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For the investigation of protein-ligand interaction patterns, the current accessibility

of a wide variety of sampling methods allows quick access to large-scale data.

The main example is the intensive use of molecular dynamics simulations applied to

crystallographic structures which provide dynamic information on the binding interactions

in protein-ligand complexes. Chemical feature interaction based pharmacophore

models extracted from these simulations, were recently used with consensus scoring

approaches to identify potentially active molecules. While this approach is rapid and

can be fully automated for virtual screening, additional relevant information from such

simulations is still opaque and so far the full potential has not been entirely exploited.

To address these aspects, we developed the hierarchical graph representation of

pharmacophore models (HGPM). This single graph representation enables an intuitive

observation of numerous pharmacophore models from long MD trajectories and further

emphasizes their relationship and feature hierarchy. The resulting interactive depiction

provides an easy-to-apprehend tool for the selection of sets of pharmacophores as

well as visual support for analysis of pharmacophore feature composition and virtual

screening results. Furthermore, the representation can be adapted to include information

involving interactions between the same protein and multiple different ligands. Herein, we

describe the generation, visualization and use of HGPMs generated from MD simulations

of two x-ray crystallographic derived structures of the human glucokinase protein in

complex with allosteric activators. The results demonstrate that a large number of

pharmacophores and their relationships can be visualized in an interactive, efficient

manner, unique binding modes identified and a combination of models derived from long

MD simulations can be strategically prioritized for VS campaigns.

Keywords: pharmacophore modeling, protein structure, clustering, human glucokinase, hierarchical graph

representation, protein ligand binding, molecular dynamic (MD) simulation, virtual screening

INTRODUCTION

Understanding the biomolecular recognition of ligands and their interactions withmacromolecular
targets is of utmost importance for the successful discovery of novel biologically active compounds
(Fenwick et al., 2011). One way to approach this problem in drug design is the modeling of
ligand-target interactions as pharmacophores. Pharmacophores are defined as an ensemble of steric
and electronic features that is necessary to ensure the optimal supramolecular interactions with a
specific biological target and to trigger (or block) its biological response (Wermuth et al., 1998).
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In general, pharmacophore models are either derived from
ligand-target complexes (structure-based) and/or a set of known
active molecules (ligand-based) and can then be used as queries
for an in silico virtual screening (VS) to find compounds with
similar stereoelectronic features (Langer, 2010; Leach et al.,
2010; Schuster, 2010). One limitation of structure-based (SB)
modeling is that all possible interactions between a target-ligand
complex may not be captured since they are derived from static
representations. The fact that proteins are flexible structures
and interactions with ligands are inherently dynamic is well-
known and remains to be an important problem with emerging
in silico solutions in various contexts (Cozzini et al., 2008; Boehr
et al., 2009). Molecular dynamics (MD) simulations have recently
been used to sample possible protein conformations (Durrant
and McCammon, 2011; De Vivo et al., 2016; Liu et al., 2018)
which were then used to derive multiple pharmacophore models
from an initially static crystallographic structure. Choudhury
et al. (2015) generated 3-D pharmacophore models from each
snapshot of a MD simulation and selected the best performing
model after docking and VS rescoring. The selection of a single
“best performing” pharmacophore model was also pursued by
means of clustering (Sohn et al., 2013; Spyrakis et al., 2015),
providing better VS results than “classical” x-ray crystallographic
derived structure-based pharmacophore models. However, to
determine the “best performing” model requires datasets of
known active and inactive compounds to assess the performance
of the models. In cases with new targets during early hit
finding stages, this information may be yet not be available
and prioritizing pharmacophore models for VS campaigns can
be challenging.

To overcome the need to select one unique representative
set of pharmacophore models, Wieder et al. (2017) developed
the “Common Hits Approach” (CHA) in which multiple 3D
pharmacophore models derived from a MD simulation were
partitioned according to their feature compositions and used
for subsequent VS runs. A single final hit-list was obtained
using a consensus scoring function to rank and combine
the screening results which were originally obtained for each
unique model enabling a prioritization of virtual hits based
on a set of MD derived models. Recently, Polishchuk et al.
(2019) improved the workflow by adapting the consensus
scoring function to consider the number of conformations
of each molecule retrieved by the VS runs. Based on these
studies, Madzhidov et al. (2020) analyzed the performance of
a set of pharmacophore models and developed a probabilistic
approach for consensus scoring, leading to a method which
is less sensitive to the poor performing models in the
pool. Although these consensus-based approaches provided
better results than a “classical” pharmacophore approach, they
demanded considerable computational resources due to the
required multiple VS runs.

Nowadays, MD simulations allow for a thorough sampling
of the conformational space—even of large biological systems
and the generation of structure-based pharmacophore models
is no longer limited to single crystallographic structures. As a
direct result of the improvement of modern hardware, most
computation laboratories can now perform MD simulations

at the nanosecond scale in a few hours. However, performing
consecutive VS runs on very large libraries (millions of
compounds) is still a crucial time limiting factor. To address
this issue, this paper presents a hierarchical graph representation
of pharmacophore models “HGPM,” which aims at the easy
to comprehend visualization of pharmacophore model related
information and thus can greatly aid in the prioritization
and selection of pharmacophore models for subsequent
processing steps. While previous works reduced the number of
pharmacophore models by clustering crystallographic structures
or 3D pharmacophore information, this graph representation
focuses on the view of hierarchical pharmacophore feature
information to support the users in the model selection process
in order to reduce the number of models for ensuing VS
runs. A single representation of multiple pharmacophore
models, for example, derived from an MD simulation,
has several advantages: (i) The introduction of an easy to
comprehend graph-based view of all unique models and their
relationship, that were observed (Maggiora and Bajorath,
2014; Métivier et al., 2018). (ii) A simpler, less error-prone
selection process of 3D pharmacophore models especially
for long MD simulations for virtual screening runs. (iii)
The possibility to expand the displayed information by
the addition of models generated from other systems or
MD simulations.

The following sections will focus on the algorithmic
details and the computational procedure for the
generation of the hierarchical graph representation of
pharmacophore models. Furthermore, the methodology
will be demonstrated and discussed in the context of
the human hexokinase IV as a case study, illustrating
how pharmacophore information derived from MD
simulations can be displayed and put to good use with
this approach.

MATERIALS AND METHODS

Protein–Ligand Complex Preparation
Two crystal structures of the human glucokinase in complex
with activators were downloaded from the RCSB PDB databank
(Berman, 2000), with PDB IDs 1v4s (Kamata et al., 2004) and
4no7 (Petit et al., 2011). The sequences of the proteins were
aligned and the amino acid subsequently renumbered, using
the RCSB PDB comparison tool (Prlić et al., 2010) and the
jFATCAT_flexible algorithm (Ye and Godzik, 2003). Amino
acids 92–99 were not present in the 4no7 complex. Since they
did not impact the protein stability during the simulations
and no interactions with the ligand in the 1v4s system could
be observed, they were not modeled. A table containing the
alignment block is available in Supplementary Figure 1. The
Maestro software (Schrodinger, 2010) was used to remove water
molecules, add hydrogens and minimize the structures. The
capping of the termini, the solvation and the addition of ions for
the protein complexes had been set up through the CHARM-GUI
web interface (Jo et al., 2008). Information about the prepared
protein-ligand complexes is available in Supplementary Table 1.
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Molecular Dynamics Simulations
MD simulations were carried out using Amber 16 (Case et al.,
2016). Parameters for the ligands were generated by tleap using
the general AMBER force field (GAFF) (Wang et al., 2004).
The MD simulation protocol started with an equilibration and
thermalization phase of 125 ps with a 1 fs time step. Then
each system was simulated for a total of 300 ns composed
of 3 replicates of 100 ns with different initial velocities and
using Langevin dynamics at a temperature of 303.15K. The
pressure was kept around 1 atm by a Monte Carlo barostat.
The SHAKE algorithm (Ryckaert et al., 1977) was used to keep
all bonds involving hydrogen atoms rigid. The time step of
the production runs was set to 2 fs. Plots of the root-mean-
square deviations for the proteins and their ligands are shown
in Supplementary Figure 2.

Library Generation
Compounds with experimental activities measured on human
glucokinase were taken from the ChEMBL database (Gaulton
et al., 2017). In total, 756 unique molecules with activity toward
the target protein expressed in EC50 were extracted. This set was
split based on the activity value threshold of 1.5µM, resulting
in 601 molecules labeled as actives and 155 as decoys. The
KNIME Analytics platform (Berthold et al., 2009) was used in
combination with the InteLigand Expert KNIME LigandScout
Diversity Picker node (InteLigand Expert KNIME Extensions) to
extract the 20,000 diverse molecules from the ChEMBL library
based on extended connectivity fingerprint (ECFP) similarity,
also labeled as decoys. Finally, a library for virtual screening
was calculated using the idbgen algorithm in LigandScout 4.4
Expert (LigandScout 4.4 Expert). The procedure included the
generation of a maximum of 25 conformations for each of the
20,756 molecules using the icon Fast settings (Poli et al., 2018).
The active molecules were clustered in 5 groups based on ECFP
similarity. Examples of the molecules present in each cluster is
shown in Supplementary Table 2. The ligands from the x-ray
derived structures PDB codes 1v4s and 4no7 were in cluster
numbers 4, and 2, respectively.

Pharmacophore Generation and Virtual
Screening
Structure-based pharmacophore models were generated for each
frame output from the MD simulations using LigandScout
4.4 Expert (Wolber and Langer, 2005). Models generated by
LigandScout support the following chemical feature types:
hydrophobic interactions, hydrogen bonds donor/acceptor,
positive/negative ionizable area, aromatic ring and halogen bond
donor features. In addition, pharmacophore models from the x-
ray derived crystallographic structures of 1v4s and 4no7 were
created. Water molecules were discarded before the generation
of the models. The LigandScout activity profiling KNIME node
was used to perform all virtual screening runs of models against
the dedicated database of 20,756 molecules. Receiver operating
characteristic (ROC) curves were generated for the virtual
screening runs and the performance of the models was assessed
by the calculation of area under the curve (AUC) values at specific
percentages of the number of screened database molecules.

Hierarchical Graph of Pharmacophore
Models Generation
Feature Vectors and Graph Nodes
The pharmacophore models derived from the MD simulations
were transformed into feature vectors in a related manner
as described by the paper of Wieder et al. (2017). Each
element of the vector represents a unique pharmacophore feature
observed in the system. For this study, pharmacophore features
are considered unique if they differ in any of the following
components—pharmacophore feature type, ligand identifier,
and/or identifier of the interacting environment residue(s). The
3D information is not taken into account in the identification
of the unique pharmacophore features. Thus, e.g., a hydrogen
bond acceptor feature generated for a ligand nitrogen atom that
interacts with Serine will be considered as being different from a
corresponding feature which represents the same nitrogen atom
interacting with Threonine regardless of their shared feature
type or their 3D position. Both pharmacophore features will be
considered as being unique. In that, unique features are specific
to the set of pharmacophores they were created from, as are
the feature vectors. Feature vectors are represented as bit-strings
describing the composition of the 3D pharmacophore models: a
value of 0 simply denotes that the considered unique feature is
absent in the model, and a value of 1 that the feature is present. A
bit-string representation allows quick filtering of pharmacophore
models with similar feature sets and furthermore enables a fast
calculation of feature appearance counts during the simulation.
Each node in the hierarchical graph representation is associated
with a unique feature vector and contains additional derived
information such as related frame number(s), appearance count,
and linked pharmacophore models. Figure 1 shows the feature
vector generation process for a set of pharmacophore models
and their association to the graph nodes. To limit noise in the
initial set of pharmacophore models, unique feature vectors are
filtered according to their appearance count. The pharmacophore
models were filtered to keep the models which appear at least
2 times as in the paper of Wieder et al. (2017), or 0.001 times
the number of initial frames. The first pharmacophore models
observed during the MD simulation for every unique feature
vector in the hierarchical graphs were considered for VS.

Hierarchical Linkage
The hierarchical linkage of the graph is based on the unique
pharmacophore feature composition of the feature vector in each
node. Links are created between nodes if their feature vectors
are a subset or a superset of each other. Figure 2 depicts the
linkage process. If two feature vectors do not exhibit a subset
or superset relation, a new feature vector is temporarily created.
This new feature vector represents the intersection set of the
unique features for the two considered nodes. If this temporary
feature vector is identical to an already existing node, the two
considered nodes are linked to this one. If the temporary node
is unique a new permanent node is created. The creation of
“Artificial” feature vectors associated with a new node has been
implemented to allow the generation of a unique hierarchical
graph. Therefore, the “Observed” or “Artificial” nature of the
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FIGURE 1 | Generation of the feature vectors and their node representation from an initial set of 5 pharmacophore models. The set of pharmacophore models was

converted into a corresponding set of feature vectors by first identifying all encountered unique features. Then the feature vector elements are initialized with 1 or 0

depending on the presence or absence of the corresponding unique feature in the pharmacophore model. A filtering step is done in order to remove duplicates with

identical feature vectors. Finally, the graph nodes are created for each unique feature vector and the corresponding pharmacophore models and appearance count

values are stored. The pharmacophore model features are: yellow spheres (hydrophobic), red and green arrows (hydrogen-bond acceptors and donors, respectively).

The corresponding vector features are colored yellow, red, and green accordingly.

feature vectors is stored as an attribute of each graph node in the
form of its appearance count. Once all subset and superset links
are generated, the redundant paths are removed.

Visualization
For an easy comprehension of the information contained in
the graph nodes and their links, the visualization plays an
important role. From the feature vectors, information about the
composition of the pharmacophore models and the hierarchical
links between them is already present. Several visual parameters
can be used to depict additional graph properties. For this
publication the following properties have been chosen, unless
otherwise indicated:

- The appearance count of the pharmacophore models is
represented by the size of the nodes. Therefore, the higher the
appearance count, the larger visual representation of the node.

- The “Observed” or “Artificial” nature of the node is
represented by its color. Blue is used to depict “Observed”
nodes, and orange for “Artificial” nodes.

- The specificity of the pharmacophore models is represented
by organizing the nodes in the x axis based on the number of
unique pharmacophore features of which they are composed.
Considering a node, each other node in the same column has
the same number of pharmacophore features, each node on
its left side is composed of fewer features and every node on
its right is composed of more features.

- The representation of pharmacophore model similarity is
achieved by dimension reduction using a Multidimensional
Scaling Method (MDS) (Mead, 1992; Borg and Groenen,
2003). This method places all the elements of a distance
matrix in a single dimension, preserving the distance

between nodes as much as possible. The distance matrix
is obtained by calculating the Manhattan distance between
the feature vectors of the nodes. The similarity between the
pharmacophore models is then represented by the relative
distance between the nodes projected on the vertical axis of the
graph. The reliability of this process is visualized by displaying
the proportion of variance of the scaled data.

Figure 3 depicts an example of the graph representation.

RESULTS AND DISCUSSION

Case Study: Glucokinase
The hexokinase IV, or glucokinase (GK) is an isoenzyme
responsible for glucose phosphorylation (Beck and Miller, 2013).
The concentration of glucose in the plasma determines the
conformational switch of GK between its active and inactive
states. The glucose level impact on GK activity makes this enzyme
act as a sensor responsible for the glucose homeostasis in the
human body (Bell and Polonsky, 2001). Therefore, GK has been a
primary target for the development of antidiabetic drugs (Kamata
et al., 2004; Osbak et al., 2009; Petit et al., 2011).

Two crystallographic structures of the active conformation
of GK with bound activators have been selected for this study
(PDB codes: 1v4s and 4no7). The structures of the ligands,
their position in the binding pocket and the pharmacophore
features derived from the independent x-ray experiments are
depicted in Figure 4. The binding poses of the two ligands
show similarities with respect to pharmacophoric hydrogen bond
donor and acceptor features capable of forming interactions with
the backbone of Arginine 63. As it has been observed in previous
studies (Petit et al., 2011), the loop comprising the residues
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FIGURE 2 | Hierarchical linkage of the graph nodes. Starting from 3 “Observed” nodes in blue, the stored feature vectors are tested for subset/superset relations,

represented as blue dotted ellipses. Edges are then created if the relation is found. In the case that two nodes do not depict this relation, represented as an orange

ellipse, a new node is created and linked to them. The appearance count for this “Artificial” node is set to 0 and its color is changed to orange. The pharmacophore

model features are: yellow spheres (hydrophobic), red and green arrows (hydrogen-bond acceptors and donors, respectively). The corresponding vector features are

colored yellow, red, and green accordingly.

92–102 is poorly ordered, which results in the opening of an
allosteric sub-pocket that can accommodate the chloro-phenyl-
methane-sulfonate of the ligand in the 4no7 protein data bank
(PDB) structure

Hierarchical Graphs of Pharmacophore
Models
Three MD simulation runs each of 100 ns were performed
for both protein-ligand complexes. From the MD simulation
trajectories obtained, 10,000 frames were extracted and
subsequently used for the generation of pharmacophore models
as described in the Methods part. The hierarchical graphs
were then generated from the frame-based pharmacophore
models including also the crystallographic structure-based
pharmacophore models. The pharmacophore models were
filtered according to their appearance count before subjecting
them to the hierarchical graph generation procedure. The
graphs were generated for each individual run as well as for
the reunification of all runs for each crystallographic structure.
Table 1 summarizes the composition of the graphs. In a previous
publication (Wieder et al., 2017), we used a filtering criteria on
the unique pharmacophore model appearance count in order
to reduce the noise by removing pharmacophore models which
appeared only once during the simulation. In this study, we

investigated the impact of several values for the filtering criteria,
discarding models appearing <2 frames up to <1% of the
number of frames, in order to both reduce the noise and improve
the readability of the graph. Source code for the generation and
visualization of the graphs is available online (Source code for the
HGPM Implementation, 2020). Source code for the generation
and processing of LigandScout pharmacophore models has
been excluded due to intellectual property reasons. Output data
for an interactive demonstration of the Hierarchical Graph
representation of Pharmacophore Models generated from the
first MD run of 4no7 can also be accessed online (Demonstration
of HGPM, 2020). A listing of all unique features for this system
can be seen in the online demonstration when hovering the
mouse over the feature vector.

Analysis of the Unique Feature Vectors
To visualize the composition of the pharmacophore models that
were obtained for each performedMD simulation of the systems,
the individual partitioning of the unique observed features is
represented as Venn diagrams shown in Figure 5. For the 1v4s
system, 37 out of 81 (46%) of all unique observed features are
present in every of the 3 MDs runs if the appearance count
filtering criteria is set to 2 frames or more. This ratio stays similar
when the appearance count criteria is set to 10 frames or more,
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FIGURE 3 | Visualization of the Hierarchical graph representation of pharmacophores models derived from a molecular dynamics simulation of human glucokinase in

complex with an activator (PDB code: 1v4s). The feature vector is represented on the top of the graph and each box represents a unique pharmacophore feature. The

color of the boxes indicates the type of the corresponding feature: yellow (hydrophobic), red and green (hydrogen-bond acceptors and donors, respectively), and blue

(aromatic). The hierarchical graph below the feature vector represents all pharmacophore models observed during the simulation. Nodes are linked by hierarchical

relations and their color denotes their origin: blue (“Observed” pharmacophore models), or orange (“Artificial” models only composed of a subset of features from the

“Observed” pharmacophores). The graph is interactive, nodes can be selected to depict all related pharmacophore models, as shown with the selection of node 1.

When two nodes are selected, the node that depicts the pharmacophore feature intersection set is also highlighted (Node 3), as depicted with the selection of Nodes

1 and 2. For each node, the associated pharmacophore model can be easily retrieved.

resulting in 18 out of 39 (46%) unique observed features being
in common. Although approximately half of the unique features
are always observed, each individual run led to the observation of
5–17 unique features which are only present in this specific run
(filtering criteria of 2 frames or more). When the filtering criteria
is set up to 10, the number of unique features solely observed in
a specific run decreases, but the ratio stays similar.

Considering the 4no7 system, the trend slightly differs with an
increase in the ratio of unique features in common to the 3 runs.
We observed 29 out of 50 (58%) unique common features with

the appearance count filtering criteria set to 2 frames or more and
21 out of 29 (72%) with the filtering criteria set to 10 or more.
Consequently, the number of unique features solely observed
in single runs decreased between 5 and 7 with the filtering
criteria set to 2 and 0–3 with the criteria set to 10. While several
unique features were always present regardless of the run, each
individual MD simulation provided exclusive information. Every
further analysis presented in this work was made considering
every pharmacophore model obtained from any of the 3 runs
performed for each system.
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FIGURE 4 | 2D- and 3D-depictions of co-crystallized ligands and their putative interactions with human glucokinase derived from x-ray structures (PDB codes: 1v4s

and 4no7) using LigandScout 4.4. Hydrophobic, hydrogen-bond donor and acceptor interactions are displayed in yellow (spheres), red and green (arrows),

respectively.

The filtering criteria applied on the appearance count have
been set to decrease the complexity of the hierarchical graphs
in terms of number of nodes and links, as can be seen in
Table 1. To investigate the impact of the filtering criterion on
the feature vector composition, Figure 6 depicts details of the
nature of the unique pharmacophore features. Among all unique
pharmacophore features observed in the MD simulations for
1v4s and 4no7 62 out of 81 and 31 out of 50 are hydrophobic

interactions. This high number of hydrophobic features is partly
caused by the nature of the feature serial generation algorithm.
For example, a hydrophobic feature that involves the fluorine
atom of the ligand in 1v4s and amino acids ILE211, TYR214,
TYR215 will be considered different from another hydrophobic
feature involving the same fluorine atom on the ligand, but
different amino acids like THR65, MET210, ILE211, TYR214,
TYR215, even though every amino acid of the first feature is also
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TABLE 1 | Results from the HGPMs obtained for each MD simulation providing the graphs node composition, pharmacophore filtering criterion, variance of the MDS

projection, and the generation time.

System Run(s) Number of

pharmacophore

models

Minimum

appearance

count of the

pharmacophore

model

Number of

unique

features

Number of

“observed”

nodes

Number of

“artificial”

nodes

Total number

of nodes

Variance of

the projection

(%)

Time to generate

(s)

1v4s 1 10,001 2 63 515 478 993 11.5 30

10 24 135 100 235 15.1 19

2 2 56 457 464 921 12.5 26

10 27 145 119 264 15.5 19

3 2 52 549 766 1,315 13.4 50

10 28 160 243 403 14.5 20

1,2,3 30,001 2 81 1,163 1,207 2,370 11.7 258

10 41 346 337 683 13.3 54

30 28 174 186 360 14.9 51

4no7 1 10,001 2 37 814 680 1,494 12.7 63

10 26 177 139 316 17.1 18

2 2 36 813 645 1,458 10.7 51

10 23 172 133 305 14.0 17

3 2 39 852 728 1,580 10.2 60

10 25 191 150 341 13.4 21

1,2,3 30,001 2 50 1,807 1,394 3,201 10.3 511

10 29 461 285 746 13.5 51

30 26 172 130 302 16.2 50

involved in the second one. This is inherent in the LigandScout
definition of hydrophobic features and has been kept as is.

However, setting the appearance count filtering criterion
to 10 frames or more tends to discard more hydrophobic
features than any other type of pharmacophore interaction, as
it can be observed for both systems shown in Figure 6. Table 1
additionally provides information about hierarchical graphs with
an appearance count set to 1% of the number of frames. For graph
readability reasons, we chose to use a filtering criterion of 10 for
the rest of this study.

Uses and Analysis of the Hierarchical
Graphs
The hierarchical graphs of both investigated systems are shown
in Figure 7. A detailed description of the information which
can be visually retrieved from these graphs is given in detail in
section Visualization.

For system 1v4s, the graph spans nine columns and thus
includes models with up to 8 pharmacophore features. Several
nodes are converging close to the pharmacophore model
obtained from the crystallographic structure, labeled as PDB.
However, no other pharmacophore models were observed
that comprise a superset of the features represented by the
PDB node. The node with the highest appearance count (HF
node) among the 3 runs is vertically displaced from the
PDB node and while they share 3 features, they are not
directly related in terms of feature hierarchy as shown in more
detail in Supplementary Figure 3. The node associated with

the hydrogen bond donor and acceptor features that interact
with Arginine 63 (CF node) is located on the third column of
the graph, since it possesses a low number of features and is
therefore not specialized. The PDB and HF nodes were used
to perform VS runs against the active and decoy database
as described in the Methods section. In addition, a selection
of all pharmacophore models which represent a superset of
the HF and CF nodes were used for a consensus screening
run. The CHA (Wieder et al., 2017), that is a consensus
approach considering all observed pharmacophores was also
carried out. A summary of the VS results can be found in
Table 2.

We observed that the PDB pharmacophore for 1v4s did not
retrieve hits during the VS, which might be due to the number of
defined and specific directional hydrogen bond vectors defining
its specific binding mode, with 5 of the 7 pharmacophore features
containing defined directions for hydrogen bonding. The 4 other
pharmacophore selections for this system performed well, with
area under the curve (AUC) values above 0.96 at 1% of the
number of database molecules. The HF pharmacophore model
performed as well as the other models regarding the AUC at 1%
but slightly below for the other and retrieved 65 hits out of 20,756
molecules. The selection of all superset models of the CF node
provided the most stable and best results regarding the AUC,
even outperforming the CHA. Those good results can be linked to
the high amount of pharmacophore models which were used for
screening, 236 for the CF+ selection and 346 for the CHA. Lastly,
the set of all pharmacophore models which are supersets of the
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FIGURE 5 | Venn diagrams showing the unique pharmacophore feature similarities between the MD simulation runs performed for the 1v4s and 4no7 systems,

respectively. The pharmacophore models considered for the sampling of the unique features were filtered based on an appearance count criteria, set to 2 for the

diagrams on the left and 10 on the right.

HF nodes performed close to the HF node alone but retrieved
87 molecules.

The overall hierarchical graph of pharmacophore models of
the 4no7 system differs from the one of the 1v4s system mainly
by the two branches involving the nodes with the highest number
of features on the right side of the graph. Additionally, the PDB,
HF, and CF nodes are vertically quite close and are hierarchically
linked as it can be seen in Supplementary Figure 4. This leads
to the conclusion that these three nodes are part of only one of
the two branches among the most specialized pharmacophore
models. Therefore, an additional node has been selected to
involve an arbitrary model of the second branch, which has been
labeled as “Selection” in Figure 7. Table 2 shows the VS results
obtained with the PDB and HF nodes. The CHA was applied

and additional consensus scoring runs were made considering
the pharmacophore supersets of the PDB, HF, CF and custom
selected nodes. For 4no7, the PDB pharmacophore obtained
the best AUC results at 1% of the database and retrieved 401
molecules. The CHA performed as good as the PDB node
regarding the AUC at 1% and showed its stability by delivering
comparable AUC values at higher percentages than the other
approaches while retrieving 13,868 molecules. The HF node
model did not perform as well as othermodels with an AUC value
of 0.81 at 1% that fell to 0.41 at 5%. The selection of all superset
models of the HF node, however, achieved significantly better VS
results than the HF node alone. Lastly, the selection based on
the “Arbitrary” node delivered high AUC values with the best
observed results at all thresholds superior to 1%. It is interesting

Frontiers in Molecular Biosciences | www.frontiersin.org 9 December 2020 | Volume 7 | Article 599059

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Arthur et al. Hierarchical Graph of Pharmacophore Models

FIGURE 6 | Pie charts of the unique pharmacophore feature composition of the feature vectors generated from all 3 MD simulations, based on the applied

appearance count filtering criterion for both the 1v4s and 4no7 systems. Hydrophobic interactions are colored yellow, aromatic interactions blue, hydrogen bond

donors green, hydrogen bond acceptors red and the halogen bond donors gray.

to point out that the “Arbitrary” selected node and the HF node
are of disparate feature composition, but still deliver high AUC
values. To scrutinize this observation, we looked at the structural

clusters of the activemolecules retrieved by these two approaches,
as detailed in Supplementary Figure 5. We observed that for a

hitlist truncated at 2,076 molecules (10% of the database), the

HF node retrieves a consequent number of molecules from all

5 clusters, when the arbitrary selected node selection mostly
retrieves molecules from the cluster numbers 2, 3, and 5. This

difference in the virtual screening hitlist composition suggests the
presence of two different binding modes, involving structurally
distinct active molecules. Therefore, investigating why these two
different branches are nonetheless able to distinguish between
active and inactive molecules can be of high value for elucidating

the binding modes of highly affinity GK ligands. It can also
be highlighted that without prior knowledge of the systems,
the selections of multiple pharmacophore models proved to
be especially stable and reliable in terms of AUC values in
comparison to the single pharmacophore models.

Analysis of Hierarchical Graphs of
Pharmacophore Models Colored by Virtual
Screening Results
The hierarchical graph representations provided intuitive
support for the selection and evaluation of pharmacophore
models, as detailed in the previous part. Nonetheless, additional
information can be depicted to emphasize special characteristics
of the pharmacophore models. To better understand the
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FIGURE 7 | The HGPMs based on the 3 MD simulation runs of the 1v4s system is shown on the top, and for the 4no7 system on the bottom. The nodes matching

the pharmacophore models obtained from the PDB structure, the models with the highest frequency of appearance and with the highest count of common features

between the crystallographic structures of the systems are highlighted in green and labeled HF and CF, respectively. The feature vectors of the highlighted models are

shown above of the corresponding hierarchical graphs.

features involved in correctly distinguishing active and inactive
molecules, all pharmacophore models associated with the feature
vectors of the hierarchical graphs were used for VS. Then, each
node was colored according to its AUC value at 10% of the
database. For both systems, the corresponding results are shown
in Figure 8. In the shown hierarchical graphs, the greener the

node the closer its AUC value is to 1, and the redder its color
becomes, the closer its AUC value is to 0. The “Artificial” nodes
were not used for VS runs and are colored gray.

The graph of the 1v4s system shows a clear separation of
colors. All nodes in the area of the HF node, as well as all
its superset nodes are depicted in green. Therefore, prioritizing
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TABLE 2 | Virtual screening results for both systems using different selections of pharmacophore models.

System Selection Number of

common

features

Number of

pharmacophore

model(s)

Number of

hits

Auc at 1% Auc at 5% Auc at 10% Auc at 50% Auc at 100%

1v4s pdb 7 1 0 0.00 0.00 0.00 0.00 0.00

CHA 0 346 3,676 0.96 0.95 0.93 0.86 0.74

HF 5 1 65 0.98 0.90 0.81 0.59 0.53

HF+ 5 7 87 0.98 0.91 0.82 0.59 0.53

CF+ 2 236 1,337 0.98 0.96 0.95 0.82 0.68

4no7 pdb 4 1 401 0.98 0.77 0.68 0.54 0.51

pdb+ 4 6 655 0.96 0.82 0.74 0.56 0.52

CHA 0 461 13,868 0.98 0.79 0.71 0.64 0.58

HF 3 1 2,761 0.81 0.41 0.34 0.51 0.50

HF+ 3 22 3,545 0.95 0.82 0.72 0.56 0.52

CF+ 2 49 2,546 0.93 0.81 0.74 0.59 0.54

Selection + 3 30 3,421 0.96 0.88 0.81 0.58 0.53

Selections labeled with a + represent a subset of models used for consensus scoring. Model subsets comprise every pharmacophore with at least the same features as the initial node.

a selection of pharmacophore models from this area might be
indicated in order to find the best balance between consensus
virtual screening performance and number of consideredmodels.
On the other hand, the top half of the graph mainly depicts bad
performing models, including the PDB node. The region around
the CF node is depicted in gray as the VS was not performed
for the pharmacophore model of the “Artificial” nodes. However,
the consensus VS runs using all pharmacophore model supersets
of the CF nodes performs well, although the sets contain both
individual good and poorly performing models.

The graph for the 4no7 system is homogeneous and most of
the nodes deliver good VS results (AUC > 0.5). The HF node
is colored brown, leading to below average results. However, the
more specialized nodes located on the top branch of the graph
performed well, including the PDB node. The region around
the custom selected node, present on the other branch, also
performed well, which can be interpreted as a different ligand
bindingmode. All models from the “Observed” nodes in the same
columns as the CF node are displayed in red since models with
less than three features do not lead to an unambiguous model
alignment in 3D space and therefore return no hits.

Analysis of the Hierarchical Graph of
Pharmacophore Models Projected to the
GK Protein
The information gained for each individual system is present
in the form of pharmacophore selection and in the comparison
of the feature composition of the nodes. This is due to
the pharmacophore feature label generation algorithm that
considers which part of the ligand is interacting and allows
a better accuracy in distinguishing unique features. Thus, the
comparison between two systems with different ligands, as we
did it for the 1v4s and 4no7 crystallographic structures is not
possible. However, by disregarding the ligand identifier in the
pharmacophore feature serial generation procedure we only

keep the type of interaction of the pharmacophore feature
and the protein identifier. In this way, we are trading the
accuracy of where the interaction occurs on the ligand side,
for the ability to ‘project’ the interaction on the protein
side. This therefore unlocks the possibility to consider all
pharmacophore models generated from a specific protein,
regardless of which ligand was involved in the pharmacophore
interactions. To demonstrate this alternative way of generating
the pharmacophore feature serial, a HGPM based on all runs
from both 1v4s and 4no7 systems has been created and is shown
in Figure 9. Detailed information about the graph is provided in
Supplementary Table 3.

The number of graph nodes and the number of unique
pharmacophore features present in this hierarchical graph are
both greater than those of the 2 previous graphs, which
increases the complexity of the depiction. Among the 55 unique
observed features, 7 where shared between 1v4s and 4no7: 3
hydrogen bond acceptor interactions with Arginine 63, Serine
64 and Threonine 65; a hydrogen bond donor interaction with
Arginine 63; 3 hydrophobic features engaged in interactions
with Tyrosine 24, the amino-acids Isoleucine 211, Threonine
65 and Tyrosine 214 and the amino-acids Threonine 65 and
Tyrosine 214. Despite these common interactions, no “Observed”
pharmacophore models were present in both the 1v4s and 4no7
MD simulation runs. We can nonetheless clearly observe a
distinction between the two colored clusters, depicting the initial
node affiliation. The top half of the graph with cyan colored
nodes represent all pharmacophoremodels from the 1v4s system,
where we can recognize a single branch leading to the specialized
pharmacophore model of the PDB structure. For the bottom
half of the graph with the orange nodes from the 4no7 system,
we observe a more homogeneous spacing. The two branches
previously observed are not easily distinguishable. It can be
pointed out that the 4no7 PDB node is located near the nodes
originating from 1v4s, and the custom selection node tends to
fork more to the bottom part of the graph as more detailed

Frontiers in Molecular Biosciences | www.frontiersin.org 12 December 2020 | Volume 7 | Article 599059

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Arthur et al. Hierarchical Graph of Pharmacophore Models

FIGURE 8 | The hierarchical graph of pharmacophore models derived from human glucokinase PDB codes of the 1v4s system is shown on the top, and of the 4no7

system on the bottom. The nodes are colored according to their AUC values at 10% of the database molecules. The greener the node, the closer is its AUC value to

1, and the redder the closer to 0. Nodes with “Artificial” pharmacophore models are colored gray. The nodes corresponding to the pharmacophore models obtained

from the PDB structure, from the highest frequency of appearance and with the two common features between the systems are labeled accordingly. Associated

feature vectors are shown above the corresponding graphs.

on Supplementary Figure 6. As the feature vector differs from
the individual graphs, the pharmacophore selection for the CHA
and for the subsets of pharmacophore models with the same
feature as the CF nodes were different than previously and their
virtual screening results details for this graph are presented on
Supplementary Table 4.

Based on the heterogeneity of the graph, two pharmacophore
models were selected. The hierarchical graph as well as two
selected nodes, respectively binding mode 1 (BM1) and 2 (BM2)
are shown in Figure 10. Both models are among the most
specialized observed pharmacophores with 7 and 6 features,
respectively. The single shared feature is a hydrogen bond
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FIGURE 9 | HGPM obtained from the MD simulation runs of both the 1v4s and 4no7 system. The nodes are colored based on the system they were derived from:

cyan for 1v4s and orange for 4no7. The nodes matching the pharmacophore models obtained from the PDB structures, the custom selection and the node with the

two observed common features of the systems are labeled and highlighted in green. The feature vector is displayed on the top of the graph.

acceptor interaction with the Arginine 63, whose corresponding
node is labeled CoreF. In the 3D representations of the
pharmacophore models in Figure 10, we observed that the
hydrophobic and halogen bonding interactions are present in
different areas of the GK pocket as they involve different amino
acids. Due to the important difference in the pharmacophore
models in terms of feature composition and 3D alignment, the
observed results can be linked to distinct binding modes due
to the presence of the allosteric sub-pocket. This information
can be used to provide a better depiction of the specific
binding modes than the initial comparison between the two PDB
pharmacophore models. Additionally, it allows the selection of
smaller pharmacophore sets for consensus virtual screening in
comparison with the CHA or the CF+ selection of models.

CONCLUSION

Motivated by the recent interest in consensus-based virtual
screening methods involving pharmacophore models (Wieder
et al., 2017; Polishchuk et al., 2019; Madzhidov et al., 2020),
we developed an intuitive hierarchical graph representation
of pharmacophore models. A user-friendly interactive
visualization of the pharmacophore-based graph provides
valuable information for computational chemists toward the
understanding of protein-ligand interaction patterns and can aid
in the selection of pharmacophore models for VS experiments.
The graph can be created from sets of pharmacophore models
generated for multiple crystallographic structures with identical
macromolecular targets or for the output of MD simulation runs
to provide insight into the dynamic aspects of the investigated

systems. The graph generation has proven to be computationally
inexpensive as it takes seconds to be created even for bigger
ensembles with more than 10,000 models (see Table 1).

We selected two crystallographic structures of the human
glucokinase to evaluate the HGPM generation algorithm in
its ability to identify different binding modes and to select

small representative pharmacophore model sets for consensus
VS experiments. MD simulations and graph generations were
performed individually for the two systems. Different selections

of pharmacophore models were used to distinguish between
active and inactive molecules for the two investigated systems.
The selection of all models which possess a superset of the
features contained in the pharmacophore model with the highest
appearance count performed similarly to the CHA method in
terms of AUC value and stability, while at the same time reducing
the number of considered models for the 1v4s system by 20-fold
and by more than 45-fold in the case of the 4no7 system (see
Table 2), and thus helped to significantly reduce the required
screening time. The hierarchical graph in Figure 8 also helped
to identify the best performing ensembles of pharmacophore
features by depicting the virtual screening results for every
pharmacophore model. Although the presence of two specialized
branches in the hierarchical graph of the 4no7 system (in
Figure 7) has already been noticed, the two different binding
modes of GK were clearly identified by the hierarchical graph
generated from the models extracted from both the 1v4s and
4no7 MD simulations (Figure 10), which is in perfect agreement
with literature (Petit et al., 2011).

Depending on the goal, the graph representation can
be adapted flexibly by either changing the pharmacophore
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FIGURE 10 | HGPM obtained from the MD simulation runs human glucokinase starting from both the 1v4s and 4no7 systems. The nodes BM1 and BM2 were

selected to show examples of different observed binding modes. 2D and 3D depictions of the corresponding pharmacophore models are shown below the graph.

feature serial generation algorithm or by showing additional
properties. Highlighting the hierarchical relationship between
pharmacophore models, this graph allows the user to
analyze a target system by comparing the composition
of several pharmacophore models in a single graphical
representation, thus promoting the understanding of the
binding process and the selection of pharmacophore models
for consensus virtual screening runs. A typical workflow
using the information provided by the graph representation
is e.g., to first select a single pharmacophore model with
the highest observed frequency, then perform a virtual
screening run and finally add or remove individual features
identified by following hierarchical links to build a refined
model with the best ratio between accuracy and specificity.
Presenting the hierarchical graph of pharmacophore models,
we want to introduce an intuitive representation of multiple
pharmacophore models and provide the computational and

medicinal chemists with a new tool to enable an advanced
understanding of the protein-ligand binding process, allowing
for better decision support in the process of optimizing
bio-active molecules.
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