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Gene expression noise is not just ubiquitous but also variable, and we still do not
understand some of the most elementary factors that affect it. Among them is the
residence time of a transcription factor (TF) on DNA, the mean time that a DNA-bound TF
remains bound. Here, we use a stochastic model of transcriptional regulation to study
how residence time affects the gene expression noise that arises when a TF induces
gene expression. We find that the effect of residence time on gene expression noise
depends on the TF’s concentration and its affinity to DNA, which determine the level
of induction of the gene. At high levels of induction, residence time has no effect on
gene expression noise. However, as the level of induction decreases, short residence
times reduce gene expression noise. The reason is that fast on-off TF binding dynamics
prevent long periods where proteins are predominantly synthesized or degraded,
which can cause excessive fluctuations in gene expression. As a consequence, short
residence times can help a gene regulation system acquire information about the cellular
environment it operates in. Our predictions are consistent with the observation that
experimentally measured residence times are usually modest and lie between seconds
to minutes.

Keywords: residence time, transcription factor-DNA interaction, regulation of gene expression, gene expression
noise, Information acquisition, stochastic processes, computational modeling and simulations

INTRODUCTION

All gene expression is noisy. It produces mRNA and protein molecules whose numbers fluctuate
randomly. Such noise is caused by stochastic molecular interactions, which include interactions
between transcription factors (TFs) and DNA, and by the stochastic synthesis and degradation of
molecules (Kepler and Elston, 2001; Raj and van Oudenaarden, 2009). Gene expression noise affects
multiple biological processes. For example, it can promote phenotypic diversity, influence the
coordination of gene expression, trigger cell differentiation, and facilitate evolutionary transitions
(Kepler and Elston, 2001; Fraser and Kaern, 2009; Raj and van Oudenaarden, 2009; Eldar and
Elowitz, 2010; Sanchez et al., 2013; Karig et al., 2018; Urban and Johnston, 2018). Furthermore,
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noise can also reduce a cell’s ability to acquire information
about its environment. Such information is essential whenever
cells need to respond to changing environments (Bowsher and
Swain, 2014; Levchenko and Nemenman, 2014). Information
is acquired by signaling pathways that modulate the activity
or concentration of TFs, which up-regulate or down-regulate
effector genes. Thus, reducing gene expression noise can increase
the ability of a regulated gene to capture information about a
TF’s changing concentration or activity, which is fundamental to
produce an optimal cellular response to environmental change
(Rhee et al., 2012).

Gene expression regulation is being studied by many
researchers whose insights improve our capacity to control
and modify living systems (Li et al., 2007; Lelli et al., 2012;
Sainsbury et al., 2015; Pope and Medzhitov, 2018). However, we
still do not fully understand how some elementary properties
of the interaction of a TF with its binding site on DNA
affect the stochastic dynamics of gene expression and the
acquisition of information (Einav and Phillips, 2019). One
of these properties is a TF’s residence time on its DNA
binding site – the mean time that a TF remains bound
to DNA. The residence time is equal to the inverse of the
dissociation rate kd between a TF and DNA. Theoretical and
experimental work has shown that the dissociation rate can
affect gene expression, affect the size of gene expression bursts
(Skupsky et al., 2010; Kumar et al., 2015; Fujita et al., 2016;
Donovan et al., 2019), and modulate gene expression noise
(Peccoud and Ycart, 1995; Raser, 2004; Iyer-Biswas et al., 2009;
Grönlund et al., 2013). However, it is difficult to discern whether
the dissociation rate affects gene expression by altering the
residence time or the affinity between a TF and DNA, because
both depend on the dissociation rate kd (affinity is given
by the ratio Keq = kd/ka [M], where ka is association rate
between a TF and DNA).

Many TFs bind DNA transiently, with residence times ranging
between seconds and minutes (Hager, 2009; Geertz et al., 2012;
Mazza et al., 2012; Gebhardt et al., 2013; Mueller et al., 2013;
Chen et al., 2014; Morisaki et al., 2014; Sugo et al., 2015; Deluz
et al., 2016; Clauß et al., 2017; Liu and Tjian, 2018; Rullan et al.,
2018). Such TFs include MYC, p53, and glucocorticoid receptors,
which are involved in fundamental processes such as apoptosis,
DNA repair, DNA maintenance, and stress responses. They also
include pioneer TFs that directly interact with chromatin and
open it (Oakley and Cidlowski, 2013; Joerger and Fersht, 2016;
Swinstead et al., 2016). The duration of a TF’s residence time
on a specific binding site can vary, even for different tissues
within the same organisms, by chromatin modifications and
the interaction of the TF with other molecular components
(Giglia-Mari et al., 2009; van Werven et al., 2009; Mueller et al.,
2013). Such variation implies that residence time may play a
role in regulating gene expression. Nevertheless, we do not know
how residence time affects gene expression noise, because of
limitations in experimental technology. For example, it is difficult
to measure residence time and simultaneously quantify the rate
of gene expression. It is also hard to quantify the number of TF
binding events at a specific binding site in a given time (Mueller
et al., 2013; Liu and Tjian, 2018; Donovan et al., 2019). Moreover,

it is challenging to experimentally modify only residence time
without also affecting affinity.

Here we circumvent these limitations through a stochastic
model of a TF that induces gene expression by binding to
DNA. With this model, we study how residence time affects
gene expression noise and the amount of information acquired
by a gene expression system. Our analyses show that the effect
of residence time increases as the level of induction of a gene
decreases. At high induction levels, residence time has no effect
on gene expression. However, as induction levels decrease,
shorter residence times reduce the amount of gene expression
noise and produce more regular gene expression dynamics.
Shorter residence times also increase a gene regulation system’s
capacity to acquire information about the concentration of a TF.
In sum, shorter residence times improve a gene’s response to
changes in its cellular environment.

RESULTS

Model and Main Concepts
We use a two-state model of gene expression that represents
the transcriptional activation and inactivation of a gene.
In this model, TF molecules associate and dissociate from
the gene’s TF binding site (DNAbs) at rates ka (M−1s−1)
and kd (s−1), respectively. The regulated gene is expressed
only when the binding site is bound by a TF (i.e., the
TF activates gene expression), in which case the gene is
transcribed into mRNA at rate k1. The resulting mRNA is
then translated into protein molecules at rate k2. Finally,
mRNA and protein molecules degrade at rates d1 and d2,
respectively (Figure 1A).

Residence time is the average life span or half-life (t1/2) of the
TF-DNAbs complex. In other words, residence time quantifies
the stability of this complex (Figure 1B). Affinity is quantified
with the equilibrium constant Keq. The equilibrium constant
is equal to the concentration of free TF at which half of all
binding sites are occupied. A high equilibrium constant is equal
to a low affinity, because it means that a large concentration
of TF is required to occupy 50% of binding sites. For a given
TF concentration, the probability that a binding site is occupied
increases with increasing affinity (Figure 1C).

Although both affinity and residence time depend on the
dissociation rate kd, they can be modified independently from
each other. Changing the dissociation rate will modify the
residence time, but it can leave the affinity unchanged if the
association rate changes appropriately to keep the ratio kd/ka
constant. Conversely, by changing only the association rate,
affinity can be modified without altering residence time.

Notice that affinity and TF concentration jointly determine
the level of induction of gene expression, because a gene is more
likely to be active when the concentration of free TF is higher
than its affinity to DNA. Conversely, when this concentration
is lower than the affinity, the gene will tend to be inactive.
One can increase the level of a gene’s induction by increasing
either TF concentration or affinity (Figure 1D). Below we
change the level of induction by modifying TF concentration,
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FIGURE 1 | Schematic description of the model and main concepts. (A) ka and kd correspond to the association and dissociation rate, respectively; k1 and k2

correspond to the mRNA and protein synthesis rate, respectively; d1 and d2 correspond to the mRNA and protein degradation rate, respectively. Relationships of
both residence time and affinity with (B) the stability of the TF-DNAbs complex, and (C) TF-DNAbs binding probability. (D) Relationship of affinity and TF
concentration with the level of induction.

but changing affinity itself yields the same observations (see
Supplementary Data 1).

We simulate gene regulation dynamics using Gillespie’s
algorithm (Gillespie, 1977), which reproduces the stochastic
dynamics of many chemical systems, using biologically
meaningful values of all biochemical parameters (Supplementary
Table 1 and Methods). Because both the mRNA and protein
output of our modeled gene regulation system behave
qualitatively identically, we focus on the protein output
below (see Supplementary Figures for mRNA).

Short Residence Times Reduce Gene
Expression Noise and Modulate Gene
Expression Dynamic
We first study the effect of residence time and affinity on
gene expression noise. To quantify noise, we quantified the
size of the temporal fluctuations in the number of proteins, as
the difference between the maximal and the minimal number
of expressed protein molecules (NPmax − NPmin ), and averaged
this difference over 1000 simulations. Two alternative noise
measures, the coefficient of variation and the Fano factor
yield identical observations (see Supplementary Data 2 and
Supplementary Figure 1).

In these simulations, we varied residence time within the
interval [1 s, 1 h], TF concentration within the interval [10−11M,
10−7M], and set the affinity to 10−9M. Notice that the TF
concentration interval ranges two orders of magnitude below
and above the affinity, which implies that the level of gene
induction ranges from almost always inactive to almost always
active. Hence, high and low TF concentration values correspond
to high and low induction levels, respectively.

At the highest TF concentration, residence time does not affect
noise (Figure 2A and Supplementary Figure 2A). However, as
the TF concentration decreases, a longer residence time increases
noise (Figure 2A and Supplementary Figure 2A). For example,
individual protein expression trajectories at extremely short
(t1/2 = 1 s) and long (t1/2 = 1 h) residence times are very similar
at the highest TF concentration (Figure 2B and Supplementary
Figure 2B). However, as TF concentration decreases, long
residence times cause sporadic, but large fluctuations in protein
expression (Figures 2C,D and Supplementary Figures 2C,D).

To understand these observations, notice that when the TF
concentration is very high, the level of induction is high because a
TF molecule is bound to DNA most of the time. In this case, gene
expression resembles that of a constitutive gene, regardless of
the TF’s residence time. In consequence, gene expression noise is
only determined by the degradation and synthesis rates of mRNA
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FIGURE 2 | Residence time and noise. (A) Mean fluctuation size in the number of protein molecules (y axis) at different levels of induction as a function of residence
time (x axis). (B–D) Example time trajectories of the number of protein molecules NP at three different levels of induction. Analyses of (E) mean number of protein
(N̄P ) (F) mean and coefficient of variation of the frequency of protein production events. (B–D) Red and blue lines show data for short (1 s) and a long (1 h) residence
times, respectively. (A,E,F) High (TF = 10−7M), intermediate (TF = 10−9M), and low (TF = 10−11M) levels of induction are indicated in the color legend below the
figure.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 April 2020 | Volume 7 | Article 67

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00067 April 25, 2020 Time: 7:38 # 5

Azpeitia and Wagner Residence Time, Noise and Information

and protein (Kepler and Elston, 2001; Raj and van Oudenaarden,
2009). In other words, it is independent of residence time
(Figures 2A,B and Supplementary Figures 2A,B).

This is no longer true as the TF concentration decreases.
In this case, the probability that a TF is bound to DNA at
any one time decreases, and longer residence times increase
the average amount of time that a TF is either bound or
unbound. In other words, longer residence times produce longer
periods of active and inactive gene expression. During active
periods, proteins are produced, whereas during inactive periods,
previously expressed proteins decay. Thus, longer residence times
lengthen both active and inactive periods, which results in
large fluctuations in the number of proteins (Figures 2C,D and
Supplementary Figures 2C,D). Reducing the residence time (at
constant induction) decreases the duration of both active and
inactive periods by the same amounts. As a result, expressed
molecules accumulate and decay for shorter time periods, and
fluctuations in these molecules become smaller (Figures 2A–D
and Supplementary Figures 2A–D).

In contrast to its effects on noise, residence time does not affect
the mean level of protein expression, which only depends on the
level of induction (Figure 2E and Supplementary Figure 2E).
The reason is that the frequency of both protein production
and degradation events (i.e., the mean number of proteins
produced and degraded in a given period of time) is not
affected by residence time, regardless of the level of induction
(Figure 2F and Supplementary Figures 2F, 3A,B). However, as
the level of induction decreases, shorter residence times decrease
variation in the frequency of production and degradation
events (Figure 2F and Supplementary Figures 2F, 3A,B). As a
consequence, protein expression is more homogeneous at shorter
residence times, because protein production and degradation
events alternate more regularly, except at the very lowest affinities
(Supplementary Data 3 and Supplementary Figures 3C–F).

Residence Time and Information
Due to noise, the regulation of gene expression transforms a
concentration of a TF into a distribution of expressed mRNA
and protein molecules. Different TF concentrations may produce
overlapping distributions of expressed molecules, in which case
information about TF concentration gets lost. Reducing gene
expression noise can reduce this overlap and thus also the
amount of lost information (Figure 3A; Rhee et al., 2012).
Because shorter residence times reduce gene expression noise
(Figure 2), we hypothesized that they also increase the amount
of information protein which expression levels contain about the
concentration of the regulating TF. To find out, we quantified
the mutual information between protein expression and TF
concentration. Mutual information is an information theoretical
quantity that encapsulates the reduction in uncertainty about
one random variable provided by knowledge about another
random variable (Cover and Thomas, 2006) (see “Materials and
Methods”). To quantify mutual information, we performed 2500
stochastic simulations of gene expression dynamics for each
of n evenly distributed TF concentrations within the interval
[10−7M/n, 10−7M], exploring affinity values within the interval
[10−12M, 10−4M]. This range includes affinity values below the

minimal TF concentration, where induction is low regardless of
TF concentration, and above the maximal concentration, where
induction is high regardless of TF concentration.

In earlier work, we have shown that the amount of information
that gene expression levels contain about the concentration of
the regulating TF depends on the affinity between a TF and its
binding site. At very low affinities, gene regulation is insensitive
to TF concentration, such that gene expression conveys little
information. At very high affinities, the level of gene induction
is high for all TF concentrations, such that gene expression also
conveys little information – it is similar to that of a constitutively
expressed gene for all TF concentrations (Azpeitia and Wagner,
2019). Our current work shows that this pattern holds regardless
of residence time (Figure 3B and Supplementary Figure 4A).

In contrast, residence time does affect acquired information
at intermediate affinities. Specifically, even though the mean
number of expressed molecules does not depend on a TF’s
residence time on DNA (Figure 2E and Supplementary
Figure 2E), their variability decreases with shorter residence
times (Figure 2A). As a result, as residence time decreases, the
overlap between protein distributions decrease (Figures 3C,D
and Supplementary Figures 4B,C), which increases the amount
of acquired information (Figure 3B and Supplementary
Figure 4A). In sum, under conditions where a gene regulation
system can acquire information, shortening residence time
increases the amount of acquired information.

DISCUSSION

Previous theoretical and experimental work showed that gene
expression noise can be modulated by the dissociation rate
kd of a DNA-bound TF (Peccoud and Ycart, 1995; Raser,
2004; Iyer-Biswas et al., 2009; Skupsky et al., 2010; Grönlund
et al., 2013; Kumar et al., 2015; Fujita et al., 2016; Donovan
et al., 2019), but this work did not distinguish between
the effects of residence time and affinity. This distinction,
however, is important because both properties depend on
the dissociation rate but have different effects on gene
expression dynamics. Here, using a stochastic model of gene
activation by a TF, we study these properties separately, and
show that short residence time can reduce expression noise,
even though such noise generally increases when affinity
decreases (Figure 2).

Our results also show that the effect of residence time on
gene expression is not independent from affinity. The reason
is that the level of induction depends on the affinity. When
a gene is highly induced, residence time does not affect gene
expression. However, as the level of induction decreases, short
residence times can help produce less noisy expression. Short
residence times effectively fragment gene activity into short
periods of active and inactive expression, which prevents the
excessive accumulation and depletion of proteins, and thus
also excessive stochastic variation in gene expression. Similarly,
the effect of affinity on noise depends on residence time. In
particular, the effect of affinity is reduced when residence time
decreases. However, noise can even decrease with decreasing
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FIGURE 3 | Residence time and information. (A) Schematic explanation of the relationship between noise and acquired information. The panel shows hypothetical
response protein distributions produced by two different stimuli at a high (right) and a low (left) level of gene expression noise. (B) Acquired information at different
residence times as a function of the affinity (Keq) between TF molecules and DNA. (C,D) Distributions of the number of expressed proteins NP at three different TF
concentrations (see color legend) with a long (C), and a short (D) residence time. In (C) and (D), Keq = 10−9M.

affinity when residence times are very short and in the range of
seconds (Figure 2A).

In previous work, we showed that expressed proteins
harbor information about the concentration of a TF regulating
their expression, if the TF’s affinity to regulatory DNA is of
the same order of magnitude as its concentration (Azpeitia
and Wagner, 2019). Here, we show that this behavior is
independent of residence time. However, because shorter
residence times render gene expression less noisy, the overlap
between protein expression distributions resulting from different
TF concentrations decreases. Consequently, shorter residence
times increase the ability of a gene regulation system to
distinguish between different TF concentrations.

Recent technological advances will permit experimental
verification of our observations. First, in the last decade methods
to quantify the ability of a regulated gene to acquire information
about the concentration of a TF have become standardized
(Cheong et al., 2011; Rhee et al., 2012). Also, the effect of
residence time on noise can be quantified with techniques
that simultaneously quantify TF-DNA binding events and the
production of mRNA molecules, which are being developed
(Donovan et al., 2019). It is especially difficult to obtain multiple
alleles of a TF with different residence times without also altering
the TF’s affinity to DNA. However, because our model shows
that affinity affects gene expression by changing the induction
level at a specific TF concentration, our observations hold

regardless of whether one varies TF concentration or affinity
(Supplementary Data 1). Hence, to test the effect of residence
time on noise and information acquisition, one can compensate
for any change in affinity by adjusting a gene’s induction level with
TF concentration.

Our two state model of gene regulation is simple and does
not explicitly represent all potentially relevant processes, such as
the binding of RNA polymerases to DNA, or the assembly of
the transcription initiation complex (Cramer, 2019). However,
previous work has shown that the two state model produces
similar gene expression dynamics as more complex models
(Kumar et al., 2015), suggesting that our main results may hold
for such models. Nevertheless, each additional transcriptional
regulatory step requires time, which may constrain the amount
of time that a TF must be minimally bound to DNA before it
can affect gene expression (Corzo, 2006). For example, previous
work has estimated that the binding of RNA polymerase takes
on average 0.1 min, while the assembly of protein complexes
takes between tens of second to minutes (Rybakova et al., 2015;
Choubey et al., 2018). The results of our model hold as long as all
these other processes have enough time to occur.

Future work will also need to consider other kinetic
parameters affecting gene expression, such as the mRNA
synthesis rate, because noise and information can be affected by
these parameters (Peccoud and Ycart, 1995; Kepler and Elston,
2001; Raser, 2004; Tkacik et al., 2008; Raj and van Oudenaarden,
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2009; Rieckh and Tkačik, 2014; ten Wolde et al., 2016). Moreover,
many genes have a leaky or basal level of gene expression (Huang
et al., 2015). Although we have not explicitly modeled leaky and
basal expression, we believe that including leaky and basal gene
expression in our model will not modify our results, because
the effect of TF regulation on gene expression is independent
from that of basal and leaky expression. However, previous work
has shown that leaky expression can reduce noise (Huang et al.,
2015). Further research is thus needed to evaluate the effect of
leaky and basal gene expression.

We only studied TFs that activate gene expression. However,
TFs can also inhibit gene expression. Independently of a TF’s
effect on gene expression (i.e., activation or inhibition), long
residence times will result in long periods of time when a TF
is either bound to DNA or unbound. For a TF inhibiting gene
expression, during the long periods where the TF is bound,
gene expression will decay, while during the long unbound
periods gene expression will increase. Hence, we believe that
long residence times will still result in large gene expression
fluctuations when a TF inhibits gene expression. For this reason,
we believe that reducing residence time will decrease gene
expression noise for both TF activation and inhibition. This
hypothesis, however, still needs to be studied.

Our results are in agreement with previous work and
complement this work. For example, experimental evidence
suggests that the affinity of essential regulators of gene expression,
such as NF-κB and TBP, modulates gene expression noise
(Ravarani et al., 2016; Heltberg et al., 2019). Moreover, a
model based on the binding dynamics of Sox2 and Oct4,
two important regulators of the pluripotency of stems cells,
showed that long residence times reduce the sensitivity of gene
expression to TF concentration, because TFs with long residence
times are bound to DNA most of the time regardless of their
concentration (Chen et al., 2014; Liu and Tjian, 2018). Another
study showed that negative regulatory feedback loops in general
suppress noise more effectively when residence times are short
(Grönlund et al., 2013).

Our work also helps solve an apparent contradiction between
experimental and theoretical work about the importance of
residence time. In particular, it has been predicted that longer
residence times facilitate gene expression, because they increase
the probability of a successful activation of gene expression by
TFs, by providing longer time for other components, such as
polymerases, to successfully bind DNA (Stavreva et al., 2004;
Gorski et al., 2008; Lickwar et al., 2012; Mueller et al., 2013;
Clauß et al., 2017). Experimentally measured residence times,
which are generally short and lie within seconds to minutes
(Hager, 2009; Geertz et al., 2012; Mazza et al., 2012; Gebhardt
et al., 2013; Mueller et al., 2013; Chen et al., 2014; Morisaki
et al., 2014; Sugo et al., 2015; Deluz et al., 2016; Clauß et al.,
2017; Liu and Tjian, 2018; Rullan et al., 2018), are inconsistent
with this prediction. Our work shows that residence time does
not affect average gene expression levels. Instead, residence time
reduces expression noise and can help signaling systems acquire
information without modifying the probability of a successful
activation of gene expression, which can help explain why short
residence times may be prevalent in nature.

MATERIALS AND METHODS

Two-State Model of Gene Expression
To study how a TF’s residence time on DNA affects gene
expression, we built a gene expression model in which a TF binds
to a DNA binding site (DNAbs) to regulate the expression of a
nearby gene. TF molecules associate with the DNA binding site
at a rate ka (M−1s−1), and dissociate from it at a rate kd (s−1).
Only when the TF is bound to DNA does transcription occur [at
a rate k1 (s−1)]. Transcribed mRNA molecules are degraded at a
rate d1 (s−1). Proteins are translated from mRNA molecules at a
rate k2 (s−1), and degraded at a rate d2 (s−1).

Stochastic Simulations
To simulate the behavior of our gene expression model,
we use Gillespie’s discrete stochastic simulation algorithm
(Gillespie, 1977), using the numpy python package for scientific
computing1. Gillespie’s algorithm captures the stochastic nature
of chemical systems. It assumes a well-stirred and thermally
equilibrated system with constant volume and temperature. The
algorithm requires the probability pj that a chemical reaction Rj
occurs in a given time interval [t, t + τ]. This probability pj is
proportional to both the reaction rate and the number of reacting
molecules. For the reversible bindings of TF molecules to DNA,
the association probability pa and the dissociation probability pd
are given by

pa =
ka

VNA
NTND

pd = kdNTD

where V is the reaction volume, NA is Avogadro’s number,
and NT , ND, and NTD are the numbers of TF molecules,
DNA binding sites, and TF-DNAbs complexes. Notice that the
dissociation of TF-DNAbs complexes is a first-order reaction,
which is independent of the volume in which the reaction
takes place. In contrast, the association of TF molecules with
DNA binding sites is a second-order reaction, which is inversely
proportional to the volume.

The probabilities pmRs, pmRd, pPs, and pPd of mRNA
transcription, mRNA degradation, protein synthesis, and protein
degradation are given by

pmRs = k1NTD

pmRd = d1NmR

pPs = k2NmR

pPd = d2NP,

respectively. In these expressions, the quantities NTD, NmR, and
NP are the numbers of TF-DNA complexes, mRNA molecules
and of protein molecules, respectively. Because we model a
haploid organism with only a single non-leaky DNA binding
site, the probability of mRNA synthesis can be reduced to

pmRs = k1

1http://www.numpy.org/

Frontiers in Molecular Biosciences | www.frontiersin.org 7 April 2020 | Volume 7 | Article 67

http://www.numpy.org/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00067 April 25, 2020 Time: 7:38 # 8

Azpeitia and Wagner Residence Time, Noise and Information

when the DNA is bound by the TF (NTD = 1), and to

pmRs = 0

when it is unbound (NTD = 0).

Initial Conditions for Simulations
We assume that a TF concentration of 10−7M corresponds to
a few thousand TF molecules per cell, a realistic number in
animal and yeast cells (Biggin, 2011; Ho et al., 2018). Because we
model only one binding site, the concentration of free TF is not
substantially affected by the binding of a single TF molecule to
DNA. We therefore do not distinguish between the free and the
total TF concentration. After this simplification, to determine the
initial conditions of our model, we calculate the probability N̂TD
that the binding site is bound by a TF molecule as

N̂TD =
NT

Keq + NT

where NT is the total number of TF molecules. We selected
the initial state of the DNA (NTDi ) at random with binomial
probability N̂TD (i.e., NTDi = 1) if the DNA is bound by a TF
molecule, and zero otherwise. It follows that

NDi = 1− NTDi

NTi = NT − NTDi

where NDi is the initial state of the number of non-bound DNA
binding site and NTi is the number of free TF molecules. As the
initial state of the number mRNA and protein molecules we used

NmRi = N̂TD
k1

d1

NPi = N̂TD
k1

d1

k2

d2
,

which are the expected average number of mRNA and protein
molecules for a constitutively expressed gene (Raj and van
Oudenaarden, 2009), multiplied by the probability that the DNA
is bound by a TF molecule.

Information Quantification
The number of molecules of any chemical species in a cell or in
a unit volume fluctuates, because molecules are produced and
decay stochastically. We use Shannon’s entropy to quantify the
unpredictability caused by such stochastic fluctuations in the
number of TF molecules as

H (Pr(TF)) = −

NTmax∑
NT=

NTmax
n

p(NT)log2p(NT)

where Pr(TF) is the distribution of the number of transcription
factor molecules (NT), and p(NT) is the probability that the
system contains N molecules of the TF.

To estimate information we performed simulations from n
different numbers of TF molecules that were evenly distributed

within the interval [NTmax/n,NTmax] (n<NTmax). For this reason

H(Pr(TF)) = log2n.

TF-DNA binding triggers the transcription of mRNA molecules
that are then translated into protein molecules. We use the
number of mRNA NmRNA and protein molecules NP as the
system’s response or output, which we denote as O.

A gene expression system acquires information when the
number of expressed proteins or mRNA reflects the number
of TFs. This information can be quantified via the mutual
information

I (TF;O) = H (Pr(TF))−H (Pr(TF|O)) ,

a widely used quantity in information theory (Cover and Thomas,
2006). It is equal to the difference between the entropy H(Pr(TF))
and the conditional entropy H(Pr(TF| O)), which represents the
entropy of the number of TF molecules for a given number
of mRNA or protein molecules. In other words, the mutual
information I quantifies the amount of information that the
number of expressed mRNA or protein molecules harbors about
the number of TF molecules.

Noise Quantification
The model produces a probability distribution of the number
of mRNA and protein molecules for any given number of TF
molecules NT . This response is thus a conditional probability
distribution, which we write as

Pr(NOmin ≤ NO ≤ NOmax |TF = NT)

Pr(NOmin < NO < NOmax|TF = NT),

where NOmin and NOmax are the minimal and maximal number
of mRNA or protein molecules, respectively. We performed 1000
simulations to estimate noise using three different measures.
The size of the fluctuation, Fano factor and the coefficient of
variation. The size of the fluctuations was quantified as the
average difference (NOmax − NOmin ). Fano factor as the variance
of the response distribution divided by its mean (σ2(NP)/N̄P).
Coefficient of variation as the standard deviation of the response
distribution divided by its mean (σ(NP)/N̄P ).

Parameter Values
Our simulations considered biologically sensible parameter
ranges. Specifically, for TF-DNAbs binding, empirical data
suggests that usually Keq < 10−8 and can reach picomolar
(10−12M) or even smaller values (Corzo, 2006; Biggin, 2011; Li
et al., 2011; Fisher et al., 2012; Belikov et al., 2015; Jung et al.,
2016). Because experimental research has shown that residence
time varies from seconds to tens of minutes (Geertz et al., 2012;
Mueller et al., 2013; Morisaki et al., 2014), we used dissociation
rates producing residence time within this interval [1 s, 1 h].

For mRNA, experimentally measured half-lives usually lie
in the range of seconds to hours (Sharova et al., 2009;
Schwanhäusser et al., 2011; Laalami et al., 2014; Lugowski
et al., 2018). Protein half-lives are usually longer than mRNA
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half-lives (Moran et al., 2013) and lie between hours and days
(Schwanhäusser et al., 2011; Toyama and Hetzer, 2013). Taking
all this information into consideration we chose mRNA half-lives
of ∼3.3 min, and protein half-lives of ∼1.5 h. We assumed that
the ratio k2/k1 of the protein synthesis rate to the mRNA synthesis
rate exceeds 1.0 (Hausser et al., 2019).
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