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In recent years, latent metabolite-disease associations have been a significant focus in
the biomedical domain. And more and more experimental evidence has been adduced
that metabolites correlate with the diagnosis of complex human diseases. Several
computational methods have been developed to detect potential metabolite-disease
associations. In this article, we propose a novel method based on the spy strategy and
an artificial bee colony (ABC) algorithm for metabolite-disease association prediction
(SSABCMDA). Due to the fact that there are large parts of missing associations
in unconfirmed metabolite-disease pairs, spy strategy is adopted to extract reliable
negative samples from unconfirmed pairs. Considering the effects of parameters,
the ABC algorithm is utilized to optimize parameters. In relevant cross-validation
experiments, our method achieves excellent predictive performance. Moreover, three
types of case studies are conducted on three common diseases to demonstrate the
validity and utility of SSABCMDA method. Relevant experimental results indicate that our
method can predict potential associations between metabolites and diseases effectively.

Keywords: metabolites, disease, associations, spy strategy, ABC algorithm

INTRODUCTION

Metabolomics, an important part of systems biology, is a recently and rapidly developed subject
following genomics and proteomics, which have entered many fields closely related to human
health, such as nutrition and food science, medical development, and, especially, disease diagnosis
(Dunn and Ellis, 2005). Accumulating studies have explored the vital roles that metabolites play
in the pathogenesis of disease according to changes in the concentration of metabolites. Moreover,
the exploration of metabolite–disease associations is meaningful for a deep understanding of the
reason a person becomes ill and promotes the diagnosis and treatment of human diseases.

Although many high-throughput metabolomics technologies have been utilized to testify
to the metabolite signatures of diseases, which have reached several achievements, such as
the Human Metabolome Database (HMDB) (Wishart et al., 2018), unverified metabolite–
disease associations are still in the majority. Furthermore, a weakness of experimental
determination to identify metabolite-disease associations is that it is extraordinarily laborious
and expensive. Accordingly, owing to the high efficiency and reliability of computational
approaches (Jiao and Du, 2016; Wu et al., 2020) to identify metabolite–disease associations,

Abbreviations: DAG, Directed Acyclic Graph; GIP, Gaussian interaction profile; LOOCV, Leave-one-out cross validation;
TPR, True positive rate; FPR, False positive rate; ROC, Receiver operating characteristic; AUC, Area under the curve.
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they have attracted attention from scientific communities in the
relevant field. RWRMDA (Hu et al., 2018), the first method
for mining the associations between metabolites and diseases,
has made progress in developing computational methods in this
field. However, the shortcoming of the method is the lack of
disease similarity in the construction of the RWRMDA model.
The RLS algorithm, whose core framework is regularized least
squares, is used in other prediction areas, such as miRNA-disease
associations (Chen and Yan, 2014). However, this algorithm
uses single similarities which only use biological information as
similarity and the performance of it is not stable.

In this article, we put forward a method to predict potential
metabolite–disease associations, which utilizes the spy strategy
and the artificial bee colony (ABC) algorithm, based on the
network consistency projection algorithm (Figure 1). First, we
select biological properties of diseases and metabolites and
integrate them as biological similarity for diseases or metabolites.
Simultaneously, the topological properties of diseases and
metabolites are also considered when we calculate the final
disease similarity. Second, the spy samples from positive samples
are utilized to select latent negative samples with suitable
thresholds by spy strategy. Third, the optimized parameters are
found by utilizing the ABC algorithm. Finally, the network
consistency projection algorithm is used to predict the final
scores. The area under the curve (AUC) values of the receiver
operating characteristic (ROC) are 0.9412 and 0.9355 (average
value) in leave-one-out cross validation (LOOCV) and fivefold
cross validation, respectively. The case study of tuberculosis,
hepatitis, and asthma deeply showed the effectiveness of our
method. In summary, the SSABCMDA method could be a
useful and effective algorithm for predicting the metabolite–
disease associations.

MATERIALS AND METHODS

Metabolite–Disease Associations
The relevant data are extracted from HMDB, DisGeNET
(Piñero et al., 2015), and HSDN (Zhou et al., 2014) databases.
We firstly extract the disease with DOID and their relevant
metabolites in HMDB. Considering integrating the relevant
disease similarities, we find the common diseases and their
relevant metabolites in DisGeNET and HSDN. Finally, we extract
2,095 experimentally confirmed metabolite–disease pairs, which
include 1,401 metabolites and 86 diseases (see Figure 2). The
unconfirmed metabolite–disease pairs are regarded as unlabeled
pairs. In this study, the number of the investigated metabolites
and diseases are defined as variables nm and nd. To distinctly
deliver association information, we establish an adjacency matrix
A whose size is nd rows and nm columns. If disease di and
metabolite mj are proved to be related, the element A(i,j) is set
to 1, otherwise 0.

Disease Functional Similarity 1
The scores of disease functional similarity 1 (DFS1) can be
calculated under the hypothesis that two diseases which have
more similar features are more likely to be linked with similar

genes. The associations of diseases and relevant genes are
extracted from DisGeNET (Piñero et al., 2015). Subsequently, the
Jaccard similarity is used to calculate similarity score between di
and dj, which is defined as follows (Gu et al., 2016):

DFS1
(
di, dj

)
=

p
P + q+ r

(1)

Gn
(
di
)
=

{
1, if Gn is associated with di and n ∈ [1, nd],

0, otherwise ,
(2)

where di anddjrepresent two set of diseases. Take di as an
example, di = [G1

(
di
)
, . . . .,Gn

(
di
)
, ..Gnd

(
di
)
], and p denotes

the number of variables with a value of 1 in both Gn
(
di
)

and Gn
(
dj
)

– which means the whole number of genes
simultaneously associated with di and dj; q is defined as the
number of variables with a value of 1 in Gn

(
di
)

and 0 in
Gn
(
dj
)
; and r is defined as the number of variables with a value

of 0 in Gn
(
di
)

and 1 in Gn
(
dj
)
.

Disease Functional Similarity 2
It is assumed that if two diseases obtain a higher score in a
symptom-based similarity matrix, they tend to have a more
similar function. We extract the relevant symptoms associated
with diseases in HSDN. According to previous articles (Zhou
et al., 2014; Ma et al., 2016), every disease has its own set that
consists of its relevant symptoms, and disease i is taken as an
example, which is calculated as follows:

Di = (wi,1,wi,2, . . . ,wi,N) (3)

wi,j =Wi,j log
nd
nj

(4)

where N is the total number of symptoms, wi,j is defined as
the weight of the associations between disease i and symptom
j, nj denotes the number of diseases that have an association
with symptom j, nd represents the total number of diseases, Wi,j
denotes the number of associations of disease i and symptom
j,log nd

nj could balance the weights problem. Then the disease
functional similarity (DFS2) between the vectors Di and Dqof two
diseases i and q is calculated using Equation (5):

DFS2
(
di, dq

)
= cos

(
Di,Dq

)
=

∑N
j=1 Di,jDq,j√∑N

j=1 D
2
i,j

√∑N
j=1 D

2
q,j

(5)

Metabolite Function Similarity
This is based on the assumption that two metabolites with
functional similarity may have more common relevant enzymes.
Using a similar way to obtain DFS2, we calculate the weight vector
Maof the metabolites, which is the following:

Ma = (wa,1,wa,2, . . . ,wa,G) (6)

wa,b =Wa,b log
nm
nb

(7)
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FIGURE 1 | Flowchart of SSABCMDA.

where G is the number of metabolite-related enzymes, wa,b
quantifies the strength of the associations between metabolite a
and enzyme b, nb means the number of metabolites associated
with enzyme b, nm represents the total number of metabolites,
Wa,b denotes the number of associations between metabolite a
and enzyme b,log nm

nb could balance the weights problem. Finally,
the similarity between the vectors Ma and Myof two metabolites
a and y is calculated as follows:

MFS
(
ma,my

)
= cos

(
Ma,My

)
=

∑G
b=1 Ma,bMy,b√∑G

b=1 M
2
a,b

√∑G
b=1 M

2
y,b

(8)

Gaussian Interaction Profile Kernel
Similarity
If we consider the hypothesis that similar metabolites
tend to reflect a similar pattern of interaction and non-
interaction with diseases, the Gaussian interaction profile
(GIP) kernel similarity for metabolites and diseases based
on the topologic information of known metabolite-disease

association network is calculated as follows (Wu et al., 2018;
Fang and Lei, 2019):

KM
(
mi,mj

)
= exp

(
−ωm ‖ A (:, i)− A

(
:, j
)
‖

2) (9)

KD
(
di, dj

)
= exp

(
−ωd ‖ A (i, :)− A

(
j, :
)
‖

2) (10)

where ωmand ωd denote parameters about kernel bandwidth
(Yu et al., 2018), which could be obtained by the normalization
operation of the original bandwidth parameter ω

′

m, ω
′

d which are
set 1, ωm, ωd are defined as follows (Jiang et al., 2017):

ωm = ω
′

m/

(
1
nm

nm∑
i=1

‖ A(:, i) ‖2

)
(11)

ωd = ω
′

d/

 1
nd

nd∑
i=1

‖ A(i, :) ‖2

 (12)

Integrated Similarity for Diseases
In this section, we first integrate two disease functional
similarities using the disease biological characteristic similarity
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FIGURE 2 | A part of the known metabolite–disease associations network. Yellow nodes represent diseases and green nodes represent metabolites.

(DB),which consists of two disease functional similarities, is
shown as follows:

DB(di, dj) =
{

DFS1
(
di, dj

)
if DFS2

(
di, dj

)
= 0

(1− α)DFS2(di, dj)+ αDFS1(di, dj) else
(13)

Then the biological and topological characteristics of diseases are
integrated, as follows:

SD
(
di, dj

)
=

{
DB

(
di, dj

)
if DB

(
di, dj

)
6= 0

(1− β)DB
(
di, dj

)
+ βKD

(
di, dj

)
otherwise

(14)

Integrated Similarity for Metabolites
The integrated metabolite similarity matrix SM consists of
metabolite functional similarity and GIP kernel similarity. The

similarity is defined as below:

SM
(
mi,mj

)
=

{
MFS

(
mi,mj

)
if MFS

(
mi,mj

)
6= 0

(1− γ)MFS
(
mi,mj

)
+ γKM(mi,mj) otherwise

(15)

RESULTS

Calculation of Metabolite–Disease
Association Prediction Scores
A method named network consistency projection (NCP), which
is proposed by Gu et al. (2016) and Bao et al. (2017), is
utilized to infer metabolite-disease associations. The main idea
for network consistency is that the spatial similarity between
metabolite j associated metabolites in the metabolite similarity
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network and disease i associated metabolites in the metabolite-
disease association network or the spatial similarity between
disease i associated diseases in the disease similarity network
and metabolite j associated diseases in the metabolite–disease
association network is positively related to the association
between disease i and metabolite j. The potential score between
disease i and metabolite j is positively related to the relevant
known associations and the spatial similarity in the disease
similarity network or metabolite similarity network. There are
three steps in the calculation of the predicted score between
disease i and metabolite j (Gu et al., 2016; Bao et al.,
2017):

First, the scores for metabolite space projection are calculated
as follows:

msp
(
i, j
)
=

Ai ∗ SMj

|Ai|
(16)

where msp
(
i, j
)

denotes the projection score of SMjon Ai,
Airepresents a vector encoding the associations between
disease i and all metabolites in the metabolite–disease
association network, SMj is defined as a vector denoting
the similarities between metabolite j, and all metabolites
in the metabolite similarity network, |Ai| is the length of
vector Ai.

Secondly, the projection scores about diseases should be
calculated as follows:

dsp
(
i, j
)
=

SDi ∗ Aj∣∣Aj
∣∣ (17)

where dsp
(
i, j
)

denotes the projection score of DSi on Aj, Aj
represents a vector encoding the associations between metabolite
j and all diseases in the metabolite-disease association network,
SDi is defined as a vector denoting the similarities between disease
i and all diseases in the disease similarity network, and

∣∣Aj
∣∣ is the

length of vector Aj .
Finally, the predicted scores are integrated relevant scores

of the metabolite space projection and disease space projection,
which is defined as:

ncp
(
i, j
)
=

dsp
(
i, j
)
+msp

(
i, j
)

|SDi| +
∣∣SMj

∣∣ (18)

where ncp
(
i, j
)

is the possibility score for disease i and
metabolite j, |SDi|denotes the length of DSi,and

∣∣SMj
∣∣represents

the length of SMj .

Spy Strategy
As is generally known, there are many unlabeled metabolite–
disease associations in an adjacency matrix, which are regarded
as negative training samples most of the time for convenience.
But this will cause high false negative rates between predicted
associations. Therefore, the spy strategy (Jiang et al., 2017)
is utilized to explore the reliable negative samples from the
unlabeled metabolite–disease pairs. Spy strategy has several steps.
First, 10% spy samples are extracted from the labeled associations,
which changes them from 1 to 0. Second, the NCP algorithm
and relevant Gaussian kernel similarities are used to get the final

score. Then, the score that is the lowest in the spy samples is
set to the threshold. If the final score in a candidate sample
is lower than the threshold, the relevant value would be set
to −1, which is regarded as a reliable negative sample in the
association of the metabolite–disease adjacent matrix. Last, the
spy samples are repeated 100 times, and the intersection of the
reliable negative samples is used as the final reliable negative
sample to keep its reliability. The main idea of spy strategy is
shown in Figure 3.

Parameter Analysis Based on ABC
Testing parameters also play a significant role in prediction
performance. Moreover, two articles (Wu et al., 2018; Niu et al.,
2020) also point out that a swarm intelligence algorithm can
optimize parameters and the ABC algorithm (Karaboga and
Akay, 2009) is utilized to get the more suitable parameters α,
β, and γ in this article. ABC, which is proposed by Karaboga,
is inspired by bee colony behavior. In the ABC search process,
the algorithm first needs to be initialized, which includes using
the number of positions of the honey sources (nPo), the
maximum number of iterations (max_iter), and the range of
parameters. Every honey source position can be regarded as a
result (parameter set) xi(i = 1, 2, 3, 4,., nPo) that is a three-
dimensional space ranging from 0 to 1. After initialization, the
entire population will repeat the search process with employed,
onlooker, and scout bees until the max_iter is reached. According
to the fitness-function (16), all parameter values are tested, and
the best parameter values are found at the end of the algorithm.
The fitness function F(xi) is shown below:

F(xi) = Per_c− Act_c(xi) (19)

where Per_c denotes the perfect and ideal forecast result which
is set 1, Act_c(xi) represents the result aboutxi, xi = {α, β, γ and
F(xi) represents the honey source cost value. The goal is to obtain
a set of suitable parameters whose result could make the F(xi)
turn to be lowest.

FIGURE 3 | Flowchart of Spy Strategy.
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At the beginning of the search process, every employed bee
finds a new location of honey source by Equation (19):

Npij = pij + ∅ij ∗ (pij − pik) (20)

where k ∈
[
1, npo

]
, j ∈ [1,D] denotes the dimension and k 6= i

,∅ij ∈ [0, 1] is random number. As mentioned above, xi is a set
that consists of the values of parameters α, β, and γ. Thus, D is set
to 3. After all the employed bees have completed the search, they
need to share the relevant information with onlooker bees, and
the selection probabilities for each solution are calculated with
Equations (20–22):

M =
1
n
∗

n∑
i=1

Ci (21)

Fi = e−
Ci
M i = 1, 2, . . . ., n (22)

Pi =
Fi∑n
k=1 Fi

i = 1, 2, . . . ., n (23)

where n ∈
[
1, npo

]
andCirepresents the cost value of the ith

honey source, and Pi denotes the selecting probability of the ith
honey source. According to probability of every honey source,
on-looker bees select honey source and update relevant honey
source. When some honey sources are abandoned, the employed
bees corresponded to these sources become scout bees. After
the convergence criterion was satisfied, we get best cost value of
honey source (see Figure 4) and the optimal parameters (α =
0.56, β = 0.89, γ = 0.6). In this study, max_iter, nPo, and the
number of employed bees are set to 40, 10, and 10, respectively.
In addition, the results of Act_c(xi) is calculated by fivefold cross
validation (Luo and Xiao, 2017), where we keep the same division
of known associations to reduce the impact of other factors on
parameter selection.

FIGURE 4 | The optimal fitness of each iteration.

Performance Evaluation
Leave-one-out cross validation (Liu et al., 2019) and fivefold cross
validation (Luo and Xiao, 2017) are used as the evaluation tools
for our method. For LOOCV, each association that is confirmed
in the database is treated as the test sample while the other
known associations are viewed as training samples. In addition,
those unconfirmed metabolite–disease pairs are regarded as
latent candidate samples. For fivefold cross validation, the known
metabolite and disease data are randomly split into five equally
sized sets. Each set is retained as the validation samples and
the other four sets are treated as the training samples. Similar
to the LOOCV, the unconfirmed metabolite–disease pairs are
used as the candidate samples. Then, the score for each of
the validation samples is ranked against the scores of all the
candidate samples. At the same time, we obtain the rank for
each association in the test samples. To avoid random error
caused by the division of known associations, this procedure
is repeated 100 times. According to the results of LOOCV
and fivefold cross validation, the AUC – the area under the
ROC curve – which is calculated from the true positive rate
(TPR) and the false positive rate (FPR), is deemed significant.
After LOOCV and fivefold cross validation, SSABCMDA yielded
the reliable AUC values of 0.9412 and 0.9355 (average value),
respectively, which shows that SSABCMDA presents excellent
prediction performance.

The RWRMDA (Hu et al., 2018), RLS algorithm is compared
with methods based on the same data in this article. The
performance comparison in LOOCV is shown in Figure 5,
where the AUCs of SSABCMDA, RWRMDA, and the RLS
algorithm are 0.9412, 0.6851, 0.7313, respectively. Moreover,
SSABCMDA, RWRMDA, and the RLS algorithms gain AUC
average values of 0.9355, 0.6738, 0.4371 for fivefold cross
validation (see Figure 6A). To explore the effects of spy strategy
and ABC algorithm, respectively, we compare SSABCMDA;
SSABCMDA_1, which doesn’t consider spy strategy; and

FIGURE 5 | Comparison results about LOOCV.
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FIGURE 6 | Comparison results about fivefold cross validation. (A) Different methods for comparation. (B) The combination of different parts in SSABCMDA for
comparation.

FIGURE 7 | The network of metabolites and diseases. It shows that the top 10 predicted and known metabolites used in this study for two diseases, respectively.
The yellow nodes represent diseases and green nodes represent known metabolites which are respective related to two diseases. The blue nodes represent
predicted metabolites associated with two disease which are verified by literature, while the gray nodes represent unconfirmed metabolites in top 10 predicted
metabolites.

SSABCMDA_2, which only uses random parameters. The
relevant results for fivefold cross validation are showed in
Figure 6B, which indicate that spy strategy and ABC algorithm
are effective for predicting performance. As above results
showed, we find our method is superior to other methods
compared, which indicates that our method is suitable as a
reliable biomedical research tool for predicting latent metabolite–
disease pairs.

Case Study
In this section, three diseases – tuberculosis, hepatitis, and
asthma – are selected for case studies to explore their pathogenic
mechanisms with respect to metabolites. Of the top 10
metabolites predicted, 8, 7, and 7 could be verified from the
literature for the three diseases. Two diseases and their known
and top 10 predicted metabolites are showed in Figure 7, which
is obvious that the confirmed metabolites in top 10 predicted

metabolites can help to study the mechanism of disease from the
perspective of metabolism.

Hepatitis is the general name for the liver diseases hepatitis A
and B. We conducted a case study of Hepatitis on our calculation
method. As shown in Table 1, the top 10 metabolites predicted
to be interrelated with hepatitis are selected and verified to
be correlative. For instance, Uric acid might be useful as a
predictive factor for response to therapy for chronic hepatitis
(Oh et al., 2017).

Tuberculosis is a chronic infectious disease caused by
Mycobacterium tuberculosis, which can invade the liver and is
most common in pulmonary tuberculosis. There are more than
eight million new cases of tuberculosis and 1.3 million deaths
(Sharma and Mohan, 2004). We carried out a case study of
tuberculosis with our method, and 7 out of top 10 metabolites
predicted to be interrelated with tuberculosis are verified to be
correlative (see Table 2). For instance, the production of NE
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TABLE 1 | Candidate metabolites of hepatitis.

Hepatitis

Rank Metabolite name Evidence

1 Cholesterol PMID:30600305

2 Uric acid PMID:28797159

3 Phosphate -------------

4 Dopamine PMID:30386344

5 Homocysteine PMID:30063074

6 Quinolinic acid -------------

7 Homovanillic acid PMID:4817189

8 Potassium -------------

9 Pipecolic acid PMID:3356409

10 Norepinephrine PMID:5935605

TABLE 2 | Candidate metabolites of tuberculosis.

Tuberculosis

Rank Metabolite name Evidence

1 Cholesterol PMID:29906645

2 Uric acid PMID:26398460

3 Phosphate PMID:27105642

4 Dopamine PMID:25549893

5 Homocysteine PMID:28936998

6 Quinolinic acid -------------

7 Homovanillic acid -------------

8 Hyaluronic acid -------------

9 Potassium PMID:30716121

10 Norepinephrine PMID:27609282

TABLE 3 | Candidate metabolites of asthma.

Asthma

Rank Metabolite name Evidence

1 Cholesterol PMID:27839668

2 Uric acid PMID:26509876

3 Phosphate PMID:26048149

4 Dopamine PMID:12055141

5 Homocysteine -------------

6 Quinolinic acid PMID:23882022

7 Homovanillic acid PMID:5717841

8 Hyaluronic acid PMID:24736408

9 Potassium PMID:11862989

10 Pipecolic acid -------------

(norepinephrine) sharply decreased during advanced infection
(Barrios-Payán et al., 2016).

Asthma is a chronic inflammatory disorder arising from
heterogenic gene-environment interactions that are still not fully
understood (Mims, 2015). A case study of asthma was carried out
with our method, and 8 out of top 10 metabolites predicted had
associations with asthma (see Table 3). For example, hyaluronic
acid might be a marker of asthma control, as it correlates with
airway resistance and has good sensitivity in the detection of
impaired asthma control (Kolesov et al., 1968).

DISCUSSION

In this article, we propose a computational algorithm for
metabolite–disease association prediction. To make full use of
the information known, we set the known metabolite–disease
associations, integrated metabolite similarity, and integrated
disease similarity as our input data. The network consistency
projection algorithm is utilized as the baseline algorithm.
In addition, a spy strategy is utilized to extract negative
samples with a high degree of confidence from mixed samples,
including potential associations and real negative associations.
ABC is introduced to get optimal parameters to improve
prediction performance. Moreover, experimental results show
reliable evidence that our method is an effective tool to predict
metabolite–disease associations. Case studies on three common
diseases also give a powerful confirmation to the predictive
ability of our method.

The success of our method is due mainly to the following
reasons. First, an increasing amount of data known about
metabolites and disease has been discovered and confirmed
with the development of biological experiments, which are
regarded as the basis of predictive data. Second, the network
consistency projection as a baseline algorithm guarantees
predictive performance. Third, the use of the spy strategy
is beneficial to decrease false negative rates of predicted
associations. Last, optimal parameters are found quickly with the
ABC algorithm, which improves predictive performance.

There are some limitations in the performance of
SSABCMDA. At first, although the number of known
metabolite–disease associations is larger than before, it is still
a small quantity for predictions to obtain sufficiently accurate
results. In addition, SSABCMDA depends on the quality of
similarity matrices. Some reliable metabolite (disease) similarity
matrix from other biological features could be integrated to
further expand the algorithm.
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