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Aqueous humor (AH) proteins are involved in many physiological and pathological
processes of the eye. The proteome analysis of AH is important to understand its
physiological and pathophysiological functions. In the present study, AH samples
obtained from 21 cataract volunteers were pooled together. After high-pH RPLC
offline separation, the pooled sample was analyzed by LC-MS/MS to provide a
comprehensive profile of AH proteome. The function analysis was provided by the GO
and IPA annotation. In order to determine whether the AH proteome can reflect the
pathophysiological changes of the disease, DIA technology was used to analyze the AH
samples obtained from three neovascular glaucoma (NVG) patients (six samples) before
and after drug treatment. The differential proteins were validated by PRM technology in
an independent group (14 samples). In the AH proteome database, 802 proteins were
identified, and 318 proteins were identified for the first time. Furthermore, 480 proteins
were quantified based on the peak intensity-based semiquantification (iBAQ), which
ranged by approximately 7 orders of magnitude. These proteins are primarily involved
in immunity- and inflammation-related pathways. The differential AH proteomic analysis
in NVG treatment revealed that the AH proteome can reflect the pathophysiological
changes of drug treatment. Angiogenesis and thrombus coagulation progression are
deeply involved in NVG treatment. The present experiment provided a comprehensive
AH proteome analysis and expanded the profile of human AH proteome. The differential
AH proteomic analysis of NVG treatment indicated that AH proteome can reflect the
pathophysiological changes in drug intervention.

Keywords: proteome, aqueous humor, neovascular glaucoma treatment, conbercept, vascular endothelial growth
factor receptor

INTRODUCTION

Aqueous humor (AH) is a transparent liquid secreted by the ciliary epithelium. It is mainly
composed of 99.9% water, and trace amounts of sugar, vitamins, protein, and other factors
(Macknight et al., 2000). The functions of AH are to maintain intraocular pressure, nourish the
avascular cornea and lens, and remove metabolic waste (Bill, 1975). It plays an important role in
the pathogenesis and progression of ophthalmic disease (Kliuchnikova et al., 2016). The analysis of
the proteome in AH is important to understand the physiology and changes evoked by pathological
situations, especially in posterior disorders.
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In the past decade, several groups have provided the proteomic
analysis of AH. Chowdhury et al. (2010) were the first to use LC-
MS/MS technology to analyze the general profile of human AH
proteins. They identified 354 proteins (Chowdhury et al., 2010).
Murthy et al. (2015) used LC-MS/MS to identify 763 proteins
in AH samples obtained from 240 cataract patients in 2015. In
the proteomic study of AH in 24 patients with cataract and high
myopia after the glaucoma/vitrectomy surgery in 2015, Ji et al.
(2015) identified 445 proteins in AH. Adav et al. (2019) used LC-
MS/MS to analyze the AH proteome and identified 834 proteins
in the AH of cataracts.

In recent years differential AH proteomic analysis has been
applied for ophthalmic diseases. Je-Hyun Baek et al. used
SWATH-MS technology to quantify differentially expressed
proteins in the AH between patients with drusen and reticular
pseudodrusen (RPD) of age-related macular degeneration
(AMD). In three newly discovered dry AMD-related proteins,
LUM and KERA were upregulated in both RPD and soft drusen,
and these are correlated to the extracellular matrix organization
(Baek et al., 2018). Chiang SY et al. used MALDI-TOF MS
and identified 11 AH proteins with a pathophysiological role in
diabetic retinopathy. These proteins are linked with biological
networks associated with nutrition transport, microstructure
reorganization, angiogenesis, antioxidation, and neuroprotection
(Chiang et al., 2012).

Previous studies have provided several AH proteome database
analyses and disease differential analyses. With the development
of proteomic techniques, a more comprehensive analysis should
be provided to understand the function of AH. Furthermore,
previous disease proteomic studies have revealed that AH
can be an effective approach to identify disease differential
proteins. However, more work is needed to determine whether
these can reflect the disease pathophysiological change in
treatment interventions.

In the present study, the investigators attempted to establish
a comprehensive profile of AH proteome with offline 2D-
LC/MS/MS analysis and provide a detailed proteomic functional
annotation through the GO and IPA analysis. In addition,
the investigators conducted a differential proteomic analysis of
neovascular glaucoma (NVG) treatment with conbercept. The
primary cause of NVG was the formation of new blood vessels
above the iris, which block the outflow of AH and increase
intraocular pressure (IOP) (Barac et al., 2015). Conbercept is a
recombinant fusion protein designed as a VEGF receptor decoy.
It can significantly inhibit neovascularization (Wang et al., 2013).
In the present study, differential AH proteomic was used to
investigate the proteomic changes in NVG treatment. The present
study might benefit the understanding of AH proteome and
accelerate the application of AH to clinical research.

MATERIALS AND METHODS

Ethical Approval
Prior to study enrollment, all volunteers were given a verbal
explanation of the study, and each participant provided a signed
informed consent. The consent procedure and the research

protocol for the present study were approved by the Ethics
Committee for Human and Animal Research in Peking Union
Medical College. The study methodologies conformed to the
standards set by the Declaration of Helsinki.

Reagents and Instruments
Dithiothreitol (DTT), iodoacetamide (IAM), formic acid,
trifluoroacetic acid, ammonium bicarbonate, and HPLC-
grade acetonitrile (ACN) were purchased from Sigma (St.
Louis, MO, United States). Sequencing-grade trypsin was
purchased from Promega.

A high-pH RPLC column (4.6 mm × 250 mm, Xbridge C18,
3 µm) and Orbitrap Fusion Lumos tribrid (Thermo Scientific,
Bremen, Germany) coupled with an EASY-nLC 1000 was used
for the MS analysis in the DDA-MS and DIA-MS modes.

A TripleTOF 5600 mass spectrometer from AB Sciex
(Framingham, MA, United States) and an ACQUITY UPLC
system from Waters (Milford, MA, United States) were used.

Clinical Materials
The AH samples for dataset establishment were obtained from
21 cataract patients during surgery. The average age of these
patients was 69.23 ± 12.5 years old, and the median age was
47 years old. A total of 20 AH samples from 11 patients were
collected at 3 days before/7 days after the conbercept treatment
during surgery to monitor the proteomic response after treatment
of NVG (detailed clinical data in Supplementary Table S1).
These investigators divided these randomly into two groups: the
test group (three patients, six samples: three before treatment,
three after treatment) and the validation group (11 patients, 14
samples: seven before treatment, seven after treatment). A week
after treatment, the gonioscopy revealed a significant decrease in
neovascularization in all posttreatment patients.

Each sample was approximately 50–200 µl and aspirated from
the anterior chamber using a 26 needle at 3 days before/7 days
after the conbercept treatment. After collection, the AH samples
were immediately centrifuged at 2,500 × g at 4◦C for 10 min to
remove the cellular components and debris, and the supernatants
were stored at -80◦C for further analysis.

Protein Extraction
The AH samples were precipitated overnight using three times
the volume of ethanol at 4◦C. Then, after centrifugation at
10,000× g for 30 min, the pellets were resuspended in lysis buffer
(7 M of urea, 2 M of thiourea, 0.1 M of DTT, and 5 mM of Tris).
The protein concentration of 21 samples for AH proteome were
pooled together and determined by spectrophotometry based on
the Bradford method.

Protein Digestion
The pooled sample was digested using a filter-aided sample
preparation (FASP) method that was previously described
by Gravett et al. (2004). The protein samples (200 µg)
were reduced with 20 mM of DTT at 95◦C for 5 min
and carboxyamidomethylated with 50 mM of IAM at room
temperature in the dark for 45 min. Trypsin (4 µg) in 25 mM

Frontiers in Molecular Biosciences | www.frontiersin.org 2 October 2020 | Volume 7 | Article 587677

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-587677 October 8, 2020 Time: 16:7 # 3

Yu et al. AH Proteome and Application

of NH4HCO3 was added to each protein sample and incubated
at 37◦C overnight. After digestion, the resulting peptides were
desalted on a Waters Oasis C18 solid-phase extraction column
and lyophilized for HPLC separation.

Offline HPLC
The peptides were separated with a high-pH RPLC column
(4.6 mm× 250 mm, Xbridge C18, 3 µm). The sample was loaded
onto the column in buffer A1 (H2O, pH 10). The elution gradient
was 5-30% buffer B1 (90% ACN, pH 10; flow rate, 1 ml/min)
for 30 min. The eluted peptides were collected at one fraction
per minute. After this was lyophilized, the 30 fractions were
resuspended in 0.1% formic acid for LC-MS analysis.

LC/MS/MS
Orbitrap Fusion Lumos tribrid (Thermo Scientific, Bremen,
Germany) coupled with the EASY-nLC 1000 was used for the
MS analysis in the DDA-MS and DIA-MS modes. The digested
peptides were separated on an RP C18 self-packing capillary
LC column (75 µm × 100 mm, 3 µm). The eluted gradient
was 5–30% buffer B2 (0.1% formic acid, 99.9% ACN; flow rate,
0.3 µl/min) for 60 min.

For the generation of the spectral library, the 30 fractions from
RPLC were analyzed in DDA mode. The parameters were set as
follows: the full scan was acquired from m/z 350–1,500 with a
resolution of 60,000; the cycle time was set to 3 s; the auto gain
control (AGC) was set to 1e6, and the maximum injection time
was set to 50 ms; charge state screening (including precursors
with + 2 to + 5 charge state) and dynamic exclusion (exclusion
duration 30 s). MS/MS scans were performed at a resolution of
15,000, with an isolation window of 1.6 Da and collision energy at
32% (HCD). T, the AGC target, was set to 5e4, and the maximum
injection time was 30 ms.

Each individual sample was analyzed in DIA mode. For MS
acquisition, the variable isolation window DIA method with
38 windows was developed. The specific window lists were
constructed based on the DDA experiment of the pooled sample.
According to the precursor m/z distribution of pooled sample, the
precursor ion number was equalized in each isolation window.
The full scan was set at a resolution of 120,000 over the m/z
range of 400–900, followed by DIA scans with a resolution of
30,000 (HCD collision energy: 32%; AGC target: 1e6 and maximal
injection time: 50 ms). The MS data file can be freely downloaded
at iProX (Integrated Proteome resources1,2).

Spectral Library Generation
The DDA data were processed using the Proteome Discoverer
(Thermo Scientific, Germany) software, and searched against the
human SwissProt database appended with the iRT fusion protein
sequence (Biognosys). The search allowed two missed cleavage
sites in the trypsin digestion, cysteine carbamidomethylation was
set as a fixed modification, parent ion mass tolerances were set to
10 ppm, and fragment ion mass tolerances were set to 0.02 Da.

1http://www.iprox.org
2https://www.iprox.org/page/PSV023.html;?url=1595559292439gM2p, password:
6uw9.

The applied false discovery rate (FDR) cutoff was 0.01 at the
protein level. The results were imported to the Spectronaut Pulsar
(Biognosys, Switzerland) software to generate the library.

PRM Mass Spectrometry
The PRM analysis was performed on TripleTOF 5600 +. The
separation of the peptides was performed on an RPC18 self-
packing capillary LC column (75 µm × 100 mm, 3 µm). The
eluted gradient was 5–30% buffer B1 (0.1% formic acid, 99.9%
ACN; flow rate, 0.3 µl/min) for 60 min. For ionization, a spray
voltage of 2.10 kV and a capillary temperature of 60◦C were
used. The peptides (Supplementary Table S3) were monitored
using the PRM acquisition mode for performing MS/MS scans
of the precursor ions for the all peptide markers along the
complete chromatographic run, and each sample was run for two
times. The normalized collision energy was fixed to 35%, and the
accumulated time was 300 s.

Data Analysis
The DIA-MS data were analyzed using the Spectronaut Pulsar
(Biognosys, Switzerland) with default settings. In brief, the
retention time prediction type was set to dynamic iRT.
Interference correction on the MS2 level was enabled. Peptide
intensity was calculated by summing the peak areas of their
respective fragment ions for MS2, and the protein intensity
was calculated by summing the intensity of their respective
peptides. Cross run normalization was enabled to correct for
systematic variance in the LC-MS performance, and local
normalization strategy was used. The normalization was based
on the assumption that, on average, a similar number of peptides
was upregulated and downregulated, and the majority of the
peptides within the sample were not regulated across runs, and
along the retention time. Protein inference, which gave rise to
the protein groups, was performed on the principle of parsimony
using the ID picker algorithm, as implemented in Spectronaut.
All results were filtered by a Q value cutoff of 0.01 (corresponds
to an FDR of 1%).

For the PRM mode, Skyline software (version 3.5.0.9319) was
used for the selection of the suiTable m/z precursor ion →
m/z fragment ion transition for the selected candidate peptide
biomarkers. Peptide settings: the enzyme was set as trypsin
[KR/P], and the maximum number of missed cleavages was set as
2. The peptide length was set as 8–25; the variable modifications
were set as carbamidomethyl on Cys and oxidation on Met; and
the maximum number of variable modifications was set as 3.
Transition settings: the precursor charges were set as 2 and 3; the
ion charges were set as 1 and 2; the ion types were set as b, y, and
p. The product ions were set to range from ion 3 to the last ion,
and the ion match tolerance was set as 0.02 Da.

Rank the Abundance
In order to rank the relative abundance of different proteins,
an intensity-based absolute quantification (iBAQ) algorithm
was used (Schwanhausser et al., 2011). Protein intensities
summarizing all of the identified peptide intensities were
constructed using Progenesis LC-MS (version 2.6, Non-linear
Dynamics, United Kingdom), according to a previously described
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procedure (Hauck et al., 2010). The iBAQ value was obtained
by peptide intensities divided by the number of theoretically
observable peptides of the protein (calculated by in silico protein
digestion; all fully tryptic peptides between 6 and 30 amino acids
were counted) (Liu et al., 2017). The relative iBAQ intensities
were computed by dividing the absolute iBAQ intensities by
the sum of all absolute iBAQ intensities. The estimated protein
abundances were calculated by multiplying the relative iBAQ
intensities by the molecular weight of the protein.

Bioinformatics Analysis
All differentially expressed proteins were assigned to their gene
symbol according to the Panther database3. Protein classification
was performed based on functional annotations using Gene
Ontology (GO) for biological processes, molecular function, and
cellular component categories.

The investigators uploaded the information of the differently
expressed proteins (DEPs) and validated the DEPs to the
STRING database4 for protein–protein interaction (PPI) network
analysis, and the minimum interaction score was set at
0.4. The biomolecular interaction networks are instructed
within the software Cytoscape (version 3.7.1) and its plugins
(Chin et al., 2014).

For the Ingenuity Pathway Analysis (IPA), the SwissProt
accession numbers were uploaded to the IPA software (Ingenuity
Systems, Mountain View, CA, United States). The proteins were
mapped to the disease and function categories, and canonical
pathways available in ingenuity, and other databases that were
ranked by the P-value.

RESULTS

Workflow
In the present study, 21 cataract AH samples were used to
generate a comprehensive profile of the human AH proteome.
All AH samples were pooled into one sample. The pooled
sample was digested and analyzed by 2D-RP-RP LC-MS/MS.
The functional annotation was provided by the GO annotation
and IPA analysis.

In the disease AH proteomic analysis, six AH samples from
three NVG patients before and after drug treatment were
analyzed using the DIA technique. After functional analysis, the
key differential proteins were validated by PRM technology in an
independent group (14 samples) (Figure 1).

Database: A Comprehensive Profile of
the AH Proteome
In the pooled sample, through the 2D-LC/MS/MS analysis of
5,368 peptides, 802 proteins were identified (431 proteins with
at least two unique peptides) (detailed data in Supplementary
Table S2). The investigators compared the present results with
those in previous AH proteome studies (Table 1). Most proteins
in the present study (60.3%) overlapped with those in previous

3http://www.pantherdb.org/
4https://string-db.org/

studies, and 318 proteins (39.7%) were newly identified. In
the present study offline, high-pH RPLC separation and online
low-pH RPLC MS were used, which could achieve higher
proteomic separation efficiency. In addition, a new state-of-
the-art mass spectrometer, Orbitrap Fusion Lumos, was used
to acquire the MS/MS data, which could provide faster scan
speed and higher detection sensitivity. Therefore, 318 proteins
could be newly found in the AH proteome. Taking all the
results of the AH proteome into one database, the human AH
proteomes were expanded to 1,888 (Figure 2A, detailed data in
Supplementary Table S3).

The GO analysis of the AH proteome was performed using
the PANTHER classification system (see text footnote 1). In the
cellular component category, the AH matrices were enriched in
the extracellular region. The main molecular functions of the
AH protein were binding and catalytic activity. AH proteins
principally participate in the metabolic and biological regulation
process (Supplementary Figure S1).

The IPA pathway analysis revealed that these proteins
are primarily involved in immune/inflammatory pathways
(LXR/RXR activation, acute phase response signaling, FXR/RXR
activation, and complement system), coagulation-related
pathways (coagulation system, intrinsic prothrombin activation
pathway, extrinsic prothrombin activation pathway, GP6
signaling pathway, and atherosclerosis signaling), and energy
metabolism-related pathways (glycolysis I, gluconeogenesis I,
and glucocorticoid receptor signaling) (Figure 2B, detailed data
in Supplementary Table S4). Proteins related to immunity and
inflammation may reflect the particularity of ocular immune
privilege (Streilein, 2003).

In order to further understand the AH proteome, the
quantitative proteomic analysis was provided by the iBAQ
algorithm (Schwanhausser et al., 2011). In this study, 480
proteins were quantified, and the dynamic range of relative
abundance spanned 7 orders of magnitude (detailed data
in Supplementary Table S2). In addition, the investigators
ranked these 480 quantitative proteins according to their
abundance, in which high abundance proteins were the top
95% proportion (47 proteins), medium abundance ones were
within the 95–99% proportion (87 proteins), and low abundance
ones were 1% of the proportion (346 proteins) (detailed data
in Supplementary Table S4). The canonical pathway analysis
revealed the medium and high-abundance proteins involved
in similar pathways, such as the inflammatory/immune-related
pathways (acute phase response signaling, LXR/RXR activation,
FXR/RXR activation, IL-12 signaling, and production in
macrophages) and coagulation-related pathways (coagulation
system, extrinsic prothrombin activation pathway, intrinsic
prothrombin activation pathway). Obviously different from
high-abundance/medium-abundance proteins, low-abundance
proteins are involved in the complement pathway, energy
metabolism pathways (glycolysis I, gluconeogenesis I, creatine-
phosphate biosynthesis, Rapoport–Luebering glycolytic shunt),
and phagocytosis-related pathways (MSP-RON signaling
pathway, phagosome maturation) (Figure 2C).

As shown in Table 2 the 10 most abundant protein
assemblages accounted for approximately 78% of the total AH
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FIGURE 1 | Workflow of the human aqueous humor (AH) fluid proteome profile analysis and the discovery/validation of differently expressed proteins (DEPs) in the
neovascular glaucoma (NVG) treatment.

TABLE 1 | Comparison of 5 aqueous humor (AH) proteome studies.

Year Author Disease Method Instrument Filter Number of proteins
identified

References

2010 Chowdhury et al. Cataracts Nano-LC-ESI-MS/MS ThermoFinnigan LTQ
Orbitrap Hybrid

At least 2 unique
peptides

354 Chowdhury et al.,
2010

2015 Krishna R. Murthy et al. Cataracts LC-MS/MS LTQ-Orbitrap Velos
mass spectrometer

FDR < 1% 737 Murthy et al., 2015

2015 YinghongJi et al. Cataracts iTRAQ LC–MS/MS Orbitrap QExactive
mass spectrometer

FDR < 1% 445 Ji et al., 2015

2019 Sunil S. Adav et al. Cataracts LC-MS/MS Q-Exactive instrument FDR < 1% 816 Adav et al., 2019

2019 This study Cataract LC-MS/MS Orbitrap Fusion Lumos
tribrid

FDR < 1% 802 –

proteins. All of these proteins were found in the blood5 (Bastian
et al., 2008). One of the most abundant protein in the AH is
the receptor-type tyrosine-protein phosphatase zeta (PTPRZ1).
PTPRZ1 is also known as RPTPβ/ζ, RPTPβ, or RPTPζ. The
expression of PTPRZ1 is restricted to the central nervous system
and localizes to glial cells. This may be involved in manifold
recognition events in the construction of neural networks
(Bouyain and Watkins, 2010). Evidence indicates that RPTPβ/ζ
may play an important role in establishing the phenotype
differentiation of Müller glia cells. It is a critical signaling
molecule in the developing mature mouse retina (Horvat-
Brocker et al., 2008). Other high-abundance proteins, such as
transthyretin (TTR) and transferrin (TF), were also reported to
play roles in pathological or physiological processes of the eye
(Picard et al., 2015; Daruich et al., 2019).

According to the IPA annotation, 218 proteins are found to
be potential biomarkers for ophthalmology diseases (Figure 2D).

5https://bgee.org/

Particularly, many were reported to be crucial factors in glaucoma
pathological features (detailed data in Supplementary Table S2).
C3 reduction was associated with the severity of glaucomatous
optic nerve degeneration (Bosco et al., 2018). The increase
in TIMP1 and TIMP2 may lead to the inhibition of MMP2
activity and contribute to the IOP of primary open-angle
glaucoma (Ashworth Briggs et al., 2015). In addition, MYOC is
generally considered to be closely correlated to the occurrence
and development of glaucoma (Nazir et al., 2018). In addition
to glaucoma, these AH proteins have also been reported to
be associated with a variety of other common ophthalmology
diseases, such as age-related macular degeneration (Cashman
et al., 2011) and cataract (Shiels and Hejtmancik, 2015).

The Differential AH Proteomic Analysis
of NVG in Conbercept Treatment
A total of 541 proteins were identified by the DIA method in AH
samples before and after conbercept treatment (Supplementary
Table S5). Apparent differences between before and after the
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FIGURE 2 | The AH proteome analysis of the present study. (A) The Venn diagram of the identified proteins and comparison of the present results with the previous
AH proteome data. (B) The Ingenuity Pathway Analysis (IPA) canonical pathway analysis of the AH proteome. (C) The hierarchical clustering based on the
intensity-based absolute quantification (iBAQ) quantification and IPA annotation. (D) The dynamic range of the AH proteome with key biomarkers marked. The X-axis
indicates the protein numbers ranked by the iBAQ intensity, and the Y-axis indicates the log10 (relative intensity) of the proteins.

conbercept treatment of samples were observed from the OPLS-
DA score plot (P = 1.54857e-07) (Figure 3A). Among the 541
proteins, 254 proteins with a fold change of >1.5 were defined as
differentially expressed proteins (DEPs) (190 upregulated DEPs,
64 downregulated DEPs).

The GO annotation was analyzed according to their
molecular function, biological progress, and cellular component
(Supplementary Figure S2). DEPs are basically located in
the extracellular region, while these mainly participate in the
cellular process, and the function of DEPs is enriched in the
binding and catalytic activity. The IPA analysis suggested that

eight pathways were significantly involved (Figure 3B). Among
these, the LXR/RXR activation, complement system, intrinsic
prothrombin-activation pathway, and acute phase response
signaling are significantly suppressed.

The PPI network was constructed in cytoscape. The network
with 178 DEPs centered on FN1 (Figure 3C). The cytoHubba
plugin was used to find the hub proteins (Chin et al., 2014).
The top node degree fibronectin 1 (FN1) was reported to
be involved in the pathogenesis of glaucoma (Feng and Xu,
2019). It was found that FN1 interacted with the DEPs and
mainly participated in the angiogenesis and coagulation cascades
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TABLE 2 | The 10 most abundant proteins in AH.

Accession Description Gene names iBAQ Percentage

P23471 Receptor-type tyrosine-protein phosphatase zeta PTPRZ1 6.79E + 07 29.60%

P02768 Serum albumin ALB 2.30E + 08 27.34%

P02787 Serotransferrin TF 4.99E + 07 6.59%

P01859 Immunoglobulin heavy constant gamma 2 IGHG2 7.07E + 07 4.35%

P08185 Corticosteroid-binding globulin SERPINA6 4.29E + 07 3.31%

P01834 Immunoglobulin kappa constant IGKC 9.58E + 07 1.93%

P07288 Prostate-specific antigen KLK3 3.55E + 07 1.75%

P41222 Prostaglandin-H2 D-isomerase PTGDS 3.65E + 07 1.32%

P02763 Alpha-1-acid glycoprotein 1 ORM1 2.64E + 07 1.06%

P02766 Transthyretin TTR 2.18E + 07 0.59%

FIGURE 3 | The DEP analysis of the AH proteome in the NVG treatment with conbercept. (A) The orthogonal partial least squares discriminant analysis (OPLS-DA)
score plot based on the DIA data of the AH proteome from NVG patients (green), and after conbercept treatment patients (blue). The mean center-scaling model
(P = 1.54857e-07). (B) The IPA ingenuity canonical pathway analysis of DEPs. (C) The subnetwork of DEPs with high node degree. (D) The hierarchical clustering
based on the PRM data of the validated DEPs. (E) The function annotation of validated DEPs. (F) The network of validated proteins.

pathway. In addition, the expanded subnetwork of these proteins
centered on VEGF, which is the key target of the NVG treatment.
These above key proteins were used for the PRM validation.

Through PRM analysis, 33 peptides that corresponded to
26 proteins (all upregulated) (Figure 3D and Table 3) were
validated. The IPA analysis of the validated DEPs suggested
that thrombosis, angiogenesis, and the formation/release of
nitric oxide, as well as the variety types of glaucoma pathways,
were significantly involved (Figure 3E, detailed data in
Supplementary Table S6). Compared to the main pathways of
the whole DEPs, these pathways are more directly correlated
to the pathological changes of NVG. The PPI network of
validated DEPs was also constructed (Figure 3F). These validated
DEPs with rich interactions, formed a network centered on
VEGFA, VEGFB, and FN1, with a reasonable result, given that
the VEGF receptor is the main composition of conbercept
(Wu et al., 2013).

DISCUSSION

In the present study, a total of 802 proteins were identified in
the AH proteome, and the current data provided a baseline
proteomic profile of human AH. Furthermore, through the
differential analysis of AH proteome in the NVG treatment, 26
DEPs were validated. These proteins may be the crucial factors in
the NVG pathological process.

AH Proteome Function Analysis
Comparison of AH and Plasma Proteome
The source of AH proteins has been discussed for
years; the plasma-derived protein could diffuse from the
ciliary body stroma (Freddo, 2013), and the additional
source of proteins in AH is the ciliary body itself
(Coca-Prados and Escribano, 2007).
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TABLE 3 | The differently expressed proteins (DEPs) (26) that were validated using PRM technology (all up regulated).

Protein name Accession Gene symbol FC (test) after
treatment/neovascular
glaucoma (NVG)

FC (validation)after
treatment/NVG

P-value

Insulin-like growth factor-binding protein 3 P17936 IGFBP3 1.66E + 00 3.99E + 00 0.019545

Complement C1q subcomponent subunit A P02745 C1QA 2.50E + 00 3.01E + 00 0.045073

Apolipoprotein L1 O14791 APOL1 1.50E + 00 2.40E + 00 0.027965

Prothrombin P00734 F2 1.77E + 00 2.48E + 00 0.043172

Latent-transforming growth factor beta-binding protein 2 Q14767 LTBP2_HUMAN 2.35E + 00 7.81E + 00 0.023327

Apolipoprotein M O95445 APOM 5.31E + 00 4.69E + 00 0.013478

Alpha-1B-glycoprotein P04217 A1BG 1.81E + 00 1.84E + 00 0.002988

Vimentin P08670 VIM 1.56E + 00 1.84E + 00 0.037981

Fibrinogen gamma chain P02679 FGG 9.24E + 00 3.95E + 00 0.013217

Kininogen-1 P01042 KNG1 2.46E + 00 2.91E + 00 0.010031

Secreted frizzled-related protein 3 Q92765 FRZB 1.89E + 00 1.83E + 00 0.013319

Fibronectin P02751 FN1 1.93E + 00 1.56E + 00 0.012816

Hemoglobin subunit delta P02042 HBD 1.89E + 00 1.96E + 00 0.00736

Keratin, type I cytoskeletal 14 P02533 KRT14 7.22E + 00 2.15E + 00 0.035922

Phospholipid transfer protein P55058 PLTP 1.52E + 00 3.54E + 00 0.001783

Histidine-rich glycoprotein P04196 HRG 2.65E + 00 2.54E + 00 0.020115

Heat shock protein beta-1 P04792 HSPB1 1.56E + 00 1.54E + 00 0.014324

Coagulation factor XIII B chain P05160 F13B 2.46E + 00 1.77E + 00 0.018517

Complement component C6 P13671 C6 9.48E + 00 3.19E + 00 0.028325

Scavenger receptor cysteine-rich type 1 protein M130 Q86VB7 CD163 3.91E + 00 3.18E + 00 2.95E-05

Vascular endothelial growth factor receptor 1 P17948 FLT1 2.03E + 00 4.26E + 00 0.043476

Receptor-type tyrosine-protein phosphatase zeta P23471 PTPRZ1 2.56E + 00 2.60E + 00 0.036656

Cartilage oligomeric matrix protein P49747 COMP 1.66E + 00 2.24E + 00 0.019845

Beta-crystallin B1 P53674 CRYBB1 2.51E + 00 2.04E + 00 0.014417

Myocilin Q99972 MYOC_HUMAN 3.33E + 03 2.11E + 01 0.005214

Protein Z-dependent protease inhibitor Q9UK55 SERPINA10 1.95E + 00 3.16E + 00 0.001224

To date, in human AH proteome data (1,888 in total), 825
(43.7%) proteins are in common with the plasma proteome.
In order to understand the proportion of AH proteins, the
investigators calculated these in quantitative proteins. Common
proteins accounted for 91.2% of the total AH proteome
abundance, indicating that the main components of the AH
proteome come from plasma. Albumin is the most abundant
protein in AH and plasma proteome. Albumin plays an
important role in the delivery of long-chain fatty acids, vitamins,
and hormones to cells in many tissues of the body. It is
demonstrated that this physiologically critical macromolecule
from the aqueous humor can facilitate the delivery of important
metabolites into the lens (Sabah et al., 2004). Additionally, the
abundance of receptor-type tyrosine-protein phosphatase zeta,
serotransferrin, corticosteroid-binding globulin, semenogelin-1,
fibrinogen alpha chain, and vitamin D-binding protein in AH is
relatively high.

Common proteins are mostly enriched in
immune/inflammatory-related pathways (complement system,
LXR/RXR activation, acute phase response signaling, FXR/RXR
activation) according to pathway analysis (Figure 4A, detailed
data in Supplementary Table S7), and the proteins involved
account for 30% of all quantitative protein abundance. It
has been recognized that the major component of immune

privilege, termed anterior chamber-associated immune deviation
(ACAID), is complement dependent (Sohn et al., 2003). A fine
balance between complement activation and suppression is
important for maintaining a healthy environment within the
eye. Complement disorder status could contribute to several
eye diseases, including glaucoma, diabetic retinopathy, and
age-related macular degeneration (AMD) (Miyahara et al.,
2003; Ghosh et al., 2015; Clark and Bishop, 2018). In addition,
common proteins were also involved in coagulation-related
pathways (coagulation system, atherosclerosis signaling, intrinsic
prothrombin activation, extrinsic prothrombin pathway), which
suggested that coagulation could be an important function
of AH and plasma.

It was also found that there were 1,063 (56.3%) AH-
specific proteins, which accounted for 8.8% of the total
AH proteome abundance. Most of these were low-abundance
proteins. The pathway analysis revealed that AH-specific proteins
were enriched in taurine biosynthesis, 1,25-dihydroxyvitamin
D3 biosynthesis (Figure 4A, detailed data in Supplementary
Table S7). Taurine, which is well known as a common ingredient
of energy drinks, is the most abundant amino acid in the retina,
vitreous, lens, cornea, iris, and ciliary body. It is essential to
the development of the nerve system and the maintenance of
normal eye physiological activity (Oja and Saransaari, 2017;
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FIGURE 4 | Comparison of the AH and body fluid proteome. (A) The pathway comparison between AH-specific proteins and plasma-derived proteins. (B) The
pathway comparison between AH, VH, and tears. (C) The functional comparison between AH, VH, and tears.

Pardue and Allen, 2018). The 1,25-dihydroxyvitamin D3 can
modulate inflammatory responses in the eye (Lemire, 1995). In
fact, it has been demonstrated that the topical administration
of 1,25-dihydroxyvitamin D3 inhibits Langerhans cell migration
from the central cornea, corneal neovascularization, and the
production of cytokines (i.e., interleukin-1-6-8) in experimental
animals (Nebbioso et al., 2017). Moreover, many AH-specific
proteins were correlated with immune activities (dendritic
cell mutation, primary immunodeficiency signaling, antigen
presentation pathway) as shown in Figure 4A. Dendritic cells
are the most efficient antigen-presenting cells (Théry and
Amigorena, 2001). Tolerance-promoting antigen-presenting cells
have been recognized as an essential part of eye immune privilege
(Streilein, 2003).

Comparison of AH, Vitreous Humor, and Tear
Proteome
Vitreous humor is a transparent medium that functions to
maintain the shape of the eye and transport nutrients. As an
important component of the innate defense system of the eye,

tear provides protection against a range of potential pathogens.
In order to analyze the function of different ocular fluids, the
investigators compared the whole human AH data with vitreous
humor (Murthy et al., 2014) and tear (Dor et al., 2019) from other
ocular proteomic studies.

As shown in Figures 4B,C, compared to tear, AH was
more functionally related to VH. In ocular circulation, it is the
continuous flow of AH that nourishes the avascular cornea,
lens, and vitreous compartment (Rocha et al., 2014). Though
it is widely held that the fluid in the VH is stagnant, recent
research of David W. Smith indicated that aqueous fluid could
transport through the vitreous (Smith et al., 2020). Our proteome
analysis also suggested there could be more frequent molecular
exchanges between them.

In the pathway analysis shown in Figure 4B, the protein
pathways of three ocular fluids were aggressively concentrated
on the immune/inflammation-related activity (detailed data in
Supplementary Table S7). As a photosensitive organ, the eye
has unique immunologic properties. Inflammation and oxidative
damage can have a devastating impact on the light transmittance
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of the anterior chamber and vitreous body. The transforming
growth factor-β (TGFB), α-melanocyte-stimulating hormone
(MSH) in AH and vitreous humor can suppress the expression
of delayed-type hypersensitivity responses (Niederkorn, 2003).
These multiple immune-related proteins help light transmittance
eye fluids maintain an operational condition for the immune
privilege and make the eye free from immune-related damage.
Tear is enriched in antimicrobial proteins, such as lactoferrin
(LTF) and lysozyme (LYZ). These can maintain an effective
immune defense at the ocular surface to prevent infections
(Hanstock et al., 2019).

In the functional analysis in Figure 4C, compared to other
ocular fluids, AH proteins were remarkably involved in the
endocytosis and clathrin-mediated endocytosis process (detailed
data in Supplementary Table S7). The dendritic cells (DCs)
and macrophages in the eye are more immature. Therefore,
their phagocytic function tends to be antigen capture, rather
than antigen presentation (McMenamin, 1999), thereby limiting
the exposure of the anterior chamber of the eye to exogenous
antigens and avoiding excessive immune response. Accumulated
excess pigment debris could potentially disrupt the clear visual
axis or break the outflow homeostasis of AH (Gagen et al., 2013),
thereby elevating the IOP (Dang et al., 2018). The phagocytosis
of melanin granules is critical to keep excess pigment granules
from distributing to the AH (Chinnery et al., 2017). In accordance
with this, it can be easily recognized in Figure 4A that the
AH proteins are active in antigen presentation and dendritic
cell-related pathways.

The pathway analysis revealed that vitreous humor proteins
participated more in energy metabolism than other ocular fluids
(Figure 4B, detailed data in Supplementary Table S7). The
vitreous humor fills the posterior segment of the eye between
the lens and retina in vertebrates (Sebag, 1992). The retina
has the largest oxygen consumption by weight of any tissue
in the human body (Wong-Riley, 2010). As an adjacent tissue
of the retina, nourishing the retina is the main function of
vitreous humor, and vitreous humor proteins enriched in energy
metabolism can meet the high-energy requirements of retinal
neurons. Additionally, as shown in Figure 4B, VH was more
involved in the coagulation progress (intrinsic prothrombin
activation, extrinsic prothrombin activation atherosclerosis
signaling pathways) than AH and tear. It is reported that
thrombin dysregulation may cause proinflammatory and
profibrotic mediator production by retinal pigment epithelial
cells and thrombin, and Factor Xa may play a role in vitreoretinal
disorders such as proliferative vitreoretinopathy, proliferative
diabetic retinopathy, and exudative age-related macular
degeneration (Bastiaans et al., 2013). Furthermore, VH was also
involved in binding and adhesion of blood cells. Its mechanism
required further investigation.

Different from AH and VH, tear proteins were basically
enriched in protein metabolism, necrosis, apoptosis functions,
and the remodeling of epithelial adherents’ junction EIF2
signaling and protein ubiquitination pathways (Figures 4B,C,
detailed data in Supplementary Table S7). The necrosis- and
apoptosis-related proteins in tears may indicate the frequent
host–pathogen interaction in tears (Sridharan and Upton,
2014). Ubiquitination has a crucial role in the regulation of

immune tolerance (Hu and Sun, 2016). Ubiquitination-related
proteins in the eye show selectivity toward oxidatively modified
proteins (Shang and Taylor, 2004). Through removing oxidatively
damaged proteins and protein fragments, the tear might alleviate
the accumulation of cytotoxicity in the ocular surface. Tear
proteins reside in the ocular surface. As the front line of eye
defense, they provide protection from noxious chemicals and
pathogens to the avascular cornea (Green-Church et al., 2011).
It has been reported that some tear components can prevent
epithelial cell invasion and promote the epithelial expression of
innate defense molecules (McDermott, 2013). Besides, EIF-2A
is one of the key regulators of the integrated stress response,
which is a common adaptive pathway that is activated in response
to diverse stress stimuli, thus, restoring cellular homeostasis
(Martina et al., 2016). It is reported that air exposure-induced
autophagy is accompanied by the increase in phosphorylated
EIF-2A, which is indispensable for the maintenance of corneal
epithelial physiology and cell survival (Wang et al., 2019).

Changes in AH Proteome in NVG
Treatment
In order to determine whether the human AH proteome could
reflect the pathological alternation in NVG treatment, the
investigators used the DIA and PRM techniques to find and verify
the DEPs. The function of 26 validated DEPs was focused on
angiogenesis, vasculogenesis, etc.

The PPI network suggested that 26 upregulated DEPs have
significant interactions, and most members of this network,
such as FLT1, IGFBP3, PTPRZ1, FN1, and KNG1, are involved
in the angiogenesis function in IPA analysis. As the first
neighbors of VEGFA, these have direct connections with vascular
endothelial growth in NVG.

FLT1 (vascular endothelial growth factor receptor 1), as a
cell-surface receptor for VEGFA, VEGFB, and PGF, plays an
essential role in the development of embryonic vasculature and
the regulation of angiogenesis (Melincovici et al., 2018). FLT1
has 10 times higher affinity for VEGF than VEGFR-2, and has
a lower tyrosine kinase activity (Hoeben et al., 2004). It can
make VEGF (the key target in NVG treatment) less accessible
for VEGFR-2 and has a “negative role” in vasculogenesis.
A soluble form of FLT1 can reduce the amount of VEGFs
available for the interaction with their transmembrane receptors,
thereby negatively regulating the VEGFR-mediated signaling
(Failla et al., 2018).

In addition to vascular-related functions, the number of
thrombus coagulation processes was involved. In the validated
DEPs, F13B (also known as coagulation factor XIII B chain)
participates in susceptibility to venous thrombosis. In the
present study, the increase in F13B may indicate the release
of the hypercoagulated state of the microvasculature of the
eye. Deng et al. (2019) observed that the mean flow area
of the choriocapillaris significantly improved after conbercept
treatment in patients. F13B comprises of the inactive form of
transglutaminase, a blood coagulation factor. This participates
in the process of cross-linking between fibrin molecules and
contributes to the stabilization of clot formation (Bagoly et al.,
2012). The visual recovery of patients after conbercept treatment
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was observed in macular edema secondary to branch retinal vein
occlusion patience (Wang et al., 2020). Although there is no
direct experimental evidence that supports that F13B plays a role
in the regeneration of the human optic nerve, previous data have
shown that the transient increase in F13B in retinal ganglion cells
(RGCs) promotes neurite sprouting from injured RGCs (Sugitani
et al., 2012), while the sustained increase in F13B in optic nerves
facilitates neurite elongation from axon regeneration.

CONCLUSION

The AH proteome is an important potential source of biomarkers
for identifying posterior pathophysiological changes. This work
can provide a baseline reference for further AH proteomic
analysis and contribute to the application of AH proteome in
ophthalmology disease. With the advances in mass spectrometry
instrumentation, proteomic methodologies, and bioinformatics,
the proteomic tool would dramatically transform the approach to
the treatment of eye diseases in the future.
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