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The transition network provides a key to reveal the thermodynamic and kinetic properties
of biomolecular systems. In this paper, we introduce a new method, named effective
energy rescaling space trajectory mapping (EspcTM), to detect metastable states and
construct transition networks based on the simulation trajectories of the complex
biomolecular system. It mapped simulation trajectories into an orthogonal function
space, whose bases were rescaled by effective energy, and clustered the interrelation
between these trajectories to locate metastable states. By using the EspcTM method,
we identified the metastable states and elucidated interstate transition kinetics of a
Brownian particle and a dodecapeptide. It was found that the scaling parameters of
effective energy also provided a clue to the dominating factors in dynamics. We believe
that the EspcTM method is a useful tool for the studies of dynamics of the complex
system and may provide new insight into the understanding of thermodynamics and
kinetics of biomolecular systems.

Keywords: effective energy, molecular dynamics, trajectory mapping, Markov models, alanine dodecapeptide,
transition network

INTRODUCTION

The biomolecules are fundamentally dynamic in nature (Chodera et al., 2007). Protein folding,
for example, involves the conformation change from polypeptide chain to a particular tertiary
topology over microseconds to seconds, a process that can go awry and lead to misfolding and
cause disease (Chiti and Dobson, 2006; Gregersen et al., 2006; Chodera et al., 2007; Guo et al.,
2012; Wei et al., 2016; Zhou et al., 2019). Allosteric enzyme catalysis involves transitions between
multiple conformational substates, only a few of which may allow substate access or catalysis
(Eisenmesser et al., 2002; Boehr et al., 2006; Buch et al., 2011). Protein–ligand binding may alter
the transition kinetics among multiple conformational states; for example, intrinsically disordered
protein may have structured and unstructured binding pathways (Ithuralde et al., 2016; Paul et al.,
2017; Li et al., 2019; Pan et al., 2019; Weng and Wang, 2020). Understanding of biomolecular
dynamics is pivotal to reveal the function of biomolecules. Computer simulations of biomolecules,
which made the biomolecular dynamics visible in silico, provide valuable insight for understanding
how the dynamics of biomolecules drives biology processes (Cheatham and Kollman, 2000;
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Mirny and Shakhnovich, 2001; Norberg and Nilsson, 2002;
Moraitakis et al., 2003; Levy et al., 2004; Zhou et al., 2004; Gao
et al., 2005; Zuo et al., 2006, 2009; Li et al., 2008, 2013; Miyashita
et al., 2009; Yang et al., 2014; Yan and Wang, 2019; Wu et al.,
2020). In particular, molecular dynamics (MD) simulations can
provide atomic-level details that are not always accessible in
experiments and make this technique inevitable (Karplus and
McCammon, 2002; Adcock and McCammon, 2006; Wang et al.,
2009; Zuo et al., 2013). However, too many details will disguise
the meaningful information. In most cases, the functional
processes of biomolecules, the most interesting or important
processes, correspond to slow dynamical processes. To extract
these processes from numerous MD simulation trajectories,
much effort has been involved in the development of methods
for massive high-dimensional simulation data analysis. It was
now well established from a variety of studies that an intelligible
picture of the dynamics of biomolecules can be described as a
transition network between several metastable states based on
the simulation trajectories (Zwanzig, 1983; Kampen, 2007).

Markov state model (MSM) provides a powerful framework
for analyzing dynamics of biosystems, such as MD simulations,
to construct a transition network of metastable states. It has
gained widespread use over the past several decades (Chodera
et al., 2007; Gfeller et al., 2007; Noe et al., 2007; Bowman
and Pande, 2010; Pande et al., 2010; Rao and Karplus, 2010;
Bowman et al., 2013; Deng et al., 2013; Weber et al., 2013; Husic
and Pande, 2018; Wang et al., 2018; Sengupta et al., 2019). In
the analyzing process of MSM, the simulation conformations
were first classified into thousands of small groups, named as
microstates, by a geometric clustering method wherein these
conformations were similar in geometry (Bowman et al., 2009;
Pande et al., 2010). These microstates would be further clustered
into several macrostates by standard spectral clustering method
based on their transition frequency (Deuflhard and Weber, 2005;
Chodera et al., 2007; Gfeller et al., 2007; Noe et al., 2007; Noe,
2008; Bowman and Pande, 2010; Pande et al., 2010; Rao and
Karplus, 2010; Zuo et al., 2010; Bowman et al., 2013; Deng et al.,
2013; Roblitz and Weber, 2013; Weber et al., 2013; Husic and
Pande, 2018; Wang et al., 2018; Sengupta et al., 2019). Then, the
transition network between the macrostates was reconstructed
accordingly (Jayachandran et al., 2006; Buchete and Hummer,
2008; Prinz et al., 2011). Gong and Zhou (2010) presented
the trajectory mapping (TM) method to construct a kinetic
transition network of metastable states. Compared with MSM,
TM grouped simulation trajectory pieces rather than individual
conformations. They mapped the averaged conformation of each
MD trajectory segment as a vector and calculate the principal
components (PCs) of the trajectory-mapped vectors by the
principal component analysis (PCA). The similar trajectory-
mapped vectors were then grouped as metastable states by
spectral clustering method, and transition events in simulation
trajectories were further identified (Gong et al., 2015; Zhang et al.,
2017; Zhang et al., 2019a; Zhang et al., 2019b).

In both MSM and TM methods, the discretization of
MD trajectories, i.e., clustering of structures, plays a vital
role in the analysis of MD trajectories. To make clustering
of structures as accurate as possible, a variety of structural

metrics and their functions were employed in analysis, for
example, the torsion angles of backbone, the proportion of
native contacts, root mean square deviation, and solvated energy
(Gong et al., 2015). These analyses can be effective when all
input coordinates are sufficient and irrelevant to each other.
Thus, PCA was used to find orthogonal collective coordinates,
which are linear combinations of the input coordinates and
covered most of variances with only the first several eigenvectors
(Lever et al., 2017). However, as mentioned above, the slow
dynamical process is the concerned part in most cases. It is
not always true that the high variance directions correspond
to the kinetically slow-motion mode. Thus, some methods
have been developed to obtain slow-motion directions. In the
MSM, time-structure based Independent Correlation Analysis
(tICA) was used (Naritomi and Fuchigami, 2011, 2013; Perez-
Hernandez et al., 2013; Schwantes and Pande, 2013). It finds
the slow collective coordinates by eigen-decomposition of a
1t-interval autocorrelation matrix. In the TM, the averaged
conformation of every τ -length MD trajectory segment was
mapped as a vector in feature space to compose samples
for the PCA method. It was argued that fast conformational
fluctuations were suppressed after the segment averaging, and
the PCs mainly involve slow motions (Zhang et al., 2017).
In both tICA-MSM and TM methods, a hyper-parameter, 1t
for tICA-MSM and τ for TM, is required. It is difficult for
inexperienced users. It is possible to obtain the optimized
model by an automated process instead of a process of
trial and error. For example, one might consider weighting
the input coordination by an order parameter relevant to
the functional processes of biomolecules, so that the input
coordinates with high correlation contribute the most to the
distance calculation and make the clustering effective and
efficient to catch the functional processes, i.e., slow-motion
patterns of the biomolecular system.

In this paper, we will present a new method, named
effective energy rescaling space trajectory mapping (EspcTM), for
detecting metastable states and constructing transition networks.
It is a parameter-free analysis framework based on the previous
TM method. In the EspcTM method, every snapshot of the
trajectories was described by a high-dimensional vector and
mapped into an orthogonal functional space. Different from
the TM method, the features were rescaled by the effective
energy of the dynamics to make the space effective to describe
the slow processes of the system, and no hyperparameter was
required. Here, the effective energy, which was filtered from
the total potential energy of simulation trajectories by fast
Fourier transform (FFT) and multiple linear regression, is an
efficacious order parameter to describe the slow conformational
change of complex system. The PCA method was also employed
for dimensionality reduction and orthogonalization of the
functional space. The metastable states were assigned by a
spectral clustering method based on projections of the trajectories
in this feature space. Then, the Markov transition matrix is
constructed based on the transitions between these metastable
states. We show application of this method by the movement of
a Brownian particle and conformational dynamics of an alanine
dodecapeptide (Ala12). It revealed their metastable states and
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kinetic transition network, as well as provided additional insight
into the dynamics of these two systems.

THEORY AND METHOD

The EspcTM method is an analysis framework to identify
metastable states from simulation data in the effective energy
rescaling space and construct the transition network between the
states based on the theory of Markov chain. In the EspcTM, an
ordered parameter, named effective energy, was introduced to
rescale feature space of the system. The simulation trajectories
were mapped into the space and discretized to obtain the kinetic
transition network of the system based on Markov chain theory.
Figure 1 shows the flow chart of the EspcTM method, and details
of the key steps are followed.

Feature Extraction
In our study, there were Nt frames in every trajectory. They
were mapped into a space consisting of Nb basis functions

FIGURE 1 | Flow chart of EspcTM method. Step 1: Extracting the
conformational metrics with a set of basis functions for all simulation
trajectories. Step 2: Extracting the potential energy to {ε̃K

}K=1,...,Nt by fast
Fourier transform. Step 3: Multiple linear regression ε̃K and features, obtaining
effective energy and E-space. Step 4: Mapping all trajectories to E-space.
Step 5: Discretizing the trajectories based on the projections in E-space, and
calculating the Markov transition matrix.

{Âµ(Eq)}µ=1,...,Nb . To eliminate the effect of various units of basis
function, normalization was performed on every dimension.
Then, every trajectory was described as an Nt × Nb-dimension
matrix in the feature space, i.e., feature matrix

V =
(
Â1(
Eq
)
, Â2(
Eq
)
, Â3(
Eq
)
, . . . , ÂNb

(
Eq
))

(1)

where Eq denotes the structural metrics, such as the torsion
angle of backbone in peptide. Here, the basis functions
{Âµ(Eq)}µ=1,...,Nb should be chosen to identify typical
conformational motions of systems. In this work, we used
the sine and cosine of structural metrics as the feature space
(Gong and Zhou, 2010; Gong et al., 2015).

Noise Reduction
It is obvious that every basis possesses different weight on
describing the dynamics of complex system. It was argued that
dynamics of complex systems, such as protein folding, can
resemble a diffusive process on a rugged landscape of free energy
(Onuchic et al., 1997). Thus, energy is an appropriate measure to
rescale their coordinates. Most studies of complex system focus
on the dynamics of a part of the system, and the rest of the
system was regarded as the environment of the study object. For
example, studies on protein folding focus on protein molecules.
The conformational change of protein in protein folding is the
interesting part, instead of the fluctuation of water molecules.
However, the atoms of the system interacted with each other in
a complicated way. The energy variation caused by the dynamics
of the studied object is coupled with the energy caused by the
fluctuation of the remaining part. It is difficult to isolate the
meaningful energy in a frame without additional hypotheses.
On the other hand, as mentioned above, the kinetic slowness
is the main character of the interesting processes. Therefore,
the dynamics of the important processes can be separated from
the fluctuation in the frequency domain, where slow motion is
treated as low-frequency signal and fluctuation can be filtered out
as high-frequency noise.

In this work, FFT (Cochran et al., 1967) was applied to
transform the energy of trajectories into frequency space. For
every trajectory, the coefficients of frequencies were obtained by

ω̃k =

Nt−1∑
n=0

εn · e−inωk (2)

Here, i =
√
−1 is the imaginary mark, n is the index of frames

for the trajectory, εn is the total potential energy of the nth frame
obtained from the simulation data, Nt is the number of frames of
a trajectory, and ωk = 2πk/Nt corresponds to a frequency. To
reduce the false edge, even extension was used before FFT for
every trajectory. Then, a reverse FFT was performed on the first
K frequencies for every trajectory to obtain the ε̃K of every frame:

ε̃K
n =

K−1∑
k=0

ω̃k · einωk (3)

The fluctuation whose ω ≥ ωK was excluded in ε̃K. To determine
the number K, we performed multiple linear regression
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(Schneider et al., 2010) between K-energy vector ε̃K and feature
matrix V for all trajectories:

ε̃K
= aK

0 + V · âK
+ εK (4)

Here, aK
0 (scalar) and âK (Nb-dimensional vector) are the

fitting parameters, and εK is the error for the multiple linear
regression. The effective energy ε̃ = ε̃K∗

− εK∗ with the K∗ =

arg max r(K). Here, r(K) =
√

1 − (εK)2/(σK)2 is the multiple
correlation coefficient, (σK)2 is the variance of ε̃K, and r = 0 for
the case (σK)2 = (εK)2 = 0. For multiple trajectories, the FFT
was performed on every trajectory separately. Due to same length
and time interval of all trajectories in our study, all trajectories
were mapped into the same frequency space {ωk}k=1,...,Nt . Thus,
in the revised FFT, the K-energies of all trajectories are the
summary of the same frequencies for every K. Before multiple
linear regression, K-energy vectors ε̃K and feature matrixes V
of all trajectories were joined into a vector and a feature matrix
for equation (4).

Feature Rescaling and Mapping
The regression coefficients âK were used as the weight factors
on features. Every trajectory was described as a new Nt × Nb-
dimension matrix:

Ṽ = V · diag
(
âK) (5)

Here, diag(âK) is an Nb × Nb diagonal matrix with the elements
of âK on its main diagonal. A PCA (Sims et al., 2005) was applied
to reduce the dimension and orthogonalize the components of
all trajectories Ṽ . Descending according to eigenvalues, the first
Nc eigenvectors were selected to consist of an Nb × Nc matrix
M. Here, Nc � Nb, and M is the mapping operator, which
reduced the Nb − dimension vectors into Nc − dimension, given
top Nc eigenvalues whose sum has over 90% fraction of the
sum of all eigenvalues. Here, we named this Nc − dimension
space as E-space since its input coordinates were weighted by
the regression coefficients. By using the mapping operator M,
we mapped all original feature matrixes Vj into the E-space.
Therefore, every frame of the trajectories was described as an
Nc − dimension vector {B̂µ(Eq)}µ=1,...,Nc .

Trajectory Discretizing
The clustering of conformations was performed in the
E-space, i.e., based on the analysis of the projection vectors
{B̂µ(Eq)}µ=1,...,Nc . Similar to the TM method (Gong and Zhou,
2010; Zhang et al., 2017), every trajectory was divided into a lot
of isometric pieces, and the similarity between each two pieces
was defined by their average vectors:

S
(
t, t′

)
=

∑
i[Bi(t)Bi(t

′)+ 1]√∑
i[Bi(t)Bi(t)+ 1] ×

√∑
i[Bi(t′)Bi(t′)+ 1]

(6)

Here, we replaced the vectors of frames by the average vectors
of trajectory pieces. It reduced the size of the similarity matrix
and cost of computation resource. In practice, the length of the
trajectory pieces can be varied in a reasonable range. The Robust

Perron Cluster Analysis (PCCA+) method (Roblitz and Weber,
2013), implemented in pyEMMA (Scherer et al., 2015), was used
to classify all pieces into Ns states based on the similarity matrix.
Here, the number of states Ns was determined by the distribution
of the eigenvalues of the similarity matrix (Roblitz and Weber,
2013). The Markov transition matrix P was obtained based on
the discretized trajectories (Prinz et al., 2011). Since P is a row
stochastic matrix, its largest left eigenvalue is 1. If there is a unique
stationary distribution, it is true for our case, then the largest
eigenvalue and the corresponding eigenvector is unique too. As
the theory of stochastic process, the stationary distribution of the
Markov process corresponds to the distribution of equilibrium
state. More interestingly, the Markov transition matrix can also
be used to reveal the dynamics of the system in non-equilibration
conditions (Reuter et al., 2018).

Brownian Dynamic Simulation
For Brownian dynamic simulation, Brownian particles in the
presence of a potential, U, are described by the Langevin equation

m
dv (t)
dt
= −∇U (x)− γv (t)+ ξ (t) (7)

where ξ(t) is a delta-correlated stationary Gaussian process with
zero-mean. A two-dimensional Brownian particle was simulated
on the surface with three potential wells in the toy model (see
Figure 2A). Here, the potential U(x) was defined as:

U (x) = −ε
{

cos (x)+ sin (x)+
1
2

cos
(
y
)
+ 2 cos (3x)

+2 exp

[
−20

(
x+

2
3
π

)2
− 2y2

]}
(8)

with scaling parameter ε = 40. Multiple trajectories were
generated from different initial sites randomly with extensive
long simulations.

MD Simulation
In the MD simulation, the termini of Ala12 were charged, which
leads to versatile metastable structures (Noe et al., 2007). All
atoms were modeled by using Amber03 force field. The molecule
was solvated in a rhombic dodecahedral periodic box with the
distance between the solutes and box boundary at least 10 Å.
The SPC water model was used for solvation (see Figure 3A).
The MD simulations were performed using the Gromacs package
4.6.5 (Hess et al., 2008). In the simulations, the covalent bonds
involving H atoms were constrained by the LINCS algorithm,
which allowed a time step of 2 fs. The long-range electrostatic
interactions were treated with the particle-mesh Ewald method
(Darden et al., 1993) with a grid spacing of 1.6 Å. The cutoff
for the van der Waals interaction was set to 10 Å. The previous
trajectory performed at high temperature was equilibrated by
MD simulations for 100 ps at a constant pressure of 1 bar and
a temperature of 500 K using Berendsen coupling (Berendsen
et al., 1984). Then, the production simulations were performed in
NVT ensemble at 500 K for 100 ns. All 50 systems extracted from
high-temperature simulation had been iterated 100 ns in NVT
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FIGURE 2 | EspcTM on dynamic of Brownian particle. (A) The energetic landscape of the toy model. Here, the potential function of the landscape was
−ε{cos(x)+ sin(x)+ 2 cos(3x)+ 1

2 cos(y)+ 2 exp[−20(x + 2
3π)

2
− 2y2

]}. Three potential wells from left to right were S0, S1, and S2. The well of S1 was deeper
than that of the other two states, and the barrier between S0 and S1 was much higher than that between S1 and S2. The black line on the top and right panel
represents the potential along line y = 0 and x = 0, respectively. (B) Red, green, and blue dots represent three states of the snapshots of trajectories. The
histograms of each state were shown on the top and right panel in different colors. (C) Multiple correlation coefficients of ε̃K and all 40 conformational coordinates as
a function of cutoff frequencies. Here, the maximum of the multiple correlation coefficient located at cutoff frequency equaling 8.0× 10−4τ−1. (D) The regression
coefficients for all 40 features. The coordinates corresponding to basis functions sin(x), cos(x), and cos(2x) possessed large weights in the rescaling. (E) The
eigenvalues in the PCA of trajectory-mapped vector. (F) A typical discretized trajectory.

ensemble at 300 K and recorded with time interval τ = 5 ps.
There are 20,000× 50 frames in the analysis.

RESULTS AND DISCUSSION

The EspcTM method was first illustrated with a toy model,
i.e., the dynamics of a Brownian particle on a two-dimensional

surface. Then, it was applied to investigate the conformational
dynamics of alanine dodecapeptide (Ala12), and a transition
network between metastable states of Ala12 was constructed.

Toy Model
In the toy model, a two-dimensional Brownian particle was
moving in the field with three potential wells (see Figure 2A).
Ten extensive long simulations, which started from different sites
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FIGURE 3 | EspcTM on a typical trajectory of Ala12. (A) The typical conformation of Ala12 represented in sticks with labels of the 10 pairs of dihedral angles ϕ and ψ ,
solvated in SPC water molecules represented in gray surface. The inset figure shows the zoom-in of the segment contenting ϕ2∼5 and ψ2∼5. (B) Multiple correlation
coefficients of ε̃K and all 40 conformational coordinates as a function of the cutoff frequency. The maximum of the multiple correlation coefficient located at a cutoff
frequency equaling 45 MHz. (C) The regression coefficients for all 40 features. Most coefficients with large value correspond to the basis functions (sine and cosine)
of ϕ2∼5. (D) The eigenvalues in the PCA of trajectory-mapped vector.

randomly, were performed to make the distribution of samples
close to the theoretical values. Figure 2B shows the positions
and distribution of the samples of these trajectories. In the
analysis, sin(nθ) and cos(nθ)were selected as the basis functions.
θ indicates the coordinate x or y, and n = 1, . . . , 10 for every
coordinate in the EspcTM analysis of the toy model. Hence,
the trajectories were mapped into a 40-dimensional functional
space, e.g.,

sin (x) , sin
(
y
)
, cos (x) , cos

(
y
)
, . . .

sin (10x) , sin
(
10y

)
, cos (10x) , cos

(
10y

) (9)

All values of the trajectories were normalized in every dimension
before they were fitted with ε̃K.

Figure 2C shows the multiple correlation coefficient between
ε̃K and the values of these 40 features as a function of the
cutoff frequency. There was a maximum multiple correlation
coefficient at K = 17, and ε̃ = ε̃17

− ε17 was selected as the
effective energy. Figure 2D shows regression coefficients between
the energy ε̃17 and features. As shown in Figure 2D, the basis
functions sin(x), cos(x), and cos(2x) possessed large weight in
the rescaling. It should be noted that to consider the effect of
the random force by solvation in Brown dynamics, additional
energies with Gaussian distribution were added into the energies

of the Brownian particle, so that information of potential was
mixed with white noise in linear regression. PCA was performed
on these effective energy rescaled samples. Figure 2E shows the
eigenvalues in descending order. It is obvious that apart from the
first two eigenvalues, other eigenvalues were very small. The first
two eigenvectors were selected to compose the E-space of the toy
model, as well as the mapping operator. By using the mapping
operator M, composed by these two eigenvectors, all samples
were mapped into the E-space.

By using the PCCA+ algorithm, all samples had been grouped
into three states (shown by colored dots in Figure 2B). As
shown in Figure 2B, these three states corresponded to the
three wells in the potential. A discretized trajectory who visited
all three states is shown in Figure 2F. The Markov transition
matrix P was obtained based on the discretized trajectories (see
Table 1). The stationary distribution, which corresponds to the
distribution of the thermodynamic equilibrium, was obtained
by the eigen-decomposition of the Markov transition matrix
and shown in Table 1. As a benchmark, the distribution of
equilibrium state predicted by the theory of statistical physics is
shown in Table 1 as well. It is obvious that the result obtained
by the EspcTM method is similar to the theoretical values.
Furthermore, the Markov transition matrix contains kinetic
information about the system as well. The lifetime of these states,
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TABLE 1 | Transition matrix and stationary distribution of the Markov model,
distribution obtained by theory of equilibrium statistical physics, and lifetime of
states for the dynamics of a Brownian particle.

Transition matrix P Stationary
distribution

Theory Lifetime (100τ )

S0 S1 S2

S0 0.882 0.069 0.049 0.184 0.186 8.5

S1 0.024 0.858 0.118 0.532 0.538 7.08

S2 0.032 0.221 0.747 0.284 0.276 3.99

which were calculated by the diagonal elements of the transition
matrix, is also shown in Table 1. It was found that the state
S0 possessed the lowest occurring probability but the longest
lifetime. This indicated that the kinetically stable state was not
the thermodynamically stable state for this dynamic system.

Dynamics of Alanine Dodecapeptide
Alanine dodecapeptide (Ala12), consisting of 12 alanine residues,
is a typical model molecule for MD study (Noe et al., 2007).
The MD trajectories of an Ala12 was used as an example to test
the EspcTM method. According to the previous study (Gong
and Zhou, 2010; Gong et al., 2015), sine and cosine of backbone
dihedral angles (ϕ, ψ)were used as basis functions in the analysis
of the MD trajectories of Ala12. Here, ϕ is defined as the backbone
dihedral angle around the bond connecting Cα and N atoms and
ψ is defined as the backbone dihedral angle around the bond
connecting Cα and carbonyl carbon atoms (Hovmoller et al.,
2002). There are 10 pairs of dihedral angles ϕ and ψ for Ala12
(see Figure 3A), and 40 basis functions were finally included in
the analysis, e.g.,

sin (ψi) , sin (ϕi) , cos (ψi) , cos (ϕi) (10)

Here, i = 1, . . . , 10 indicates the index of dihedrals of Ala12 from
N-terminal to C-terminal. Based on these basis functions, the
EspcTM was first applied on a typical trajectory and then on all
the 50 trajectories.

State Transition of a Typical Trajectory
Figure 3B shows the result of the multiple linear regression
between ε̃K and functions of the dihedral angles of Ala12 for a
typical trajectory. There is a maximum of the multiple correlation
coefficient, similar to the case of movement of Brownian particle,
at 45 MHz (see Figure 3B). Therefore, the summary of the first
10 lowest frequencies of energy ε̃10 was used in the analysis. The
regression coefficients between the energy ε̃10 and functions of
dihedral angles are shown in Figure 3C. It was found that most
factors with large weight corresponded to the basis function (sine
and cosine) of ϕ2∼5 (see the inset figure of Figure 3A). This
indicates that the structure change near N-terminal contributes
more to large-scale conformational change than C-terminal in
this typical simulation trajectory.

Figure 3D shows the eigenvalues of weighted samples of this
trajectory. As shown in Figure 3D, the following analysis on
this trajectory was performed in the space made up of the first
six eigenvectors. Figure 4A shows the similarity matrix and the

representative structure of the trajectory. It was obvious that
there were four metastable states in the trajectory. The discretized
trajectory is shown in the middle panel of Figure 4B. The
secondary structure of the peptide was analyzed by DSSP (Kabsch
and Sander, 1983; Touw et al., 2015) and shown in the top panel
of Figure 4B. The simulation started from a structure with some
of the N-terminal α-helix formed (also see the representative
structure), i.e., the state Sb. This state was unstable and only
existed about 6.4 ns in the 100-ns trajectory. The α-helix formed
in this state acted as a nucleus that promoted the formation of
the α-helix of the C-terminal of the Ala12. Then, the trajectory
transited to the Sa state, in which most of the residues of the
peptide formed the α-helix structure. State Sa was more stable
than state Sb. It appeared two times in this trajectory and existed
about 58.0 ns in total. However, between the two occasions of the
state Sa, the α-helix of two termini had been temporally uncoiled
and interacted with the α-helix in the middle of the peptide, i.e.,
the state Sc. This state is unstable and existed only for 16.4 ns in
this trajectory. After the state Sc, the peptide folded to the state Sa
again. Finally, the peptide unfolded into a random coil, i.e., state
Sd, with low structural similarity.

The bottom panel of Figure 4B shows effective energy as a
function of time for this trajectory. It was calculated from the total
energy of the whole biosystem, including the peptide and water
molecules. Initially, the energy caused by the conformational
change of the peptide was concealed by the noise of the dynamics
of water molecules as well as the fluctuation of itself. It seemed
that the total energy (shown in gray) varied randomly and
dramatically. However, by using the FFT and regression, we
obtained the effective energy (shown in red). It was synchronous
with conformational change and state transition of the peptide.
More interestingly, the effective energy of stable state, state Sa,
was much lower than the other three states, in which most
of the α-helix was formed. This implied that the stability of
this state was supported by energy. On the other hand, the
state Sd possessed the highest energy and large conformational
variations. This implied that the unfolded coil structure was
stabled by the entropy.

Transition Network of Ala12
To obtain statistically significant conclusions, we performed the
analysis of EspcTM method on 50 MD trajectories. Figure 5A
shows the result of the multiple linear regression between ε̃K and
functions of the dihedral angles of Ala12 for these 50 trajectories.
The maximum of the multiple correlation coefficient was found
at the frequency equal to 15 MHz. The summation of the first
four lowest frequencies of energy ε̃4 was used in the analysis.
Figure 5B shows the regression coefficients between the energy ε̃4

and features. It consistently showed that ϕ2∼5 played important
roles in the dynamics of the Ala12 though there was a phase
shift on ϕ2∼5 caused small weights on the cosine of ϕ2∼5.
This indicates that local structure changes near the N-terminal,
especially the ϕ2∼5, were the major contributors to the slow
conformational change of the Ala12. According to the result of
the PCA on the weighted feature space, the clustering algorithm
was performed in the space made up of the first 10 eigenvectors,
whose sum was over 90% sum of variation (see Figure 5C). Every
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FIGURE 4 | State transition of a typical trajectory of Ala12. (A) Similarity matrix and typical conformations in the metastable states and their transitions. The color
indicated the degree of similarity. Red means high similarity. The transitions were implied from the transition probability matrix. (B) Secondary structure analysis of the
typical trajectory by DSSP was shown in the upper panel. The blue, green, yellow, and white patterns represented α-helix, bend, turn, and coil, respectively. The
discretized trajectory was shown in the middle panel. The states corresponded to the similarity matrix in panel (A). In the lower panel, the effective energy for this
typical trajectory was exhibited in the red dashed curve and the original potential energy was in the gray curve as background. Both curves shared the same x-axis
but with y-axis in different scales. The effective energy’s y-axis was on the left with an amplitude of about 20 kJ/mol, while the original potential energy’s y-axis was
on the right with an amplitude of about 1.2× 103 kJ/mol. Here, both effective energy and original potential energy had been zero-centered.

FIGURE 5 | EspcTM on 50 trajectories of Ala12. (A) Multiple correlation coefficients of regression between ε̃K and features as a function of cutoff frequencies. The
maximum was at 15 MHz. (B) The regression coefficients for all 40 features. (C) The eigenvalues in the PCA of trajectory-mapped vector. (D) The observed
probability for each state in all 50 trajectories.
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TABLE 2 | Transition matrix and stationary distribution of the Markov model and lifetime of states for the dynamics of Ala12.

Transition matrix Stationary distribution Lifetime (ns)

S0 S1 S2 S3 S4 S5

S0 0.610 0.276 0.038 0.031 0.036 0.009 0.114 2.61

S1 0.170 0.693 0.021 0.037 0.026 0.053 0.187 3.30

S2 0.042 0.037 0.758 0.115 0.030 0.018 0.103 4.16

S3 0.032 0.064 0.109 0.725 0.050 0.020 0.109 3.67

S4 0.031 0.038 0.024 0.042 0.798 0.067 0.131 4.97

S5 0.003 0.027 0.005 0.006 0.025 0.934 0.356 15.15

trajectory was divided into 100 pieces. Thus, there were 5,000
vectors, which represent 100× 50 trajectory pieces. Six states
were identified from these 50 trajectories.

Figure 5D shows the histogram of these six states. Here,
the state transitions were obtained from the 50 trajectories
with the lag time 1.0 ns. The transition matrix and stationary
distribution are shown in Table 2. It was found that the stationary
distribution obtained by the transition matrix was consistent
with the histogram. The state S5 had a much higher occurring
probability than that of other states in the equilibrium state.
Figure 6 displays these six states, represented by their typical
structures in cartoons, along with their average effective energy

FIGURE 6 | Dynamics network of Ala12. The metastable states were shown
by the cartoon structures of their typical conformations and rearranged by
their average effective energy in vertical. The size of circles around the pictures
indicated the occurring probability in the stationary mode. The arrows showed
the main transitions between six states in the equilibrium state. The pathway
was indicated by the color of the arrows. The transitions were shown in three
levels according to the transition frequency, i.e., ∼30, ∼10, and ∼5µs−1, and
indicated by the linewidth of the arrows.

in vertical. The unfolded states S0, in which peptide unfolded
into a random coil, possessed the highest energy and located at
the top of the figure. The folded state S5, in which the peptide
folded into α-helices, possessed the lowest effective energy and
located at the bottom of the figure. Between these two states, the
peptide was half-folded. In the state S1, a helix was formed in the
N-terminal of the peptide. In states S2, S3, and S4, some helices
were formed in the C-terminal. A remarkable gap between the
effective energy of state S4 and state S5 separated the folded state
from the other five states. This implied that the energy is the
reason for the stability of the folded state.

Furthermore, we obtain the dynamics and kinetics of the
system based on the transition matrix. Figure 6 shows the main
transition between six states in lines with arrows. The most
frequent transition, about 32 µs−1, occurred between the state
S0 and S1 due to the high flexibility of the peptide in these
two states. This high transition frequency made the lifetime
of these two states lower than that of states S2, S3, and S4,
though the occurring probabilities of these two states were a
little higher than the other three states. In the transition network,
there were two main folding pathways from the unfolded state
to the folded state. The fast folding pathway, which passed
through state S1 and was shown by green arrows, formed the
α-helices from the N-terminal to the C-terminal directly. The
slow folding pathway, which involved states S2, S3, and S4, was
shown by blue and red arrows and was more complex than
the fast one. In this pathway, the α-helices formed from the
C-terminal to the N-terminal, i.e., passed through states S3 and
S4 sequentially. The misfolded state S2 connected with state S3.
A detailed structural study showed that the structures of states
S2 and S4 were very similar. However, some misfolded residues
hindered the formation of the N-terminal helix in the state S2.
To reach the folded state, it must unfold into state S3. These
results indicated that the N-terminal helix plays a vital role in
the folding of the peptide in kinetics. It is consistent with the
aforementioned result of linear regression, that the ϕ2∼5 of the
peptide possessed large rescaling factors, as well as the results
by other experimental groups, that alanine-rich peptides folded
into the α-helix in the N-terminal at first (Millhauser et al., 1997;
Yoder et al., 1997). It must be noted that, as we mentioned before,
the biomolecules are intrinsically dynamic (Chodera et al., 2007)
and the unfolded states of the peptide were transferred to each
other frequently. These two pathways only described the major
folding process of Ala12. Some minor branches in the folding
pathways also existed.
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CONCLUSION

In this work, we introduced our EspcTM method by applying
it to investigate the movement of Brownian particle and
conformational dynamics of Ala12 in this work. In the study of
Brownian particle, by using the EspcTM method, we obtained
three states from simulation trajectories. The regions of the
states given by EspcTM are in accordance with the potential
wells of the landscape. In addition, the equilibrium distribution
obtained by the kinetic transition network-based Markov chain
theory was consistent with the theoretical result. In the study
of Ala12, a meaningful kinetic transition network was obtained
to describe the folding behavior of Ala12. The effective energy,
which was filtered from the total potential energy of simulation
trajectories by FFT and multiple linear regression, was shown to
be an efficacious order parameter to describe the conformational
change of Ala12. We showed that the folding process of Ala12
was synchronous with the change of effective energy. The folded
state, in which most of the residues were in helices, possessed the
lowest effective energy and was most stable in thermodynamics.
Two major folding pathways were also found in the kinetic
network. The N-terminal helix of the Ala12 was found to play an
important role in the folding of Ala12 in both thermodynamics
and kinetics. This is consistent with previous experimental
result. Thus, the EspcTM is expected to be a powerful tool
for studies of dynamics of complex systems and should be
applied to studies of dynamics of large biomolecule systems to
improve our understanding of the thermodynamics and kinetics
of biomolecular systems.

Technically, the EspcTM method is an analysis framework
based on the TM method. It identifies metastable states from
simulation data and constructs the transition network between
the states based on the theory of Markov chain. Different from
the TM method, we provided a de novo solution to obtain an
analysis space, named as E-space, to describe the slow processes
in the EspcTM method. This solution is based on a parameter-
free optimization approach. Thus, the EspcTM method is friendly
to inexperienced users. The E-space is independent from the

TM method. It is convenient to use it in the MSM method. For
the experienced users, especially those with knowledge on the
dynamics of system, they can set cutoff frequency manually as
well. Furthermore, as an extension of the EspcTM method, some
new transfer functions, such as logistic function and ReLU, can
also be used in the energy filter process. The wavelet analysis
method can be used in transforming the energy between time
domain and frequency domain.
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