumulation of autofluorescent
granular osmiophilic deposits in neural and visceral tissues,
rapidly progressing neurodegeneration in the brain, motor
abnormalities, seizures and premature death. These models
have been used in the development of therapies such
as GT, dietary supplements, pharmacological and ERT.
The combination of these therapies has additionally
been shown to prolong the diseased animals’ lifespan.
Ppt1(R151X) mutant mice treated with the read-through
drug ataluren (PTC124) have been shown to increase CLN1
enzyme activity (Miller et al., 2015).

2. CLN2 (OMIM #204500, late-infantile NCL, Jansky–
Bielschowsky) is caused by mutations in TPP1, which
encodes tripeptidyl peptidase 1, involved in the cleavage
of N-terminal tripeptides. Patients with CLN2 develop
symptoms between the age of 2 to 4 years, including
ataxia, seizures and mental deterioration. The formation
of curvilinear body, that is an intermingled twisted

microtubular substructure, is a hallmark of the disease
and is often accompanied by cortical thinning (Mole and
Williams, 2013). Intrathecal ERT delivery of cerliponase
alfa (a recombinant human proenzyme of TPP1) is
clinically approved for affected children (Kohlschütter
et al., 2019). The Cln2(−/−) mouse recapitulated the
clinical course of CLN2 with axonal degeneration,
Purkinje cell atrophy and a reduced lifespan. The
model has been used to study GT, ERT and anti-
apoptosis manipulation all with varying degrees of success
(Kohlschütter and Schulz, 2016).

3. CLN3 (OMIM #204200, juvenile NCL, Spielmeyer-Vogt)
is caused by mutations in the CLN3 gene, which
encodes a lysosomal transmembrane protein. Symptoms
are progressive, and include visual impairments between
2 to 4 years of age and epilepsy with generalized
tonic-clonic seizures after 9 years of age, as well as
ataxia and motor dysfunction (Mole et al., 2005).
Three full KO models of Cln3 have thus far been
established all displaying hallmarks of CLN3 such as
progressive neurodegeneration (Mitchison et al., 1999;
Cotman et al., 2002; Eliason et al., 2007). To date
there has been research using these models in alleviating
CLN3 pathology with administration of various anti-
inflammatory and neuroprotective compounds such as
ibuprofen and lamotrigine to modulate intracellular
inflammatory conditions (Mirza et al., 2019; Tarczyluk-
Wells et al., 2019).

4. CLN6 (OMIM #601780, adult NCL) is caused by mutations
in CLN6, a transmembrane protein of the endoplasmic
reticulum. Patients with CLN6 generally begin to exhibit
symptoms before the age of 40 (mean age 28). Clinical
manifestations of disease first present as myoclonus
epilepsy, followed by ataxia and dementia due to cerebral
and cerebellar atrophy (Berkovic et al., 2019). A neuronal
ceroid lipofuscinosis (Nclf ) murine model was established
by a one base pair insertion in the orthologous mouse
Cln6 gene resulting in a frame shift defect that recapitulates
many aspects of the disease such as Wallerian degeneration
and paralysis (Bronson et al., 1998). This model has been
used to research the effects of GT and diet intervention on
disease progression (Kohlschütter et al., 2019).

DISCUSSION

Limitations of Using Mouse Models to
Study Human LSDs
Mouse models have been used for biomedical research
since the beginning of the 20th century (Ericsson et al.,
2013). These models have been used widely for a number
of reasons including their relative low cost, high level
of reproducibility, and short lifespans. Furthermore, the
similarity of the mouse and human genome have facilitated the
study of human disease in murine models. Early advances
in modern mouse models began with the development
of transgenic mice and knockout mice, which progressed
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to the advance of conditional mutagenesis (Orban et al.,
1992), inducible mutagenesis (Doetschman and Azhar,
2012) and fluorescent reporters (Ikawa et al., 1995).
Consequentially, the use of mouse models has drastically
outpaced the use of rats and other mammals for modeling
of human disease (Ericsson et al., 2013). Furthermore,
modern techniques and services have rapidly increased
the speed and decreased the cost of producing mouse
models of interest.

It is crucial to have highly predictive animal models
as pre-clinical test tools for the development of LSD
therapies, where small patient sample sizes and variable
ages of presentation make it difficult to standardize endpoint
evaluation in clinical tests. While many mouse models of
LSDs accurately reflect the human symptomatology of the
disease they model, there are a number of examples in
which generated models fall short. For example, Arsa(−/−)

MLD mice show mild neurological symptoms that are
only observed by the end of a normal lifespan, and fail to
show sulfatide accumulation and demyelination (Patil and
Maegawa, 2013). These differences may be explained by the
fundamental differences of mice and human development,
particularly in regards to neurodevelopment (Lin et al.,
2014). Despite the homology of genes between different
species, it is obvious that there are many variables that are
not well replicated by simply introducing the same genetic
mutation responsible for a human disease into a mouse model.
Attempts to generate a more ‘authentic’ human model may
consequentially produce a mouse model similar to the human
disease, but nonetheless artificial. For example, Arsa(−/−) mice
with neural cells overexpressing the sulfatide synthesizing
enzyme CGT or CST have more similar pathology to human
MLD patients (Patil and Maegawa, 2013). Furthermore, the
artificial nature of ‘knockout’ systems sometimes trigger
compensatory mechanisms not seen in human disease
(El-Brolosy and Stainier, 2017).

Since naturally occurring spontaneous mutant mice are
rare and, the vast majority of LSD mice are knockout or
knock-in animals. While these models have provided us with
significant advances in our understanding of pathogenesis and
therapy, these artificial disease models have limitations. Firstly,
complete knockouts have limited relevance to the human
phenotype, as most patients expressing a low level of functioning
or malfunctioning protein. These complete null genotypes
occasionally make it hard to reintroduce target proteins, such
as gene− or enzyme−replacement therapy, as the novel protein
could trigger a neutralizing immune response. This may result in
confusion in predicting the efficacy of such treatments in patients.
Moreover, not all LSDs are associated with loss−of−function
mutations, several are associated with toxic gain−of−function
mutations which are often overlooked.

Particularly disconcerting is the high number of ‘successful’
pre-clinical trials that are not successful when replicated in
human clinical trials. An analysis of the reported causes
of drug candidate attrition during 2013–2015 revealed that
past failures in phase II clinical trials were primarily due
to insufficient efficacy (48%) and safety (25%). Similarly,

insufficient efficacy was the primary reason for failure in phase
III (55%), followed by safety (14%). When examining these
failures by therapeutic areas, 13% and 17% of the failures
were in metabolic and CNS diseases, respectively (Harrison,
2016). There are a number of potential attributable factors to
this problem. One explanation for this gap in translation is
the lack of robustness in the conduction of the pre-clinical
trials. The efficiency of the new treatment under the different
conditions indicates the treatment’s robustness (Carlson and
Doyle, 2002; Xu et al., 2016). In many cases, pre-clinical
trials are not being designed to influence human clinical trials
and lack crucial features, such as statistical power, blinding,
and appropriately sized control groups (Freise et al., 2011).
In addition, design of pre-clinical animal experiments do not
reflect all aspects of the challenge originated from the varied
age and complex genetic makeup of patients (Lowenstein and
Castro, 2009). For example, fixed genetic strains of inbred
mice minimize the complexity of some disease phenotypes.
Genetic backgrounds of mice have been shown to directly
influence disease pathology and survival in models of LSDs
(Tominaga et al., 2004), and can therefore present a confounding
variable if not properly taken into account. If it is shown
that a particular treatment works not only in certain mouse
strain but also in additional mouse genetic backgrounds, that
will increase the robustness of the treatment. Furthermore, the
small size of mice, and in particular mice brains, compared
to humans, potentially allows for easier treatment of mice.
Alternative approaches include more rigorous testing of pre-
clinical trials and the use of large animal models (Techiryan
et al., 2018). Additional technologies such as induced pluripotent
stem cells and organoids are particularly appealing as using
cells from humans patients can more accurately model certain
aspects of disease.

Perspectives
The past three decades have given rise to significant progress
in the treatment of LSDs, and thus different therapeutic
options are now available and are being actively pursued.
Unfortunately, many LSDs remain untreatable and most of
the therapeutics offered have important limitations related
to a number of issues including bioavailability, toxicity and
limited efficacy. Nonetheless, the success of a number of
innovative and promising studies is suggestive that many
of these LSDs will have novel treatments in the coming
years. The possibility of combining different approaches in
order to maximize therapeutic efficacy, as well as the ability
to personalize treatment options for each individual patient
are exciting realities. The use of mouse models continues
to be an invaluable tool in the advancement of therapeutic
interventions for LSDs.
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