
fmolb-07-571180 October 16, 2020 Time: 18:53 # 1

ORIGINAL RESEARCH
published: 22 October 2020

doi: 10.3389/fmolb.2020.571180

Edited by:
Xin Gao,

King Abdullah University of Science
and Technology, Saudi Arabia

Reviewed by:
Peng Yang,

Baidu, United States
Juntao Liu,

Shandong University, China
Fa Zhang,

Institute of Computing Technology,
China

*Correspondence:
Yonghong He

heyh@sz.tsinghua.edu.cn
Yupeng Chen

chenyp01@pcl.ac.cn

Specialty section:
This article was submitted to

Molecular Diagnostics
and Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 10 June 2020
Accepted: 19 August 2020

Published: 22 October 2020

Citation:
Xu Z, Li X, Zhu X, Chen L, He Y

and Chen Y (2020) Effective
Immunohistochemistry Pathology

Microscopy Image Generation Using
CycleGAN.

Front. Mol. Biosci. 7:571180.
doi: 10.3389/fmolb.2020.571180

Effective Immunohistochemistry
Pathology Microscopy Image
Generation Using CycleGAN
Zidui Xu1, Xi Li2, Xihan Zhu3, Luyang Chen4, Yonghong He1* and Yupeng Chen5*

1 Department of Life and Health, Tsinghua Shenzhen International School, Shenzhen, China, 2 Department
of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, China, 3 School of Traditional Chinese Medicine,
Capital Medical University, Beijing, China, 4 Department of Computer Science, Pennsylvania State University, University Park,
PA, United States, 5 Peng Cheng Laboratory, Shenzhen, China

Immunohistochemistry detection technology is able to detect more difficult tumors than
regular pathology detection technology only with hematoxylin-eosin stained pathology
microscopy images, – for example, neuroendocrine tumor detection. However, making
immunohistochemistry pathology microscopy images costs much time and money.
In this paper, we propose an effective immunohistochemistry pathology microscopic
image-generation method that can generate synthetic immunohistochemistry pathology
microscopic images from hematoxylin-eosin stained pathology microscopy images
without any annotation. CycleGAN is adopted as the basic architecture for the unpaired
and unannotated dataset. Moreover, multiple instances learning algorithms and the idea
behind conditional GAN are considered to improve performance. To our knowledge,
this is the first attempt to generate immunohistochemistry pathology microscopic
images, and our method can achieve good performance, which will be very useful for
pathologists and patients when applied in clinical practice.

Keywords: immunohistochemistry pathology microscopy image, medical image generation, CycleGAN,
conditional GAN, multiple instances learning

INTRODUCTION

Immunohistochemistry (IHC) detection technology, such as staining with Ki-67 reagent, plays
an important role in tumor detection. About 5–10% of patients with tumors cannot be detected
accurately only with hematoxylin-eosin (HE) stained pathology microscopic images. Luckily, with
the rapid development of IHC detection technology, many difficult tumors can be detected,
especially undifferentiated or poorly differentiated tumors. Although IHC detection technology
is a more accurate method, making Ki-67 pathology microscopic images costs a large amount
of money and time. Considering the surprising performance of deep learning technology in
medical image analysis region (Wang et al., 2016; Liu et al., 2017; Li and Ping, 2018), especially
generating synthetic medical images using generative adversarial networks (GAN) and its variants
(Goodfellow et al., 2014; Hoffman et al., 2017; Nie et al., 2017; Frid-Adar et al., 2018a,b; Han
et al., 2018; Kazeminia et al., 2018; Mahmood et al., 2018; Shin et al., 2018), generating synthetic
Ki-67 pathology microscopy images from HE pathology microscopy images using GAN would
be a good choice.

However, generating synthetic Ki-67 microscopy images from HE pathology microscopy
images is a challenging task. The first reason is the unpaired dataset. Because a pathology slice
is not usually allowed to be stained twice, in this paper, the HE pathology microscopy image and its
corresponding Ki-67 pathology microscopy image are not pixel-aligned. The second reason is the
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FIGURE 1 | The evaluation process of our method. After patch extraction, the HE pathology patches will be fed into a trained classifier at first. Then the class-related
information will be combined with the HE pathology patches, and they are the input of the trained generator, which will generate synthetic Ki-67 pathology patches.

FIGURE 2 | A representation of two HE pathology microscopy images (top) and their corresponding Ki-67 pathology microscopy images (bottom) in our dataset.

difficulty of achieving professional pathological annotations.
Unlike any other common computer vision tasks, the annotations
of pathology microscopy images can only be completed and
checked by professional pathologists, so it is extremely hard to get
a large fully and accurately annotated microscopy image dataset.
The third reason is the difficulty of considering class-related
information from HE pathology microscopy images to Ki-67
pathology microscopy images. The adversarial training process

will align some feature vectors between different domains (Song
et al., 2019), but the class-related feature vectors are what we need,
and we need to handle them.

In recent years, with the development of deep learning
technology, many researchers have tried their best to address
these drawbacks. CycleGAN was proposed for unpaired image
datasets when generating synthetic images (Zhu et al., 2017). By
introducing cycle loss functions during the adversarial training

Frontiers in Molecular Biosciences | www.frontiersin.org 2 October 2020 | Volume 7 | Article 571180

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-571180 October 16, 2020 Time: 18:53 # 3

Xu et al. Immunohistochemistry Pathology Microscopy Image Generation

process, the generator finds an accurate mapping between two
different domains with unpaired datasets. In this view, CycleGAN
is the proper way for unpaired pathology microscopy image
datasets. With incomplete or lacking annotations of pathology
microscopy images, semi-supervised learning-based methods,
unsupervised learning-based methods and self-supervised
learning-based methods have been introduced to work on
datasets with partial annotations or without any annotation and
these methods have proven to be useful (Campanella et al., 2019;
Xu G. et al., 2019). Among these methods, multiple instances
learning (MIL) algorithms have been applied successfully
with unannotated pathology microscopy images, so they have
been adopted in this paper (Xu G. et al., 2019). Actually, the
adversarial training process aims to align some feature vectors
extracting from real images or fake images (Nguyen et al., 2017).
When the feature vector that makes the largest contribution
to the discriminator are aligned well, then the discriminator
would neglect other feature vectors. In our work, we found
that when training with small pathology microscopy patches,
morphological feature vectors are selected for alignment during
adversarial training process. However, what we need is to align
class-related feature vectors. The idea behind conditional GAN is
extended to address this problem by treating the class label as the

additional channel of the input patch, and the class label can be
obtained from MIL algorithms (Mirza and Osindero, 2014). By
teaching the generator to focus on class-related information, the
model will achieve better performance.

We show the schematic representation of our method during
the evaluation step in this paper (Figure 1). When we generate
a synthetic Ki-67 pathology microscopy image from a specific
HE pathology microscopy image, the HE pathology microscopy
patch will be fed into a classifier to get its class label. Then
this class-related information will be combined with the HE
pathology microscopy patch, and they are the input of the
generator which will produce a synthetic Ki-67 pathology
microscopy patch.

In this paper, the major contributions are in three phases:
first, we apply CycleGAN to generate synthetic Ki-67 pathology
microscopy images from unpaired HE pathology microscopy
images. By introducing the cycle loss function and adjusting the
architecture of the networks, CycleGAN is able to find an accurate
mapping from the HE domain to the Ki-67 domain. Second, we
apply a MIL algorithm to train two classifiers from unannotated
HE and Ki-67 pathology microscopy images separately. Both
classifiers are used to distinguish tumor patches from normal
patches. Last, we apply the idea behind conditional GAN. By

FIGURE 3 | A schematic representation of our method. Unlike raw CycleGAN, during the adversarial training process, the classifiers will extract class-related
information, which will be introduced into the training process. This strategy will force the class-related feature vectors to be aligned and then improve our
performance.
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TABLE 1 | MIL and CycleGAN dataset.

Training dataset Evaluation dataset

HE Ki-67 HE Ki-67

MIL 307/87 359/78 35/35 46/40

CycleGAN 34121 33293 4396 4031

The table above shows the number of samples used during the MIL training
process. During the MIL training process, they are the number of positive
samples/the number of negative samples. The training data are at the large patch
level (2,240 × 2,240 pixels) during the MIL training process and at small patch level
(2,24 × 2,24 pixels) during the CycleGAN training process.

FIGURE 4 | A representation of our dataset. Because the Ki-67 pathology
slice is the consecutive slice near HE pathology slice, these two pathology
microscopy images are almost same at image level, but they are different at
pixel level or patch level.

treating class-related information as the additional channel of
input patches, class-related feature vectors are forced to be
aligned well and this strategy is essential to our performance.

The remaining sections are organized as following: section
“Materials and Methods” introduces the dataset and our method
in detail. In section “Results,” we conduct experiments and show
our experimental results. Finally, we conclude and discuss our
work in section “Discussion.”

MATERIALS AND METHODS

Dataset
In this paper, we conduct experiments on a neuroendocrine
tumor dataset. Formalin-fixed paraffin-embedded tumor samples
from 10 patients with neuroendocrine tumors in the Peking
University Shenzhen Hospital, China, are used in this work. The

TABLE 2 | CycleGAN configuration.

Generator Discriminator

Conv (in_c = 3, out_c = 64, k = 7,
s = 1, p = 3)

Conv(in_c = 3, out_c = 64, k = 7,
s = 1, p = 3)

InstanceNorm(64) LeakyReLU(0.2)

ReLU() Conv(in_c = 64, out_c = 128, k = 3,
s = 2, p = 1)

Conv(in_c = 64, out_c = 128, k = 3,
s = 2, p = 1)

InstanceNorm(128)

InstanceNorm(128) LeakyReLU(0.2)

ReLU() Conv(in_c = 128, out_c = 256, k = 3,
s = 2, p = 1)

Conv(in_c = 128,out_c = 256, k = 3,
s = 2, p = 1)

InstanceNorm(256)

InstanceNorm(256) LeakyReLU(0.2)

ReLU() Conv(in_c = 256,out_c = 512, k = 3,
s = 2, p = 1)

Conv(in_c = 256, out_c = 256, k = 3,
s = 1, p = 1)

InstanceNorm(512)

InstanceNorm(256) LeakyReLU(0.2)

ReLU() Conv(in_c = 512,out_c = 1, k = 4,
s = 1, p = 1)

Conv(in_c = 256,out_c = 256, k = 3,
s = 1, p = 1)

AveragePool()

InstanceNorm(256)

Conv_transpose(in_c = 256,
out_c = 128, k = 3, s = 2, p = 1,
p_o = 1)

InstanceNorm(128)

ReLU()

Conv_transpose(in_c = 128,
out_c = 64, k = 3, s = 2, p = 1, p_o = 1)

InstanceNorm(64)

ReLU()

Conv(in_c = 64, out_c = 3, k = 7, s = 1,
p = 3)

Tanh()

The table above shows the detailed configuration of generator and discriminator
in CycleGAN framework during CycleGAN training process. Specifically, Conv is
convolution, InstanceNorm is instance normalization, ReLU is ReLU activation
function, Conv_transpose is transposed convolution, Tanh is Tanh activation
function, AveragePool is the average pooling function, in_c is input channel, out_c
is output channel, k is kernel size, s is stride size, p is padding size, and p_o is
output padding size.

samples are stored in the archives of Department of Pathology
in Peking University Shenzhen Hospital, and the head of the
Department of Pathology approved the usage of the samples
in this work. The samples are anonymized. All patient-related
data and unique identifiers are removed. These procedures were
performed under the supervision and approval of the Ethics
Committee in Peking University Shenzhen Hospital.

From each formalin-fixed paraffin-embedded block, we cut
two consecutive sections: one for staining with HE and the other
for staining with the anti-Ki-67 antibody. During the HE staining
process, we used undiluted Mayer’s hematoxylin and 0.5% eosin.
During the IHC staining process, we used anti-Ki-67 antibody
(Roche United States).
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FIGURE 5 | Some training samples during MIL training process.

FIGURE 6 | Some training samples during CycleGAN training process.

In this way, we got 10 HE pathology microscopy images
and 10 corresponding Ki-67 pathology microscopy images of
neuroendocrine tumors. In all, 7 HE pathology microscopy
images and 7 corresponding Ki-67 pathology microscopy images
are used as training data, and the rest are used as evaluating
data. In this paper, we list the representation of 2 HE pathology
microscopy images and their corresponding Ki-67 pathology
microscopy images (Figure 2).

Preprocess
During the MIL training period, for each domain (HE or Ki-
67), we want to train a binary classifier to classify tumor patches
or normal patches. However, our data are unannotated. So
two preprocess steps are necessary. The first step is foreground
extraction. There exist three kinds of patches from HE pathology
microscopy images or Ki-67 pathology microscopy images:
tumor patches including at least one tumor cell, normal patches
including only normal cells, and background patches including
only background. But the MIL algorithm is used to train
a binary classifier to classify two kinds of patches, so the
background patches should be removed. In this paper, an OTSU

algorithm (Xu G. et al., 2019) is used to extract foreground
from HE pathology microscopy images and Ki-67 pathology
microscopy images. The second step is extracting large patches
with weak annotations. In this paper, HE pathology slices and
Ki-67 pathology slices are all positive slices containing tumor
cells. But the MIL algorithm works with positive samples and
negative samples with weak annotations. For this reason, the
foreground of HE pathology microscopy images and Ki-67
pathology microscopy images is cropped into large patches (2,240
× 2,240 pixels), and then we can label these large patches
manually. With this preprocess, we can get two weakly annotated
datasets (one HE large patch dataset and one Ki-67 large patch
dataset), and they can be used to train two classifiers (one is used
in the HE domain, and the other one is used in the Ki-67 domain)
using the MIL algorithm.

During the CycleGAN training period, the background of
pathology microscopy images should not be removed because
the generator is required to generate a synthetic background at
the same time. The extraction of large patches is also removed.
The pathology microscopy images should be cropped into small
patches (224 × 224 pixels) directly.

Method
In this paper, we provide a schematic representation of our
method (Figure 3). At first, we train two binary classifiers
classifying tumor patches or normal patches with unannotated
HE and Ki-67 pathology microscopy images using the MIL
algorithm. During the CycleGAN training period, the input
patches will be fed into the above classifiers in order first to get
its class-related information. Then, following what conditional
GAN does, class-related information will be considered as the
additional channel of the input patch. This strategy will force
class-related feature vectors to be aligned accurately during the
adversarial training process. Note that our method is working
with an unannotated and unpaired dataset, and thus it can be
applied to many other tasks.

MIL for Getting Class-Related
Information
There have been many methods based on deep learning
technology for tumor cell detection in pathology microscopy
images. A dataset with annotations from professional
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FIGURE 7 | The image-level visualization of classification results in HE and Ki-67 domain: (A) is an HE pathology microscopy image, (B) is its heatmap, (C) is a Ki-67
pathology microscopy image, and (D) is its heatmap. Red is for tumor patches, and blue is for normal patches.

pathologists is essential for the models’ feasibility and
performance, but it is too hard to get such a dataset. To
address this drawback, in this paper, we apply the MIL algorithm
to collect class-related information from an unannotated dataset.

During the MIL training period, the HE and Ki-67 pathology
microscopy images are cropped into large patches (2,240 ×

2,240 pixels), and these large patches are manually labeled as
tumor patches or normal patches. A large patch is assigned a
tumor label if it contains at least one tumor cell, while it is
assigned a normal label if it contains only normal cells. After
we have labeled all large patches, small patch extraction is
necessary for low GPU memory, and each small patch is set
at 224 × 224 pixels. Each iteration consists of an evaluation
step and a training step. During the evaluation step, for each

large patch, a classifier evaluates all small patches from this
large patch and then one selected small patch is labeled. The
small patch with the largest predictive probability is the one
selected, and it should be considered the representative small
patch for the large patch. For a large tumor patch, the selected
small patch is assigned the tumor label. For large normal patch,
the selected small patch is assigned the normal label. After the
evaluation step, a training dataset of selected small patches with
labels can be used to train the classifier. The trained classifier
would evaluate all small patches in the next iteration. Finally,
we will achieve two classifiers for classifying tumor patches
or normal patches from HE and Ki-67 pathology microscopy
images. And they can be used to get class-related information
from unannotated data.
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FIGURE 8 | The patch-level visualization of classification results in HE and Ki-67 domain. Here we list six cases in three rows, three HE cases (left), and three Ki-67
cases (right): (a–c) are the HE pathology patches; (d–f) are their heatmaps; (g–i) are the Ki-67 pathology patches; and (j–l) are their heatmaps. Red is for tumor
patches, and blue is for normal patches.

During the MIL training process, the number of training
samples is listed in Table 1. What’s more, the classifiers used are
ResNet34 (He et al., 2016).

CycleGAN for an Unpaired Dataset
In this paper, the corresponding Ki-67 pathology slice is the
consecutive slice near the HE pathology slice. This means they
are same mostly at the image level, but at the pixel level, they
are different and unpaired, just as shown in Figure 4. As a result,
CycleGAN is an appropriate solution for our task.

During the CycleGAN training period, HE and Ki-67
pathology microscopy images are directly cropped into small
patches (224 × 224 pixels), including background. In this
paper, the generator in raw CycleGAN has been replaced by
a more complicated generator because we found that in raw
CycleGAN, the discriminator would learn much faster than the
generator when training with our data, so the generator could
not learn anything and fails to generate synthetic Ki-67 pathology
microscopy images of high quality.

During CycleGAN training process, the number of training
samples is listed in Table 1 and the detailed network
configuration is shown in Table 2.

Conditional GAN for Class-Related
Alignment
In the generation of synthetic images, the adversarial training
process of GAN and its variants can be treated as learning
an accurate mapping of some feature vectors between different
domains. From the viewpoint of domain adaptation, the
discriminator in GAN focuses on some feature vectors while
neglecting other feature vectors that are less important. The
situation is the same with CycleGAN. In our work, we found
that raw CycleGAN would neglect class-related feature vectors
during the adversarial training process. However, we need to
consider the class-related information because Ki-67 pathology
microscopy images are used to detect tumor cells. In order to
align class-related feature vectors, the idea behinds conditional
GAN is introduced to take class-related information into
consideration (Xu Z. et al., 2019). In detail, the input patch of
our CycleGAN is not only the HE microscopy patch or the Ki-
67 microscopy patch, but also their class-related information
generated from the classifier training with the MIL algorithm.

Some training samples during MIL training process and
CycleGAN training process will be listed to better understand the
differences between them. Figure 5 shows some training samples
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FIGURE 9 | The patch-level visualization of image generation results. Here we list five cases in five columns. At each column, the top image is the HE pathology
patch, the middle image is the corresponding Ki-67 pathology patch, and the bottom one is the synthetic Ki-67 pathology patch generated with our proposed
method.

during the MIL training process while Figure 6 shows some
training samples during the CycleGAN training process.

Training Configuration
Our method is implemented in the PyTorch framework on an
Ubuntu platform. All experiments are conducted on a computer
equipped with an NVIDIA GTX 2080 Ti graphic card with 11
GB of memory. During the training stage of our method, the
deep neural networks are trained with Adam stochastic gradient
descent algorithm. We use the learning rate of 0.0001 for 100
training epochs during the MIL training process and CycleGAN
training process, and we will save the models each epoch. Among
these 100 saved models, the one achieving the best result on the
validation set is selected as the final model.

As for the loss function, cross entropy loss is used to train two
classifiers during the MIL training process. During CycleGAN
training process, just as with normal CycleGAN, the loss function
for the discriminator is binary cross-entropy loss, and the loss
function for the generator is mean square error loss.

RESULTS

Metrics
Unlike usual image generation tasks, in this paper, the evaluation
metric is lacking because a pathology slice is not stained twice
usually. It means that there is no way to get the pixel-aligned
Ki-67 pathology microscopy image from a specific HE pathology

microscopy image. To address this question, we have got the
consecutive Ki-67 pathology slice near HE pathology slice.
In this paradigm, the HE pathology microscopy image and
its corresponding Ki-67 pathology microscopy image appear
similar at image level. But they are different at the patch level.
Considering this phenomenon, we evaluate our proposed method
by image-level visualization and patch-level visualization. The
image-level visualization can be used to evaluate the alignment
of global feature vectors, and the patch-level visualization can be
used to evaluate the alignment of class-related feature vectors.
Moreover, we calculate the ratio of positive cells to all cells in a
real Ki-67 pathology microscopy image, and its corresponding
fake Ki-67 pathology microscopy image. These two ratios should
be as close as possible.

Visualization of Patch Classification
In this section, two figures (Figures 7, 8) show the experimental
results of the binary classifiers in the HE domain and the
Ki-67 domain using the MIL algorithm. Figure 7 shows
the classification results in the HE domain and the Ki-
67 domain, and they are at the image level. The image-
level results show the average classification performance.
Figure 8 shows the classification results in the HE domain
and the Ki-67 domain, and they are at the patch level.
The patch-level results show the classification performance
in several regions with different densities of positive cells.
From the visualization results, we can infer that we have
got two classifiers for the tumor patch or the normal patch
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FIGURE 10 | The image-level visualization of image generation results. Here we show two different cases in two rows. In each row, the left image is the HE
pathology microscopy image, the middle image is the corresponding Ki-67 pathology microscopy image, and the right one is the synthetic Ki-67 pathology
microscopy image generated with our proposed method.

classification in the HE domain and the Ki-67 domain based on
unannotated data.

Visualization of Image Generation
In this section, we show the experimental results of our
proposed Ki-67 pathology microscopy images generation method
from HE pathology microscopy images, including patch-level
visualization and image-level visualization. Figures 9, 10 show
the patch-level visualization and the image-level visualization
of our experimental results. Figure 9 shows five cases of our
experimental results, in five columns. In each column, the top
image is the HE patch, the middle image is the corresponding
Ki-67 patch and the bottom image is the synthetic Ki-67 patch

TABLE 3 | Quantification results 1 of our proposed method.

Training dataset Evaluation dataset

Real Ki-67 Synthetic Ki-67 Real Ki-67 Synthetic Ki-67

Ratio 0.3744 0.3850 0.3046 0.2771

Ratio, ratio of the number of positive cells to the number of all cells. The results
above show the potential value of our proposed method in clinical practice.

TABLE 4 | Quantification results 2 of our proposed method.

Example 1 Example 2

Real Ki-67 Synthetic Ki-67 Real Ki-67 Synthetic Ki-67

Ratio 0.2570 0.2518 0.3522 0.3025

Ratio, ratio of the number of positive cells to the number of all cells. The results
above show the potential value of our proposed method in clinical practice.

generated by our proposed method. Our proposed method is
able to generate synthetic Ki-67 patches of high quality. By
comparison with real Ki-67 patches, we can find that normal cells
and tumor cells in HE patches can be transformed into normal
cells and tumor cells in synthetic Ki-67 patches correctly. Figure 8
shows our experimental results at image level. In Figure 10,
we show two different cases, in two rows. In each row, the
left image is the original HE pathology microscopy image, the
middle image is the corresponding Ki-67 pathology microscopy
image, and the right image is the synthetic Ki-67 pathology
microscopy image generated with our proposed method. We
can easily find that our proposed method can work well in
regions including background or a high rate of positive cells or
a medium rate of positive cells. However, this result also shows
that it cannot work well in regions with a low rate of positive
cells. Clinically, when we examine Ki-67 pathology microscopy
images, the color, dark or light, of positive cells is not important
because the doctors are asked to count positive cells to make a
diagnosis. Quantification results taking this clinical usage into
consideration will be listed by illustrating the ratio of positive
cells to all cells.

Quantification Results
In this section, the ratio of positive cells to all cells will be
set as the evaluating metric for our proposed method because
of the clinical usage of Ki-67 pathology microscopy images.
Each test HE pathology microscopy image will be fed into the
well-trained generator to generate a synthetic Ki-67 pathology
microscopy image. For quantification results, we separately count
the ratio above from real Ki-67 pathology microscopy image and
its corresponding synthetic Ki-67 pathology microscopy image,
and the results are listed in Tables 3, 4.

Frontiers in Molecular Biosciences | www.frontiersin.org 9 October 2020 | Volume 7 | Article 571180

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-571180 October 16, 2020 Time: 18:53 # 10

Xu et al. Immunohistochemistry Pathology Microscopy Image Generation

FIGURE 11 | The representation of image generation results using raw CycleGAN and our proposed method. The top left image is the HE pathology patch, and the
top right one is its corresponding Ki-67 pathology patch. The bottom left image is the result generated with only CycleGAN and the bottom right one is the result
generated with our proposed method.

Ablation Study
In this section, we will list the experimental results of Ki-67
pathology microscopy images generation from HE pathology
microscopy images using only CycleGAN and our method.
Figure 11 shows the visualization of the experimental results
from only CycleGAN and our method at patch level. The top left
one is the real HE patch, the top right one is the corresponding
Ki-67 patch, the bottom left one is the synthetic Ki-67 patch
generated only with CycleGAN, and the bottom right one is
the synthetic Ki-67 patch generated with our method. The
comparison means that our proposed method is effective in Ki-
67 pathology microscopy image generation from HE pathology
microscopy images.

DISCUSSION

This is the first attempt to apply CycleGAN for synthetic Ki-
67 pathology microscopy images generation with an unpaired
dataset. Moreover, the MIL algorithm has been adopted to
extract class-related information from an unannotated dataset.
Importantly, the idea behind conditional GAN is used to force the
class-related feature vectors to be aligned during the adversarial
training process. With all these methods, our proposed method

is able to generate synthetic Ki-67 pathology microscopy images
of high quality. Because our proposed method is working with an
unannotated and unpaired dataset, our method can be applied to
many other regions.

Although we propose a synthetic Ki-67 pathology microscopy
images generation method and the performance is good enough,
there exist many future works for us to address. The first one is
the evaluation metric, which can evaluate its clinical usage. The
second one is a larger dataset, which is essential to performance
improvement. When addressing these problems, we believe we
can obtain a model that can be used in clinical practice.
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