
ORIGINAL RESEARCH
published: 17 December 2020

doi: 10.3389/fmolb.2020.601065

Frontiers in Molecular Biosciences | www.frontiersin.org 1 December 2020 | Volume 7 | Article 601065

Edited by:

Sergio Decherchi,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Sophie Sacquin-Mora,

UPR9080 Laboratoire de Biochimie

Théorique (LBT), France

Matteo Salvalaglio,

University College London,

United Kingdom

*Correspondence:

Rebecca C. Wade

rebecca.wade@h-its.org

Goutam Mukherjee

goutam.mukherjee@h-its.org

Specialty section:

This article was submitted to

Biological Modeling and Simulation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 31 August 2020

Accepted: 13 November 2020

Published: 17 December 2020

Citation:

Holderbach S, Adam L, Jayaram B,

Wade RC and Mukherjee G (2020)

RASPD+: Fast Protein-Ligand Binding

Free Energy Prediction Using

Simplified Physicochemical Features.

Front. Mol. Biosci. 7:601065.

doi: 10.3389/fmolb.2020.601065

RASPD+: Fast Protein-Ligand
Binding Free Energy Prediction Using
Simplified Physicochemical Features
Stefan Holderbach 1,2, Lukas Adam 1,2, B. Jayaram 3, Rebecca C. Wade 1,4,5* and

Goutam Mukherjee 1,4*

1Molecular and Cellular Modelling Group, Heidelberg Institute of Theoretical Studies, Heidelberg, Germany, 2 Institute of

Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany, 3 Supercomputing Facility for

Bioinformatics & Computational Biology, Department of Chemistry, Kusuma School of Biological Sciences, Indian Institute of

Technology Delhi, New Delhi, India, 4Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University,

Heidelberg, Germany, 5 Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany

The virtual screening of large numbers of compounds against target protein binding sites

has become an integral component of drug discovery workflows. This screening is often

done by computationally docking ligands into a protein binding site of interest, but this

has the drawback of a large number of poses that must be evaluated to obtain accurate

estimates of protein-ligand binding affinity. We here introduce a fast pre-filtering method

for ligand prioritization that is based on a set of machine learning models and uses simple

pose-invariant physicochemical descriptors of the ligands and the protein binding pocket.

Our method, Rapid Screening with Physicochemical Descriptors + machine learning

(RASPD+), is trained on PDBbind data and achieves a regression performance that is

better than that of the original RASPD method and traditional scoring functions on a

range of different test sets without the need for generating ligand poses. Additionally, we

use RASPD+ to identify molecular features important for binding affinity and assess the

ability of RASPD+ to enrich active molecules from decoys.

Keywords: structure based drug design, virtual screening, physicochemical molecular descriptors, machine

learning, protein-ligand complex, binding free energy

1. INTRODUCTION

Virtual screening to assess in silico the binding of candidate ligands to a target protein is a key
component of structure-based drug design procedures (Torres et al., 2019; Wang et al., 2020).
Typically, screening is done by docking the ligands at many different positions or poses in the
three-dimensional structure of the target protein. At every position, a scoring function is evaluated
to approximate the binding-free energy, and this is used to rank the binding poses and different
candidate ligands for their ability to bind to the target protein. While correct docking poses
are frequently generated, scoring functions often lack the accuracy necessary to correctly rank
poses or ligands (Li et al., 2019). Docking procedures are therefore frequently supplemented by
methods employing molecular dynamics simulations with the aim of computing more accurate
binding affinities. However, both docking andmolecular dynamics simulations often fail to provide
predictions of binding free energy at the level of accuracy desired. Furthermore, they are demanding
in terms of computational effort and expertise (Willems et al., 2020). There is therefore a need
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Graphical Abstract | Overview of the overall workflow of RASPD+ (Rapid Screening with Physicochemical Descriptors + machine learning).

for quick approaches with robust predictive scoring functions
to facilitate the screening and prioritization of large libraries of
compounds prior to applying docking and simulation methods.

While the assessment of ligand properties, e.g., for
drug-likeness (Lipinski et al., 2001), to filter ligand libraries
is well established, we here address the need to filter and
prioritize ligands based not only on ligand properties but also
on the properties of the target protein. For this purpose, we
previously developed a simple hybrid regression approach called
RASPD (Rapid Screening with Physicochemical Descriptors)
(Mukherjee and Jayaram, 2013). In this linear regression model,
the binding-free energy 1G was predicted using a minimal set of
physicochemical descriptors for typical interactions. Hydrogen
bonding was accounted for by counting potential donor and
acceptor atoms. Van der Waals forces were approximated by the
Wiener topology index (Wiener, 1947) and the molar refractivity,
which describes the polarizability of a molecule (Ghose and
Crippen, 1987). Additionally, the partition coefficient logP
allowed for the estimation of the hydrophobic effect. While
the descriptor values for the ligand are straightforward to
compute, simplifying assumptions were made to obtain the
physicochemical descriptors for the target protein. A sphere was
centered on a known or assumed binding pocket position with
a radius encompassing the maximum size of the ligand. This
sphere was then used to select the amino acid residues for which
descriptors were computed (Mukherjee and Jayaram, 2013)
(Figure 1A).

However, the linear regression model used (Mukherjee and
Jayaram, 2013) has limited abilities to capture complex feature
interactions compared to non-linear models. Since RASPD was
first developed, more high-quality data sets on protein-ligand
complexes with associated binding-free energies have been made
available (Liu et al., 2015; Gathiaka et al., 2016), and a large
number of machine learning methods have been developed

(Yang et al., 2019). Moreover, machine learning approaches have
successfully been used to either replace (Gomes et al., 2017;
Feinberg et al., 2018; Jiménez et al., 2018) or enhance (Pei et al.,
2019; Boyles et al., 2020) the predictions of traditional scoring
functions for protein-ligand binding.

We have thus developed RASPD+, which is a new tool
that improves on the conceptual framework of the original
RASPD method by using the following: (i) a set of diverse
machine learning methods to derive an ensemble prediction,
(ii) additional and more fine-grained descriptors for the target
proteins, and (iii) larger training sets of newer protein-ligand
binding data. We here describe the training, testing, and
application of RASPD+. We demonstrate the capabilities of
RASPD+ for binding free energy regression and compare its
performance to established scoring functions. We also analyze
the features contributing to the predictions to gain insights
into the important features for binding affinity. Finally, we
show that RASPD+ can enrich active molecules in tests with
the Directory of Useful Decoys-Enhanced data set (DUD-E)
(Mysinger et al., 2012).

2. METHODS

The computational workflow and the training and validation
procedure used for RASPD+ are illustrated in Figure 1.

2.1. Datasets
The PDBbind refined data set (release 2018) (Wang et al.,
2004; Liu et al., 2015), containing 4,463 protein-ligand crystal
structures and experimentally measured binding affinities, served
as the initial data set. Although the PDBbind refined data set
contains data on binding from different measurements reported
in the literature and no experimental method was specified as
a requirement for the data to be incorporated in PDBbind,
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FIGURE 1 | The computational workflow of RASPD+ comprises featurization (A) and the training and evaluation of machine learning models (B). (A) For each ligand

molecule, simple physicochemical descriptors are computed based on atomic contributions. Information about the target protein is gathered within a sphere around a

putative binding position whose size is determined by the radius of the ligand. For residues within this sphere, similar descriptors are computed. (B) Data from the

PDBbind refined set featurized in this way served as the training data in a nested cross-validation strategy. To compare linear regression (LR), k-nearest neighbors

(kNN), support vector regression (SVR), neural network (DNN), random forest (RF), and extremely random forest (eRF) models, test sets were split off in 10 replicates in

an outer loop. In the inner loop, six-fold cross-validation was used to select the best hyperparameters for the given model.

it contains high-quality structures of non-covalent protein-
ligand interactions with a resolution better than 2.5 Å and
no steric clashes. The PDBbind refined data set is therefore
extensively used as a benchmark set for protein-ligand binding
affinity prediction (Liu et al., 2015). We thus obtained structural
information about each protein in the data set, the position
and structure of the ligand binding to it, and the corresponding
binding constant. As we considered modeling the coordination
of metal ions to be beyond the scope of our approach, the
structures were filtered to exclude cases with metal ions within
2.1 Å of the ligand. Dissociation and inhibition constants and
IC50 values were converted to binding-free energies using the
following equation:

1G = −RT lnK where K ∈ {Kd,Ki, IC50} assuming

T = 298.15 K (1)

This processing resulted in a set of 3,925 protein-ligand
complexes for training, validation, and testing.

For further testing, the following previously published
benchmark sets served as external test sets: The Community
Structure-Activity Resource (CSAR) NRC-HiQ 2010 selection
(Dunbar et al., 2011; Smith et al., 2011), data sets from the
CSAR 2012 (Dunbar et al., 2013), and CSAR 2014 (Carlson et al.,
2016) challenges, and a data set described by Wang et al. (2015).

The CSAR-NRC 2010 HiQ release (Dunbar et al., 2011; Smith
et al., 2011) contains two sets of protein-ligand complexes, with

55 and 49 docked complexes, respectively, as well as information
about experimental binding affinities.

Another set of binding-free energies and corresponding
structures was assembled from the CSAR 2012 (Dunbar et al.,
2013) and CSAR 2014 (Carlson et al., 2016) data sets that
are now curated by the Drug Design Data Resource (D3R)
(drugdesigndata.org) (Gathiaka et al., 2016). For this set, which
we refer to as the D3R data set, we downloaded the data
for the proteins urokinase, cyclin-dependent kinase 2 (CDK2),
checkpoint kinase 1 (CHK1), MAP kinase 1 (ERK2), LpxC
deacetylase (LpxC), spleen tyrosine kinase (SYK), tRNA (m1G37)
methyltransferase (tRMD), heat shock protein 90 (HSP90), and
a CDK2-Cyclin A complex. The SMILES strings of 1,271 active
inhibitors of these proteins in the D3R data set were converted
to 3D structures in PDB format using Open Babel (O’Boyle
et al., 2011). For HSP90, we excluded 46 compounds that
were all assigned the same 1G of −5.860 kcal/mol as this
value, likely represented a threshold value for the experimental
measurements rather than the actual binding affinity of
the ligands.

Wang et al. (2015) aggregated previous experimental results
and PDB structures for 283 complexes of seven different proteins:
beta-secretase (BACE), CDK2, induced myeloid leukemia cell
differentiation protein (Mcl-1), p38 MAP kinase, protein-
tyrosine phosphatase 1B (PTP1B), thrombin, and tyrosine kinase
2 (TYK2). For this set, protein structures were retrieved from
the RCSB protein data bank (http://www.rcsb.org) and hydrogen
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atoms were added to the protein structures with the tleap
module of AMBER 14 (Case et al., 2005). The structural data for
inhibitors and experimental binding-free energies were obtained
from the literature (Wilson et al., 2007; Baum et al., 2009;
Goldstein et al., 2011; Cumming et al., 2012; Friberg et al.,
2013; Liang et al., 2013a,b; Wang et al., 2013, 2015). This
included additional ligands for Mcl-1 (Friberg et al., 2013) and
TYK2 (Liang et al., 2013a,b) that were not used by Wang et al.
(2015). The structures of the 283 inhibitors were redrawn and
verified in the MOE software (Chemical Computing Group,
Montreal, QC).

Further details on the source of structures and experimental
binding affinities are given in Supplementary Table 1.

2.2. Generation of Molecular Descriptors
To model the non-covalent interactions, physicochemical
molecular descriptors were computed using an improved
pipeline based on that for the original RASPD procedure
described in Mukherjee and Jayaram (2013) (Figure 1A). For
each ligand, the molecular weight (here abbreviated as MASS),
the number of hydrogen bond donors (D) and acceptors (A),
an approximate octanol-water partition coefficient log P (logP)
(Wildman and Crippen, 1999), the molar refractivity (MR)
(Wildman and Crippen, 1999), and the Wiener topology index
(W) (Wiener, 1947) were computed as described previously
(Mukherjee and Jayaram, 2013). Based on the ligand position
in the protein structure, the most likely interacting amino
acid residues were selected using a sphere whose radius was
derived from the maximum distance (maxD) between ligand
atoms and the center of mass (Figure 1A). For the computation
of the logP and MR descriptors, this sphere was extended
by 0.9 Å over maxD, and residues were selected based on
their center of mass. To count hydrogen bond donors and
acceptors, a sphere extending 3Å beyond maxD was used to
select atoms. Details regarding the protein pocket selection
procedure and the choice of the cut-off radii are given in
Mukherjee and Jayaram (2013). To make the protein descriptors
more fine grained than in the previous RASPD procedure,
we computed molar refractivity and log P for aromatic and
non-aromatic residues separately [PMR(Arom), PMR(Non-
Arom), PlogP(Arom), PlogP(Non-Arom)]. Hydrogen bond
donors were counted separately for the backbone amide
group [PD(Amide-NH)] as well as for the following amino
acid sets: Positively charged PD (K+R+HIP), neutral amino
groups PD(K+N+Q), heteroaromatic donors PD (W+H), and
hydroxyl-containing groups PD (T+S+Y+D+E). The number
of hydrogen bond acceptors was determined for the backbone
amide [PA(Amide-O)] and the following sets: negatively
charged PA (D+E), neutral non-aromatic PA (N+Q+T+S+D-
H+E-H), and aromatic acceptors PA (Y+H). The individual
protein residue-derived descriptors were scaled by the ligand
maxD. Additionally, the volume of the protein pocket (PVol)
was computed using tools from the TRAPP software suite
(Kokh et al., 2013; Yuan et al., 2020). In total, therefore,
six ligand and 14 protein descriptors were computed per
ligand-protein complex.

2.3. General Strategy for Training and
Testing
To obtain a robust estimate of performance on the PDBbind
data set as well as the test sets, a nested cross-validation
strategy was used (Figure 1B). For 10 replicates, the PDBbind
refined set was split into a test set covering 12.5% of the
data and a set for cross-validation training. For each of these
replicates, six-fold cross-validation training was performed to
select the best hyperparameters for each replicate based on the
Pearson correlation coefficient. For each replicate, therefore,
2,860 complexes were used for training, 572 for cross-validation,
and 493 for testing.

The input features were robustly centered and scaled by the
median and interquartile range (IQR) of the training set for each
train-test split. All models obtained by the hyperparameter search
were evaluated on the corresponding PDBbind test set as well
as on the external test sets. We report the mean and standard
deviation of the performance metrics.

2.4. Evaluation Metrics
To assess model performance, the root-mean-squared error
(RMSE), Pearson (r), and Spearman (ρ) correlation coefficients,
and the coefficient of determination, R2, were computed using
the sklearn.metrics and scipy.stats Pythonmodules.
Additionally, we report the Q2

F3 metric (Equation 2) (Consonni
et al., 2009), as it is considered to be better suited for QSAR-like
tasks than R2 (Todeschini et al., 2016).

Q2
F3 = 1−

∑ntest
i (ŷ− ytest)2

∑ntest
i (ŷ− ytrain)2

(2)

2.5. Models and Hyperparameters
As part of this work, we evaluated different machine learning
models. We considered linear regression (LR), as it was also
used in the previous RASPD approach (Mukherjee and Jayaram,
2013), support vector regression (Drucker et al., 1997) (SVR), k-
Nearest Neighbors (kNN), simple deep neural networks (DNN),
random forests (Breiman, 2001) (RF), and a variant of the
former, extremely random forests (Geurts et al., 2006) (eRF).
The associated hyperparameters for each method were optimized
by a grid search covering a typical space. Further details on
each method and their associated hyperparameters are given in
the Supplementary Materials. A comprehensive list of tested
hyperparameters is given in Supplementary Table 2. All models
except the neural networks were built using thescikit-learn
Python package (version 0.20.2) (Pedregosa et al., 2011). For the
neural networks, the Keras API (version 2.2.4) (Chollet et al.,
2015) for TensorFlow (version 1.12) was used in conjunction
with the talos package (version 0.4.6) (Kotila, 2018) for
hyperparameter optimization.

2.6. Estimation of Feature Importance
To estimate the importance of individual input features, a simple
permutation-based approach was used (Breiman, 2001). After
prediction on a real-world test set, the column of each feature
in the data set was shuffled in five replicates, and the mean
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FIGURE 2 | Correlation analysis on the PDBbind data set reveals that the experimental binding-free energy has the strongest negative correlation with the ligand

molar refractivity (MR, Spearman ρ = −0.51), and with the number of peptide bond oxygen atoms (hydrogen bond acceptors) present in the putative protein binding

pocket [PA(Amide-O), Spearman ρ = −0.49]. The value of the Spearman’s correlation coefficient is indicated by color.

change in Pearson correlation coefficient was computed. The
model then has to make a prediction based on a random sample
from a distribution with the same mean and variance. A drop in
predictive performance indicates that the prediction is dependent
on this feature.

2.7. Enrichment Analysis With Decoy
Compounds From the DUD-E Dataset
To evaluate the performance of RASPD+ for capturing active
molecules from a pool of computationally generated decoys,
3D coordinates of active and decoy molecules were retrieved
from the DUD-E data set (Mysinger et al., 2012). This set
contains 102 targets with on average≈ 200 distinct and validated
binding ligands and corresponding ≈ 14, 000 selected decoys
for each system. Information about the proteins, as well as
the number of active and decoy molecules for each system, is
given in Supplementary Table 9. Enrichment was performed by
selecting a given percentage of molecules that scored highest
in the given method. For scoring, the predictions across the
six cross-validation folds of a replicate were averaged. The

enrichment factor was defined as the ratio of the fraction of
active molecules in the enriched set divided by the fraction of
the active molecules in the total set. For failure case analysis,
we additionally determined which systems contained another
cofactor in the binding pocket by checking for non-protein
atoms within the pocket structure. Surface-only binding sites
were identified by filtering interactions with few amino-acids and
manually validating surface binding. More detailed subsets of
DUD-Ewere adopted fromVieira and Sousa (2019) instead of the
more coarse-grained classification fromMysinger et al. (2012).

3. RESULTS

3.1. Analysis of the Descriptors and Data
Sets
To confirm the usefulness of the chosen molecular descriptors,
we performed correlation analysis on the PDBbind refined set
(Figure 2, Supplementary Table 3). The Spearman correlations
with the binding free energy, 1G, were negative for most
descriptors, as stronger binding is indicated by negative values
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TABLE 1 | Comparison of the performance of the models derived with seven different machine learning methods for predicting the protein-ligand binding free energy for

the PDBbind test set.

Model RMSE r ρ R2 Q2
F3

Null model 2.76± 0.05 0.0± 0.0 NA −0.00± 0.00 −0.03± 0.05

LR 2.19± 0.05 0.61± 0.02 0.60± 0.02 0.37± 0.02 0.35± 0.03

kNN 2.03± 0.04 0.68± 0.02 0.67± 0.02 0.46± 0.03 0.44± 0.03

lSVR 2.20± 0.05 0.61± 0.02 0.60± 0.02 0.37± 0.02 0.35± 0.03

SVR 2.04± 0.05 0.68± 0.02 0.67± 0.02 0.45± 0.03 0.44± 0.03

DNN 2.05± 0.05 0.67± 0.02 0.66± 0.02 0.45± 0.02 0.43± 0.03

RF 1.88± 0.04 0.74 ± 0.02 0.73± 0.02 0.53± 0.02 0.52± 0.02

eRF 1.86 ± 0.05 0.74 ± 0.02 0.74 ± 0.01 0.55 ± 0.02 0.54 ± 0.03

The five metrics of performance are given as mean and standard deviation values computed by averaging from the 10 different random test set splits and six cross-validation folds. The

RMSE is given in kcal/mol. NA, not applicable.

of 1G. The strongest negative correlations were observed for
the molar refractivity of the ligand molecule (MR, −0.51) and
the abundance of peptide bond oxygen atoms (hydrogen bond
acceptors) inside the protein binding pocket [PA(Amide-O),
−0.49]. The correlations with 1G for the features for specific
amino acids were lower than 0.25 inmagnitude, which is less than
the corresponding correlation (> 0.4) obtained for the backbone
[PA(Amide-O), PD(Amide-NH)] and non-aromatic amino acid
[PlogP(Non-Arom), PMR(Non-Arom)] descriptors.

We next analyzed the correlations among the descriptors in
particular to check for possible biases for certain interactions
in the protein-ligand complexes of the PDBbind data. Amongst
the ligand descriptors, the strongest correlations were observed
between molecular weight, molar refractivity, and Wiener index
(MASS, MR, and W). For the protein features, the strongest
correlation was between the two descriptors for the aromatic
amino acids, PlogP(Arom) and PMR(Arom). In addition, the
backbone-based features, [PA(Amide-O) and PD(Amide-NH)],
had a high correlation with the log P and molar refractivity
values of the non-aromatic residues. Among the hydrogen bond
contributions of the amino acids, we observed the strongest
correlation with ρ = 0.66 between PD(T+S+Y+DH+EH) and
PA(N+Q+T+S+DH+EH). This correlation is expected because
they share the highest number of amino acids.

A higher correlation between the ligand and the protein
features was observed between ligand features that directly scale
with the size of the molecule (MASS, W, and MR) and the
more general protein features, such as the backbone features and
the log P and MR values of the non-aromatic residues. These
protein features are expected to be related to the ligand size
and, therefore, do not indicate any data set-specific bias of the
PDBbind data set.

Comparing the distributions of binding-free energies 1G
between the PDBbind data set used for training and validation
and the CSAR 2012 and 2014 (Dunbar et al., 2013; Carlson
et al., 2016) and Wang et al. (2015) external data sets used for
testing revealed that the PDBbind data set covers a wider range of
binding free energies (Supplementary Figure 1). In contrast, the
101 protein-ligand complexes from the CSAR NRC-HiQ release
cover a wider 1G range than PDBbind.

From the distribution of the individual descriptors, it
is clear that the PDBbind data set encompasses the full
range of descriptor values covered by the other data sets
(Supplementary Figure 2), even though there are differences in
the mean values of the descriptors. For example, the average
ligand molecular weight was lowest for the CSAR-NRC HiQ
data and highest for the D3R data from CSAR 2012 and
CSAR 2014.

3.2. Trained Models Random Forests
Outperform Neural Networks
Initial tests revealed high variability in the performance metrics
that depended on a random training and validation data split.
We thus chose a nested cross-validation strategy to find the
machine learning models best suited for the chosen descriptors
(Figure 1B). Therefore, performance metrics are reported as
the mean of sixty models resulting from 10 random data set
draws and six-fold cross-validation. The corresponding standard
deviation enables the quantification of the uncertainty of the
performance metrics. Apart from the baseline correlation values
between the individual descriptors and the target variable 1G,
we included a null model, which simply predicted the mean 1G
of the training data, to verify predictive power. The root-mean-
squared error, RMSE, of 2.76± 0.05measured for this null model
is identical to the population standard deviation for the respective
training folds (Table 1, Figure 3). The linear regression model
derived by ordinary least squares fitting, similar to the original
RASPD approach (Mukherjee and Jayaram, 2013), achieved a
RMSE of 2.19± 0.05 kcal/mol on the test set. We tested six other
methods and assessed whether they improved on this value.

SVR with a Gaussian radial basis function (RBF) kernel
and a neural network with two hidden layers performed with
RMSE values of 2.04± 0.05 kcal/mol and 2.05± 0.05 kcal/mol,
respectively, these were similar to k-nearest neighbors with an
RMSE of 2.03± 0.04 kcal/mol. Superior performance in terms of
both deviation, quantified by RMSE, and ranking, as measured
by the Spearman correlation ρ, was achieved with the two
random forest-based models. The eRF model had a RMSE of
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FIGURE 3 | Systematic evaluation of the predictive performance of the seven different machine learning methods on the PDBbind test set shows that, according to

three metrics, the extremely random forests (eRF) model performs better than models derived by the other machine learning methods in predicting protein-ligand

binding free energy. The error bars indicate the standard deviation for 10 replicates with six-fold cross-validation.

FIGURE 4 | (A) Binding-free energies predicted by a single eRF model on unseen PDBbind test data. The dashed line indicates the ideal prediction. The absolute

errors of the predictions shown in (A) are plotted against (B) the respective true 1G and (C) the atom efficiency, which describes the 1G contributed on average by

each non-hydrogen atom (atom efficiency = 1G/Nnon−H−atoms).

1.86± 0.05 kcal/mol and a Pearson correlation r of 0.74 ± 0.02,
and the RF model performed similarly (Table 1, Figure 3).

We therefore selected the resulting eRF models for further
analysis. We note that these eRF regressors, which use 200
trees and have no limits on the number of samples per leaf,
overfit the training set despite showing better validation set
performance compared to more strongly regularized variants
(see Supplementary Tables 4, 5). Nevertheless, an examination
of the predictions of the eRF models on the PDBbind test
data shows that the general trends in the data are captured
although the lowest 1G values are overestimated, and the
highest 1G values are underestimated (Figure 4A). The greatest
deviations from the experimental values are thus observed for
those complexes with extremely low or high binding free energies
(Figure 4B). There is, however, no clear relation between having
a higher error value and the atom efficiency (Figure 4C). The

same trends were also observed with all the other machine
learning methods.

3.3. Results on External Test Sets
To compare our RASPD+ approach using eRF models as well
as LR with existing methods, we performed an evaluation on
several external data sets from the literature (Dunbar et al.,
2011, 2013; Wang et al., 2015; Carlson et al., 2016) that have
different characteristics, as previously done by Jiménez et al.
(2018) To compare to other methods for predicting protein-
ligand binding free energy, we considered the previous RASPD
approach (Mukherjee and Jayaram, 2013) as a method that does
not rely on full docking, KDEEP (Jiménez et al., 2018) as a
representative deep learning-based method, RF-Score (Ballester
and Mitchell, 2010) as a method using random forests, and
cyScore (Cao and Li, 2014) and X-Score (Wang et al., 2002) as
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TABLE 2 | Comparison of the performance of RASPD+ using eRF and LR models with five other methods to compute protein-ligand binding-free energy.

RASPD+

Data set eRF LR RASPD KDeep* RF-Score* CyScore* X-Score*

RMSE

CSAR HiQ 1 3.02 ± 0.04 3.07 ± 0.02 3.43 2.84 2.71 3.18 3.15

CSAR HiQ 2 2.23 ± 0.04 2.44 ± 0.02 2.79 2.60 2.26 3.00 2.51

CSAR12 1.50 ± 0.02 1.68 ± 0.02 1.93 2.17 1.36 2.84 1.27

CSAR14 1.36 ± 0.03 1.64 ± 0.02 2.05 2.39 1.19 2.03 1.36

Wang et al. 1.39 ± 0.03 1.39 ± 0.02 2.00 1.47 1.19 5.74 1.49

Pearson r

CSAR HiQ 1 0.62 ± 0.02 0.58 ± 0.01 0.54 0.72 0.77 0.65 0.60

CSAR HiQ 2 0.78 ± 0.01 0.68 ± 0.01 0.67 0.65 0.75 0.64 0.65

CSAR12 0.40 ± 0.03 0.25 ± 0.01 0.29 0.37 0.46 0.26 0.48

CSAR14 0.55 ± 0.03 0.23 ± 0.02 0.32 0.61 0.80 0.67 0.82

Wang et al. 0.70 ± 0.02 0.68 ± 0.01 0.55 0.29 0.24 0.27 0.25

The RMSE [kcal/mol] and Pearson correlation coefficients for predictions on five external test sets are given. RASPD used simpler descriptors and the LR parameters from Mukherjee

and Jayaram (2013). The values for the other methods are taken from Jiménez et al. (2018). The values for the best performing models are shown in bold.

*pK values reported by Jiménez et al. (2018) were converted to 1G for comparison of RMSE values.

traditional docking scoring functions. Previously reported RMSE
values (Jiménez et al., 2018) were transformed from errors in pK
values to errors in 1G for the comparisons. The RASPD+ eRF
model consistently achieved lower error and higher correlation
compared to the linear regression using the RASPD+ descriptors
and this difference was more pronounced when comparing to
the original RASPD linear regression model. With respect to the
absolute deviation, measured by RMSE, the established scoring
functions, RF-Score and X-Score performed best (Table 2). Only
on set 2 of the challenging CSAR-NRCHiQ release (Dunbar et al.,
2011) did RASPD+ with the eRF model have a lower RMSE,
with a value of 2.23± 0.04 kcal/mol, than the existing docking-
based methods. When considering the Pearson correlation as a
proxy for the ranking performance, RASPD+ with eRF models
not only achieved the best result on the CSAR-NRC HiQ set 2
(r = 0.78 ± 0.01) but also achieved r = 0.70 ± 0.02 on the data
set curated by Wang et al. (2015) (Table 2).

The good performance of the RASPD+ eRF on the Wang
et al. data set is also borne out in the distribution of predictions
(Supplementary Figure 3), which, compared to the results on
CSAR-NRC HiQ (Supplementary Figure 6), not only ranks but
also faithfully captures the range of energies. On both the CSAR
2012 and CSAR 2014 data sets, clear failures of the RASPD+ eRF
and most other methods can be observed. For some cases, the
RASPD+ model predicts energies in a very narrow range around
−10.5 kcal/mol (Supplementary Figures 4, 5), but, interestingly,
this value does not correspond to the mean 1G value for the
training data.

As the CSAR 2012 (Dunbar et al., 2013) and CSAR 2014
(Carlson et al., 2016) releases and the data set from Wang et al.
(2015) provided data for several ligands for each individual
protein target, we analyzed the failure cases at the level of the
individual proteins (Supplementary Tables 6–8). The Pearson

and Spearman correlations are below 0.3 for the BACE and CDK2
systems from the Wang et al. set (Wang et al., 2015) and CHK1
and SYK in the CSAR sets. In contrast, the CDK2 complexes
in the CSAR 2012 set (Dunbar et al., 2013) achieved a Pearson
correlation of r = 0.50 ± 0.05. The highest correlations were
observed for the PTP1B, Mcl-1, TYK2 systems in the Wang
et al. (2015) data (Supplementary Table 6) and for the CDK2-
Cyclin A complex (Supplementary Table 7) and TrmD on the
CSAR data (Supplementary Table 8). Strikingly, only for PTP1B,
TYK2, and TrmD was R2 > 0.3 observed while all Q2

F3 values
were above 0.5.

3.4. Feature Importance Analysis
To assess which features contribute to accurate predictions,
two strategies were chosen. By permutation feature importance,
the contribution to the prediction was quantified by the
change in the Pearson correlation coefficient after shuffling
the values in the individual feature columns randomly. Three
different model types – namely, linear regression, support vector
machine, and extremely random forests – showed different
relative contributions of the individual features (Figure 5A).
While LR assigned high contributions to a few features, the
reduction in predictive performance for each shuffled feature
was lower for eRF and the contribution signal was more
evenly distributed among the different features.Molar refractivity
(MR), which was the feature most strongly correlated with
the target variable 1G , showed the strongest effect in the
LR, lSVR, and eRF models. For LR, randomizing MR almost
completely removed the predictive power (r < 0.2). Among
the protein features, the LR, SVR, and RF methods showed
high contributions for the general descriptor PlogP(Non-
Arom) (Figure 5A). While both SVR and eRF assigned high
contributions to the PMR(Non-Arom), LR, and lSVR placed
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FIGURE 5 | Analysis of feature importance for the predictive performance of RASPD+. (A) The average change in predictive performance as measured by Pearson

correlation when the corresponding feature column was shuffled. Results are reported for linear regression (LR), linear support vector regression (lSVR), support vector

regression (SVR), and extremely random forests (eRF). (B) Ablation based analysis entailing training eRF models with different feature sets. The models trained on just

the values for molar refractivity (MR only) and molecular weight (MASS only) serve as lower bounds for measuring performance. The “ligand only” and “protein only”

models trained on either only ligand or only protein features, respectively, perform better than the “MR only” and “MASS only” models but not as well as the models

derived from all features. The protein features contain implicit information on the ligand size and this may indicate why the performance of the “protein only” model is

better than that of the “ligand only” model (see Figure 1 for details).

higher contributions on PlogP(Arom) and PMR(Arom) among
the general protein features. PA(Amide-O), which had the
second-highest correlation with 1G , showed a pronounced
signal for the editedSVR and eRF models. The hydrogen bond
acceptor count at the negatively charged amino acid residues
[PA(D+E)] was informative for all these machine learning
methods. In the eRF model, it had an importance value similar
to the general protein features, such as the residue log P values.
This is especially surprising as no information on the ligand
charge was provided, and the count of positively charged amino
acid hydrogen bond donors [PD(K+R+HIP)] did not contribute
strongly to the predictions.

Additionally, we trained eRFmodels on subsets of the features
and compared their performance to the full model (Figure 5B).
Among the models trained on a single feature, the model trained
on molar refractivity (MR) achieved better performance than

that trained on molecular weight (MASS). Models trained on
just the features of the protein pocket performed better than
models using only ligand descriptors. In this case, the protein
features still contained information about the ligand implicitly,
as each protein descriptor is dependent on the size of the sphere
surrounding the ligand. These reduced feature set models were
also subjected to permutation feature importance analysis. For
models with only ligand features, a very similar ranking of
ligand features compared to the full training set was observed,
illustrating the general preference for using those features for
prediction (Supplementary Figure 7).

When examining the feature importance for protein-only
models, the backbone hydrogen bond acceptor [PA(Amide-O)]
stands out compared to the feature importance on the full
feature set (Supplementary Figure 8). This could be partially
explained by the fact that this feature showed a strong correlation
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TABLE 3 | Average enrichment factors with corresponding standard deviations for the top 1, 5, and 10% of the data selected from the DUD-E systems.

Full DUD-E w/o cofactor/surface binding

nsystems= 102 nsystems = 55

Method EF 1% EF 5% EF 10% EF 1% EF 5% EF 10%

eRF 1.8± 2.5 1.5± 1.4 1.3± 0.9 2.0± 3.0 1.7± 1.5 1.0± 1.0

RF 1.9± 2.4 1.5± 1.5 1.3± 1.0 2.3± 2.8 1.7± 1.7 1.4± 1.1

DNN 2.0± 2.0 1.4± 1.2 1.3± 0.9 1.8± 2.3 1.6± 1.3 1.4± 0.9

kNN 1.5± 1.9 1.3± 1.3 1.2± 0.9 1.8± 2.4 1.6± 1.6 1.0± 1.0

lSVR 2.6± 3.1 1.9± 1.6 1.6± 1.1 2.6± 3.3 2.0± 1.7 1.7± 1.2

SVR 2.3± 3.5 1.6± 1.5 1.4± 1.0 3.1± 4.3 1.9± 1.8 1.5± 1.1

LR 2.7± 3.4 2.0± 1.7 1.7± 1.2 2.9± 3.7 2.1± 1.8 1.8± 1.3

RASPD 4.1± 4.0 2.2± 1.7 1.7± 1.1 4.2± 4.2 2.3± 1.7 1.7± 1.2

Mean ensemble 2.0± 3.0 1.8± 1.6 1.6± 1.1 2.6± 3.4 2.0± 1.8 1.7± 1.1

Union 2.4± 2.3 1.8± 1.4 1.6± 1.0 2.8± 2.6 2.1± 1.6 1.8± 1.1

Union w/o kNN 2.5± 2.7 1.8± 1.5 2.0± 1.0 3.0± 3.0 2.1± 1.7 1.7± 1.1

Union Top 3 2.8± 3.6 1.9± 1.7 1.6± 1.2 3.3± 4.2 2.0± 2.0 1.8± 1.3

Union is the enrichment achieved by selecting the non-redundant set of candidate compounds obtained by combining the selections of each method. Performance when excluding

cofactor and surface binding sites is also reported. Values are also given for the original RASPD method.

with general ligand features (Figure 2) and thereby provides
information related to general ligand size.

3.5. Enrichment of Active Molecules From
the DUD-E Data Set
To assess the usefulness of our RASPD+ method, we simulated
a drug discovery setting using the benchmark DUD-E data
set, which contains several computationally generated decoys
per active compound (Mysinger et al., 2012). For each of
the seven machine learning models, we calculated enrichment
factors (EF) to quantify how effective ranking by predicted
binding free energies was at enriching active molecules from
the whole data set (Table 3). We also compared the RASPD+
results with those of RASPD (Mukherjee and Jayaram, 2013)
and found that the linear regression models of both RASPD+
and RASPD were the most effective when filtering to 1, 5, and
10% of the samples, with EFs of 2.7 ± 3.4 and 4.1 ± 4.0,
respectively, when filtering down to 1% of the samples. The
high standard deviation in the mean EF resulted from high
variability in the performance of different methods on individual
proteins (Supplementary Table 9). As methods that ranked on
average less favorably provided the only acceptable enrichment
on some of the systems, we chose a conservative approach to
interpreting the results by combining the predictions of all the
methods. We thus also considered the union of the sets of top
candidate molecules from all seven machine learning models.
This combination achieved an enrichment at 1% of 2.4± 2.3,
similar to the linear methods. By excluding the predictions of
the worst-performing method kNN (Union w/o kNN), this set
improved to 2.5± 2.7. When only combining the predictions
of the three methods performing best on the DUD-E set LR,
lSVR, and SVR (Union Top 3), this further increased to 2.8± 3.6.
For comparison, the performance of scoring functions functions
based on the docked structures of ligand-protein complexes on

the DUD-E set has been assessed by Chen et al. (2019). The
highest early (1%) and late (10%) enrichment factors were 6.67
and 2.55, respectively, and were obtained using the knowledge-
based DLIGAND2 scoring method, whereas the corresponding
values obtained with the widely used AutoDock Vina scoring
function were 5.12 and 2.60. The late EF obtained with the
RASPD+ union w/o kNN approach is similar to that of these
docking-based methods.

One of the reasons for some of the poor predictions with
DUD-E is that, in contrast to the training with PDBbind,
the query ligands may bind at a different position to the co-
crystallized ligand in the target whose center of mass is used
to define the binding site for which protein properties are
computed. If the query ligand binds in a somewhat different
position, the computed protein features may not be so relevant.
From the feature importance analysis (Figure 5), we see that for
the eRF model, all the features contribute in a similar way to
the final prediction. In contrast, for the LR and lSVR models,
the dominant contributions to the prediction were from ligand
molar refractivity and just three out of the 15 protein features.
Since, in the LR and lSVR models, only a few protein features
contribute to the final score, erroneous protein features may have
less impact on the final predicted value compared to the random
forest-based models. The average EF values for the LR method,
and for the original RASPD LR model, for all the DUD-E sets
are therefore higher than for the other methods. Another reason
for low EF values for some targets is the presence of cofactors or
structural water molecules in the binding site in some proteins
as well as highly solvent exposed binding sites. To assess how
much the performance is impacted by situations not properly
modeled by RASPD+, we also considered whether a cofactor
in the binding site or a mostly solvent-exposed surface binding
site affects performance. For most methods, the exclusion of
those challenging pockets, which by design could not be fully
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TABLE 4 | Mean enrichment factors for different subsets of the DUD-E set.

Union Union top 3

Target subset Count EF 1% EF 5% EF 10% EF 1% EF 5% EF 10%

Cytochrome P450 2 1.86 1.25 1.28 1.11 1.65 1.42

GPCR 5 4.30 2.94 2.18 7.37 3.61 2.61

Ion channel 2 5.54 2.15 1.61 7.67 2.16 1.56

Kinase 23 3.04 2.55 2.15 4.43 3.03 2.49

Metal containing enzyme 18 2.47 1.66 1.42 2.89 1.84 1.55

Miscellaneous 30 1.83 1.49 1.41 1.57 1.34 1.12

Nuclear receptor 11 1.73 1.18 1.11 1.14 0.93 1.01

Protease 11 1.56 1.62 1.41 1.91 1.75 1.60

Performance reported both the union over the predictions of all methods and the union of the predictions from the three best ranking methods (LR, lSVR, and SVR).

modeled with RASPD and RASPD+ descriptors, improved the
mean performance (Table 3).

Additionally, we analyzed the performance of the different
protein subgroups in the DUD-E set (Table 4). Here we observed
the lowest average performance for the protease subgroup when
considering the union over all methods and when considering
only the top three union, cytochrome P450, and nuclear receptor
targets were the groups with the lowest enrichment. The poor
performance for cytochrome P450s may be due to the heme
cofactor in their binding site whereas it is notable that the
eight proteases (out of the 11 in the DUD-E data set) with
low EF factors have ligands that are solvent exposed in the
crystal structure or there are structural water molecules bridging
between polar atoms of the ligand and the protein. The highest
enrichment was observed for ion channels, G-protein coupled
receptors (GPCR), and kinases in both settings (Table 4).

4. DISCUSSION

As the global health crisis surrounding the SARS-CoV-2
pandemic (Wu et al., 2020) has demonstrated, there is a need
for fast computational tools to accelerate drug design and
development processes. Themethodwe present here, RASPD+, is
able to perform virtual screening of large libraries of compounds
(Irwin and Shoichet, 2005; Wishart et al., 2006) at a fraction of
the time typically required for protein-ligand docking methods.
This enables quick prioritization of candidates for a follow
up with more accurate yet computationally more demanding
methods, such as docking. We achieved the speed up by training
machine learning models on simple pose-invariant ligand and
protein descriptors. With this simplified approach, we achieved
results comparable to existing scoring functions (Wang et al.,
2002; Ballester and Mitchell, 2010; Cao and Li, 2014; Jiménez
et al., 2018) when predicting the binding free energy, 1G ,
on several data sets. By splitting the PDBbind training, testing,
and validation data in a nested cross-validation setup, we were
able to assess reliably that random forest models, particularly
the extremely random forest model, performed best on this
type of data. While this splitting strategy increases confidence
in the comparison of learning methods and feature importance

analysis within the study, other data set splitting strategies, which
explicitly control how similar proteins or ligands are between
training and test sets (Feinberg et al., 2018; Sieg et al., 2019; Su
et al., 2020), may be more appropriate to assess performance on
completely different ligands or proteins directly.

We accounted for this deficiency by not only testing the
regression performance on different external test sets but also
by assessing the ability of the RASPD+ models to enrich active
molecules from a set of inactive decoys. Although the achievable
enrichment factors were not as high as state-of-the-art docking
or free energy prediction methods (Li et al., 2014), RASPD+
still displayed appreciable enrichment of active molecules on
the DUD-E data set (Mysinger et al., 2012). RASPD+ was able-
without sampling docking poses-to achieve similar performance
to an older scoring function in a docking method comparison
(Li et al., 2013; Chen et al., 2019). This is remarkable for two
reasons: First, the training set only includes molecules displaying
binding to their specific target protein. Secondly, four of the six
physicochemical descriptors (molecular weight, hydrogen bond
donor and acceptor count, and logP value), used to describe
the ligand molecule, were initially used to select decoys similar
to the active molecules for the DUD-E data set (Huang et al.,
2006;Mysinger et al., 2012). This makes the task of distinguishing
active and inactive molecules particularly difficult for our models
that employ only basic ligand descriptors (Lagarde et al., 2015).
Notably, however, molar refractivity (MR), which was not used
for the creation of the DUD-E decoys, was not only a powerful
predictor on its own (r > 0.5) but was also consistently assigned
the highest feature importance among the ligand features. The
high importance of MR agrees with results from a recent study
that used ligand descriptors to enhance the performance of a
common docking scoring function (Boyles et al., 2020).

Not considering pockets containing metal ions or other
cofactors, which are not taken into account by the simple
RASPD+ descriptors, yielded slightly higher average enrichment
than on the full DUD-E set. Random forest methods, which
were best suited for the 1G regression on known binders,
were for most proteins outperformed by the simpler linear
regression methods. This observation might support the recent
finding that random forest methods, in particular, benefit from
highly similar training molecules (Su et al., 2020). Considering
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the strengths and weaknesses of the different machine learning
methods, we therefore recommend that for applications of
RASPD+, the results of the seven different machine learning
methods are combined by picking top candidates from the
rankings produced by each method. For this, we demonstrated
different combinations using the union of selection sets from the
different methods.

If this approach is applied to pick the top 10% of RASPD+
candidates, this can provide a 10-fold reduction in the time
spent for docking. Notably, we achieved computation times
for RASPD+ that were over 100 times faster than Glide SP
docking (Friesner et al., 2004) (Schrödinger Release 2019-4:
Glide, Schrödinger, LLC, New York, NY) on a laptop grade CPU
(data not shown), meaning that computation times for RASPD+
screening are negligible compared to times for docking and
molecular dynamics simulation.

Thus, the use of RASPD+ is clearly beneficial in time-critical
applications of virtual screening of large compound libraries
against individual protein targets. Moreover, higher structure-
based screening throughput could also enable more effective
inverse virtual screening of protein databases to assess the
specificity and potential side-effects of candidate molecules.
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